
February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Resource Allocation Strategies for

Constructive In-Network Stream Processing∗

Anne Benoit and Veronika Rehn-Sonigo and Yves Robert

École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
{anne.benoit,veronika.sonigo,yves.robert}@ens-lyon.fr
http://graal.ens-lyon.fr/∼{abenoit,vsonigo,yrobert}

Henri Casanova

University of Hawai‘i at Manoa, 1680 East-West Road, Honolulu, HI 96822, USA
henric@hawaii.edu

http://navet.ics.hawaii.edu/∼casanova/

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

In this paper we consider the operator mapping problem for in-network stream process-
ing applications. In-network stream processing consists in applying a tree of operators in
steady-state to multiple data objects that are continually updated at various locations
on a network. Examples of in-network stream processing include the processing of data in
a sensor network, or of continuous queries on distributed relational databases. We study
the operator mapping problem in a “constructive” scenario, i.e., a scenario in which one
builds a platform dedicated to the application by purchasing processing servers with var-
ious costs and capabilities. The objective is to minimize the cost of the platform while
ensuring that the application achieves a minimum steady-state throughput. The first
contribution of this paper is the formalization of a set of relevant operator-placement
problems, and a proof that even simple versions of the problem are NP-complete. Our
second contribution is the design of several polynomial time heuristics, which are evalu-
ated via extensive simulations and compared to theoretical bounds for optimal solutions.

Keywords: in-network stream processing, trees of operators, operator mapping, optimiza-
tion, complexity results, polynomial heuristics.

1. Introduction

In this paper we consider the execution of applications structured as trees of oper-

ators. The leaves of the tree correspond to basic data objects that are spread over

different servers in a distributed network. Each internal node in the tree denotes the

∗Note that a short version of this paper appeared in the proceedings of APDCM’09, the 11th
Workshop on Advances in Parallel and Distributed Computational Models, in conjunction with
IPDPS 2009, Rome, Italy, May 2009. IEEE Computer Society Press.

1

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

2 A. Benoit and H. Casanova and V. Rehn-Sonigo and Y. Robert

aggregation and combination of the data from its children, which in turn generate

new data that is used by the node’s parent. The computation is complete when all

operators have been applied up to the root node, thereby producing a final result.

We consider the scenario in which the basic data objects are constantly being up-

dated, meaning that the tree of operators must be applied continuously. The goal

is to produce final results at some desired rate.

The above problem, which is called stream processing [1], arises in several do-

mains. An important domain of application is the acquisition and refinement of data

from a set of sensors [2]. For instance, a video surveillance application in which the

sensors are cameras located at different locations over a geographical area is out-

lined in [2]. The goal of the application could be to show an operator monitored area

in which there is significant motion between frames, particular lighting conditions,

and correlations between the monitored areas. This can be achieved by applying

several operators (filters, image processing algorithms) to the raw images, which

are produced/updated periodically. Another example arises in the area of network

monitoring [3, 4, 5]. In this case the sources of data are routers that produce streams

of data pertaining to packets forwarded by the routers. One can often view stream

processing as the execution of one or more “continuous queries” in the relational

database sense of the term (e.g., a tree of join and select operators). A continuous

query is applied continuously, i.e., at a reasonably fast rate, and returns results

based on recent data generated by the data streams. Many authors have studied

the execution of continuous queries on data streams [6, 7, 8].

In practice, the execution of the operators on the data streams must be dis-

tributed over the network. In some cases, for instance in the aforementioned video

surveillance application, the cameras that produce the basic objects do not have

the computational capability to apply any operator effectively. Even if the servers

responsible for the basic objects have sufficient capabilities, these objects must be

combined across devices, thus requiring network communication. A simple solution

is to send all basic objects to a central compute server, but it proves unscalable for

many applications due to network bottlenecks. Also, this central server may not be

able to meet the desired target rate for producing results due to the sheer amount

of computation involved. The alternative is to distribute the execution by mapping

each node in the operator tree to one or more compute servers in the network (which

may be distinct or co-located with the devices that produce/store and update the

basic objects). One then talks of in-network stream processing. Several in-network

stream processing systems have been developed [4, 9, 10, 11]. These systems all face

the same question: to which servers should one map which operators?

In this paper we address the operator-mapping problem for in-network stream

processing. This problem was studied in [2, 12, 13]. The work in [13] studied the

problem for an ad-hoc objective function that trades off application delay and net-

work bandwidth consumption. In this paper we study a more general objective

function. We first enforce the constraint that the rate at which final results are

produced, or throughput, is above a given threshold. This corresponds to a Quality

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

Resource Allocation Strategies for Constructive In-Network Stream Processing 3

of Service (QoS) requirement of the application, which is almost always desirable in

practice (e.g., up-to-date results of continuous queries must be available at a given

frequency). Basic objects may be replicated at multiple locations, i.e., available

and updated at these locations. In terms of the computing platform we consider a

“constructive” scenario: either the user can build the platform from scratch using

off-the-shelf components, or computing and network units are rented by a cloud

provider (e.g. [14]). In a recent paper [15], we have studied the operator-mapping

problem in a “non-constructive” scenario, where, given a set of compute and network

elements, we attempt to use as few resources as possible. Also, in [15], we tackle the

problem for multiple concurrent applications that contend for the servers, each with

its own QoS requirement. In this paper, our goal is to construct a distributed net-

work dedicated to the given application, which minimizes the monetary cost while

ensuring that the desired throughput is achieved. In terms of the tree of operators,

we consider general binary trees and discuss relevant special cases (e.g., left-deep

trees [16]).

Our contributions in this paper are as follows. First, we formalize a set of rel-

evant operator-placement problems (Sections 2 and 3). Second, we establish com-

plexity results, showing that all problems turn out to be NP-complete but that

linear program problem formulations can obtained (Section 4). Third, we propose

several common-sense heuristics for solving the operator mapping problem (Sec-

tion 5). These heuristics are based on intuitive ideas combined with standard tree

traversal techniques, and constitute a reasonable set of approaches for solving our

NP-complete problem. Fourth, we evaluate results obtained with the heuristics and

compare their results to a bound on the optimal that we obtain via the linear

programming formulation of the problem (Section 6).

2. Models

n
1 2

n

n
3

n
4

5
n

o
1

o
1

o
2

o
2

o
3

o
1

o
3

o
2

o
2

o
1

n
1

2
n

n
3

n
4

a) Standard tree. b) Left−deep tree.

Fig. 1. Examples of applications structured as a binary tree of operators.

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

4 A. Benoit and H. Casanova and V. Rehn-Sonigo and Y. Robert

Application model. We consider an application that can be represented as a set

of operators, N = {n1, n2, . . . }. These operators are organized as a binary tree, as

shown in Fig. 1. Operations are initially performed on basic objects, which are made

available and continuously updated at given locations in a distributed network. We

denote the set of basic objects O = {o1, o2, . . . }. The leaves of the tree are thus the

basic objects, and several leaves may correspond to the same object, as illustrated

in Fig. 1. Internal nodes represent operator computations.

For an operator ni we define Leaf (i) as the index set of the basic objects that

are needed for the computation of ni, if any; Child (i) as the index set of the node’s

children in N , if any; and Parent(i) as the index of the node’s parent in N , if

it exists. We have the constraint that |Leaf (i)| + |Child(i)| ≤ 2 since our tree is

binary. We define f(I) = ∪i∈If(i), where I is an index set and f is Leaf , Child or

Parent . In other terms, all three functions can be applied to sets and return sets. If

|Leaf (i)| ≥ 1, then operator ni needs at least one basic object for its computation.

We call such an operator an al-operator (for “almost leaf”). We suppose that each

node needs the data from its children. As our trees are binary, we can model an

operator ni that needs only one basic object or only one intermediate result (and no

other result from any other node) by adding an “empty” leaf (i.e., with a zero-sized

basic object) to this operator.

The application must be executed so that it produces final results, where each

result is generated by executing the whole operator tree once, at a target rate.

We call this rate the application throughput ρ and the specification of the target

throughput is a QoS requirement for the application. Each operator ni ∈ N must

compute (intermediate) results at a rate at least as high as the target application

throughput. Conceptually, a server executing an operator consists of two concurrent

threads that run in steady-state. One thread periodically downloads the most recent

copies of the basic objects corresponding to the operator’s leaf children, if any. For

our example tree in Fig. 1(a), n1 needs to download o1 and o2 while n3 downloads

only o1 and n5 does not download any basic object. Note that these downloads

may simply amount to constant streaming of data from sources that generate data

streams. Each download has a prescribed cost in terms of bandwidth based on

application QoS requirements (e.g., so that computations are performed using suf-

ficiently up-to-date data). A basic object ok has a size δk (in bytes) and needs to be

downloaded by the processors that use it with frequency fk. Therefore, these basic

object downloads consume an amount of bandwidth equal to ratek = δk × fk on

each network link and network card through which this object is communicated.

The other thread receives data from the operator’s non-leaf children, if any, and

performs some computation using downloaded basic objects and/or data received

from other operators. The operator produces some output that needs to be passed

to its parent operator. The computation of one instance of operator ni requires wi

operations (e.g., floating point operations), and produces an output of size δi.

In this paper we sometimes consider left-deep trees, i.e., binary trees in which the

right child of an operator is always a leaf. These trees arise in practical settings [16]

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

Resource Allocation Strategies for Constructive In-Network Stream Processing 5

and we show an example of left-deep tree in Fig. 1(b). Here Child (i) and Leaf (i)

have cardinal 1 for every operator ni but for the bottom-most operator, nj , for

which Child(j) has cardinal 0, and Leaf (j) has cardinal 1 or 2 depending on the

application. Our application model is depicted in Fig. 2(a).

Platform model. The target distributed network is a fully connected graph (i.e.,

a clique) interconnecting a set of resources R = P ∪ S, where P denotes compute

servers, or processors for short, and S denotes data servers, or servers for short.

Servers hold and update basic objects, while processors apply operators of the ap-

plication tree. Each server Sl ∈ S (resp. processor Pu ∈ P) is interconnected to

the network via a network card with maximum bandwidth Bsl (resp. Bpu). The

network link from a server Sl to a processor Pu has bandwidth bsl,u; on such links

the server sends data and the processor receives it. The link between two distinct

processors Pu and Pv is bidirectional with bandwidth bpu,v(= bpv,u) shared by com-

munications in both directions. In addition, each processor Pu ∈ P is characterized

by a compute speed su measured in operations per time units.

Resources operate under the full-overlap, bounded multi-port model [17]. In this

model, a resource Ru can be involved in computing, sending data, and receiving

data simultaneously. Note that servers only send data, while processors engage in

all three activities. A resource R, which is either a server or a processor, can be

connected to multiple network links (since we assume a clique network). The “multi-

port” assumption states that R can send/receive data simultaneously on multiple

network links. The “bounded” assumption states that the total transfer rate of

data sent/received by resource R is bounded by its network card bandwidth (Bsl
for server Sl, or Bpu for processor Pu). Our platform model is depicted in Fig. 2(b).

δ output size

k
size dk

n j

ni

= Child(i) o = Leaf(i)

fupdate frequency

i

k

computationsiw

(a) Notations in the application
tree.

l’,v’

l,u’

P

sPu

Set of servers S Set of processors P

P

cost
s

Bp

cost

Bp

bp

v

v

v

u

u

u

u’

v

v’

u,v

Bs

Bs

S

S

bs
P

bs

l

l’ l’

l

(b) The platform model. The set of servers S is fixed,
whereas the set of processors P has to be determined.

Fig. 2. Notations and illustration of the application and the platform model.

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

6 A. Benoit and H. Casanova and V. Rehn-Sonigo and Y. Robert

Mapping model and constraints. Our objective is to map operators, i.e., in-

ternal nodes of the application tree, onto processors. Each operator is mapped onto

a single processor, which computes all the results for that operator. While this rule

prevents multiple processors to share different computations related to the same

operator [18], it leads to an easier schedule construction and implementation. Note

however that different operators can be assigned to the same processor, in order

to optimize resource utilization. As explained in the application model section, if a

tree node has leaf children it must continuously download up-to-date basic objects,

which consumes bandwidth on its processor’s network card. If there is only one

operator on processor Pu, while the processor computes for the t-th final result it

sends to its parent (if any) the data corresponding to intermediate results for the

(t − 1)-th final result. It also receives data from its non-leaf children (if any) for

computing the (t + 1)-th final result. All three activities are concurrent (see de-

scription of the platform model). When different operators are assigned to the same

processor, the same overlap happens, but possibly on different result instances. The

time required by each activity must be summed for all operators to determine the

processor’s computation time.

We assume that a basic object can be duplicated, and thus be available and

updated at multiple servers. We assume that duplication of basic objects is achieved

in some out-of-band manner specific to the target application. For instance, this

could be achieved via the use of a distributed database infrastructure that enforces

consistent data replication. In this case, a processor can choose among multiple

data sources when downloading a basic object. Conversely, if two operators have

the same basic object as a leaf child and are mapped to different processors, they

must both continuously download that object (and incur the corresponding network

overheads).

We denote the mapping of the operators in N onto the processors in P using an

allocation function a: a(i) = u if operator ni is assigned to processor Pu. Conversely,

ā(u) is the index set of operators mapped on Pu: ā(u) = {i | a(i) = u}.

We also introduce new notations to describe the location of basic objects. Pro-

cessor Pu may need to download some basic objects from some servers. We use

download(u) to denote the set of (k, l) couples where object ok is downloaded from

server Sl by processor Pu.

Given these notations we can now express the constraints for the required appli-

cation throughput, ρ. Essentially, each processor has to communicate and compute

fast enough to achieve this throughput, which is expressed via a set of constraints.

Note that a communication occurs only when a child or the parent of a given tree

node and this node are mapped on different processors. In other terms, we neglect

intra-processor communications.

• Each processor Pu cannot exceed its computation capability:

∀Pu ∈ P ,
∑

i∈ā(u)

ρ ·
wi

su
≤ 1 (1)

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

Resource Allocation Strategies for Constructive In-Network Stream Processing 7

• Pu must have enough bandwidth capacity to perform all its basic object down-

loads and all communication with other processors. This is expressed by the follow-

ing constraint, in which the first term corresponds to basic object downloads, the

second term corresponds to inter-node communications when a node is assigned to

Pu and some of its children nodes are assigned to another processor, and the third

term corresponds to inter-node communications when a tree node is assigned to Pu

and its parent node is assigned to another processor:

∀Pu ∈ P ,
∑

(k,l)∈download(u)

ratek +
∑

j∈Child(ā(u))\ā(u)

ρ.δj+

∑

j∈Parent(ā(u))\ā(u)

∑

i∈Child(j)∩ā(u)

ρ.δi ≤ Bpu (2)

• Server Sl must have enough bandwidth capacity to support all the downloads

of the basic objects it holds at their required rates:

∀Sl ∈ S,
∑

Pu∈P

∑

(k,l)∈download(u)

ratek ≤ Bsl (3)

• The link between server Sl and processor Pu must have enough bandwidth

capacity to support all possible object downloads from Sl to Pu at the required

rate:

∀Pu ∈ P , ∀Sl ∈ S,
∑

(k,l)∈download(u)

ratek ≤ bsl,u (4)

• The link between processor Pu and processor Pv must have enough bandwidth

capacity to support all possible communications between the tree nodes mapped on

both processors. This constraint can be written similarly to constraint (2) above,

but without the cost of basic object downloads, and with specifying that Pu com-

municates with Pv:

∀Pu, Pv ∈ P ,
∑

j∈Child(ā(u))
∩ā(v)

ρ.δj +
∑

j∈Parent(ā(u))
∩ā(v)

∑

i∈Child(j)
∩ā(u)

ρ.δi ≤ bpu,v (5)

Note that in our model we do not allow for a processor to serve as a reposi-

tory for basic objects, i.e., forwarding updated basic objects to other processors.

Instead, all basic objects must be obtained from authoritative sources, i.e., the

servers themselves. It would be straightforward to extend our model by allowing a

”virtual” server to be co-located with a processor. That server would share network

card and network link with the processor so that the processor’s network resources

would be used by other processors downloading the basic object from the virtual

server. Each processor would then have an attached such virtual server. The above

equations could be rewritten taking such virtual servers into account, at the cost of

more cumbersome notations.

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

8 A. Benoit and H. Casanova and V. Rehn-Sonigo and Y. Robert

3. Problem Definitions

The overall objective of the operator-mapping problem is to ensure that a pre-

scribed throughput is achieved while minimizing a cost function. The user must

buy or rent processors (with various computing speed and network card bandwidth

specifications) and build the distributed network dedicated to the application. For

this “constructive” problem, the cost function is simply the actual monetary cost of

the purchased processors. This problem is relevant to, for instance, the surveillance

application mentioned in Section 1.

We assume that some standard interconnect technology is used to connect all

the processors together (bpu,v = bp). We also assume that the same interconnect

technology is used to connect each server to processors (bsl,u = bsl). We consider the

case in which the processors are homogeneous because only one type of CPUs and

network cards can be purchased (Bpu = Bp and su = s). We term the corresponding

problem Hom. We also consider the case in which the processors are heterogeneous

with various compute speeds and network card bandwidth, which we term LAN.

Homogeneity in the platform as described above applies only to processors and

not to servers. Servers are always fixed for a given application, together with the ob-

jects they hold. We sometimes consider variants of the problem in which the servers

and application tree have particular characteristics. We denote by HomS the case in

which all servers have identical network capability (Bsl = Bs) and communication

links to processors (bsl,u = bs). We can also consider the mapping of particular

trees, such as left-deep trees (LDTree) and/or homogeneous trees with identical

object rates ratek = rate and number of operations wi = w (HomA). Also, we

can consider application trees with no communication cost (δi = 0, NoComA). All

these variants correspond to simplifications of the problem, and we simply append

HomS, LDTree, HomA, and/or NoComA to the problem name to denote these

simplifications.

Another possible scenario is to tackle the operator-mapping problem in a “non-

constructive” way, where an existing platform is targeted. The goal is then to use

a subset of this platform so that the prescribed throughput is achieved while mini-

mizing a cost function. This scenario is not subject of this paper, but the interested

reader may see [15] and [19].

4. Complexity

Without surprise, most problem instances are NP-hard, because downloading ob-

jects with different rates on two identical servers is the same problem as 2-

Partition [20]. But from a theoretical point of view, it is important to assess the

complexity of the simplest instance of the problem, i.e., mapping a fully homoge-

neous left-deep tree application with objects placed on a fully homogeneous set of

servers, onto a fully homogeneous set of processors: Hom-HomS-LDTree-HomA-

NoComA (or LDT-Hom for short). It turns out that even this problem is difficult,

due to the combinatorial space induced by the mapping of basic objects that are

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

Resource Allocation Strategies for Constructive In-Network Stream Processing 9

shared by several operators. Note that the corresponding non-constructive problem

is exactly the same, see [15].

Definition 1. The problem LDT-Hom consists in minimizing the number of pro-

cessors used in the application execution. K is the prescribed throughput that should

not be violated. LDT-Hom-Dec is the associated decision problem: given a number

of processors N , is there a mapping that achieves throughput K?

Theorem 2. LDT-Hom-Dec is NP-complete.

Proof. First, LDT-Hom-Dec belongs to NP. Indeed, given an allocation of opera-

tors to processors and the download list download(u) for each processor Pu, we can

check in polynomial time that we use no more than N processors, that the through-

put of each enrolled processor respects K: K × |ā(u)| w
s
≤ 1 , and that bandwidth

constraints are respected.

To establish the completeness, we use a reduction from 3-Partition, which is

NP-complete in the strong sense [20]. We consider an arbitrary instance I1 of 3-

Partition: given 3n positive integer numbers {a1, a2, . . . , a3n} and a bound R, as-

suming that R
4 < ai < R

2 for all i and that
∑3n

i=1 ai = nR, is there a partition

of these numbers into n subsets I1, I2, . . . , In of sum R? In other words, are there

n subsets I1, I2, . . . , In such that I1 ∪ I2 . . . ∪ In = {a1, a2, . . . , a3n}, Ii ∩ Ij = ∅

if i 6= j, and
∑

j∈Ii
aj = R for all i (and |Ii| = 3 for all i). Because 3-Partition

is NP-complete in the strong sense, we can encode the 3n numbers in unary and

assume that the size of I1 is O(nM), where M = maxi{ai}.

We build the following instance I2 of LDT-Hom-Dec:

• The object set is O = {o1, ..., o3n}, and there are 3n servers each holding

an object, thus oi is available on server Si. The rate of oi is rate = 1 , and the

bandwidth limit of the servers is set to Bs = 1.

• The left-deep tree consists of |N | = nR operators with w = 1. Each object oi
appears ai times in the tree (the exact location does not matter), so that there are

|N | leaves in the tree, each associated to a single operator of the tree.

• The platform consists of n processors of speed s = 1 and bandwidth Bp = 3. All

the link bandwidths interconnecting servers and processors are equal to bs = bp = 1.

• Finally we ask whether there exists a solution matching the bounds 1/K = R

and N = n.

The size of I2 is clearly polynomial in the size of I1, since the size of the tree

is bounded by 3nM . We now show that instance I1 has a solution if and only if

instance I2 does.

Suppose first that I1 has a solution. We map all operators corresponding

to occurrences of object oj , j ∈ Ii, onto processor Pi. Each processor receives

three distinct objects, each coming from a different server, hence bandwidths con-

straints are satisfied. Moreover, the number of operators computed by Pi is equal

to
∑

j∈Ii
ai = R, and the required throughput is achieved because KR ≤ 1. We

have thus built a solution to I2.

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

10 A. Benoit and H. Casanova and V. Rehn-Sonigo and Y. Robert

Suppose now that I2 has a solution, i.e., a mapping matching the bound 1/K =

R with n processors. Due to bandwidth constraints, each of the n processors is

assigned at most three distinct objects. Conversely, each object must be assigned to

at least one processor and there are 3n objects, so each processor is assigned exactly

three objects in the solution, and no object is sent to two distinct processors. Hence,

a processor must compute all operators corresponding to the objects it needs to

download, which directly leads to a solution of I1 and concludes the proof.

Note that problem LDT-Hom-Dec becomes polynomial if one adds the addi-

tional restriction that no basic object is used by more than one operator in the tree.

In this case, one can simply assign operators to ⌈|N |×w/s⌉ arbitrary processors in

a round-robin fashion.

Linear Programming Formulation: We also provide a formulation of the opti-

mization problem as an integer linear program (ILP), but due to lack of space we

refer the interested reader to [19].

5. Heuristics

In this section we propose several polynomial heuristics to solve the most real-

istic LAN operator-placement problem. The code for all of them is available on

the web [21]. We say that the heuristics can “purchase” processors, or “sell back”

processors, until a final set of needed processors is determined.

Each heuristic works in two steps: (i) an operator placement heuristic determines

the number of processors that should be acquired, and decides which operators are

assigned to which processors; (ii) a server selection heuristic decides from which

server each processor downloads all needed basic objects.

Operator placement heuristics. Note that in most of these heuristics, only the

most powerful processors and network cards are acquired. However, these are later

replaced by the cheapest ones that still fulfill throughput requirements. This is

done just after the server selection step, as a third “downgrade” step, aiming at

minimizing the cost.

Random:While there are some unassigned operators, the Random heuristic picks

one of these unassigned operators randomly, say op. It then acquires the cheapest

possible processor that is able to handle op while achieving the required application

throughput. If there is no such processor, then the heuristic considers op along with

one of its children operators or with its parent operator. This second operator is

chosen so that it has the most demanding communication requirements with op (in

an attempt to reduce communication overhead). If no processor can be acquired

that can handle both operators together, then the heuristic fails. If the additional

operator had already been assigned to another processor, this last processor is sold

back.

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

Resource Allocation Strategies for Constructive In-Network Stream Processing 11

Comp-Greedy: The Comp-Greedy heuristic first sorts operators in non-increasing

order of wi, i.e., most computationally demanding operators first. While there are

unassigned operators, the heuristic acquires the most expensive processor available

and assigns the most computationally demanding unassigned operator to it. If this

operator cannot be processed on this processor so that the required throughput

is achieved, then the heuristic uses a grouping technique similar to that used by

the Random heuristic (i.e., grouping the operator with its child or parent operator

with which it has the most demanding communication requirement). If after this

step some capacity is left on the processor, then the heuristic tries to assign other

operators to it. These operators are picked in non-increasing order of wi, i.e., trying

to first assign to this processor the most computationally demanding operator.

Comm-Greedy: The Comm-Greedy heuristic attempts to group operators to re-

duce communication costs. It picks the two operators that have the largest com-

munication requirements. These two operators are grouped and assigned to the

same processor, thus saving costly communication between both processors. There

are three cases to consider: (i) both operators were unassigned, in which case the

heuristic simply acquires the cheapest processor that can handle both operators; if

no such processor is available then the heuristic acquires the most expensive proces-

sor for each operator; (ii) one of the operators was already assigned to a processor,

in which case the heuristic attempts to accommodate the other operator as well; if

this is not possible then the heuristic acquires the most expensive processor for the

other operator; (iii) both operators were already assigned on two different proces-

sors, in which case the heuristic attempts to accommodate both operators on one

processor and sell back the other processor; if this is not possible then the current

operator assignment is not changed.

Subtree-Bottom-Up: This heuristic (Subtree-BU in the following) first acquires

as many most expensive processors as there are al-operators and assigns each al-

operator to a distinct processor. The heuristic then tries to merge the operators

with their parent on a single machine, in a bottom-up fashion (possibly return-

ing some processors). Consider a processor on which one or more operators have

been assigned. The heuristic first tries to allocate as many parent operators of the

currently assigned operators to this processor. If some parent operators cannot be

assigned to this processor, then one or more new processors are acquired. This

mechanism is used until all operators have been assigned to processors.

Object-Grouping: For each basic object, this heuristic counts how many operators

need this basic object. This count is called the “popularity” of the basic object. The

al-operators are then sorted by non-increasing sum of the popularities of the basic

objects they need. The heuristic starts by acquiring the most expensive processor

and assigns to it the first al-operator. The heuristic then attempts to assign to it as

many other al-operators that require the same basic objects as the first al-operator,

taken in order of non-increasing popularity, and then as many non al-operators as

possible. This process is repeated until all operators have been assigned.

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

12 A. Benoit and H. Casanova and V. Rehn-Sonigo and Y. Robert

Object-Availability: This heuristic takes into account the distribution of basic

objects on the servers. For each object ok, the number avk of servers handling ok is

calculated. Al-operators in turn are treated in increasing order of avk of the basic

objects they need to download. The heuristic tries to assign as many al-operators

downloading object ok as possible on a most expensive processor. The remaining

internal operators are assigned similarly to Comp-Greedy, i.e., in decreasing order

of wi of the operators.

Server selection heuristics. Once an operator placement heuristic has been ap-

plied, each al-operator is mapped on a processor, which needs to download basic

objects required by the operators. Thus, we need to specify from which server this

download should occur. For the Random heuristic, once the mapping of operators

onto processors is fixed, we associate randomly a server to each basic object a

processor has to download.

For all other heuristics, we use a more sophisticated heuristic, using three loops.

The first loop assigns objects that are held exclusively by a single server. If not

all downloads can be guaranteed, the heuristic fails. The second loop associates as

many downloads as possible to servers that provide only one basic object type. The

last loop finally tries to assign the remaining basic objects that must be downloaded.

For this purpose, objects are treated in decreasing order of nbP/nbS, where nbP is

the remaining number of processors that need to download the object, and nbS is

the number of servers where the object still can be downloaded. In the decision

process, servers are considered in decreasing order of the minimum between the

remaining bandwidth capacity of the servers network card, and the bandwidth of

the communication link.

Once servers have been selected, processors are downgraded if possible: each

processor is replaced by a less expensive model that fulfills the CPU and network

card requirements of the allocation.

6. Simulation Results

Simulation methodology. In the literature, to the best of our knowlege, there are

no precise models of query streaming applications that would allow us to conduct a

narrow, but representative, experimental study. However, we note that applications

can be constructed based on arbitrary components. Consequently, we opted for using

randomly generated applications with sets of parameters that span a reasonably

large range of possible configurations. By contrast, we simulate the use of hardware

resources that correspond to real-world configurations and prices.

All our simulations use randomly generated binary operator trees with at most

N operators, which we vary. All leaves correspond to basic objects, and each basic

object is chosen randomly among 15 different types. For each of these 15 basic

object types, we randomly choose a fixed size. In simulations, small object sizes are

in the δk ∈ [5, 30] MB range, whereas large object sizes are in the δk ∈ [450, 530]

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

Resource Allocation Strategies for Constructive In-Network Stream Processing 13

MB range. The download frequency for basic objects is either low (fk = 1/50s) or

high (fk = 1/2s). Recall that the download rate for object ok is then computed as

ratek = δk × fk.

The number of operations wi of an operator ni (a non-leaf node in the tree) de-

pends on its children l and r (basic object or operator): wi = (δl + δr)
α, where α is

a constant fixed for each simulation run, and δ is either the size of the basic object,

or the amount of data sent by the child operator. A small value of α corresponds

to data-intensive operators while a large value corresponds to compute-intensive

operators. Although in the real world each operator would have a different α value,

in our simulation we use the same value for all operators. We opt for this sim-

ple model because it makes it straightforward to study the impact of data- and

compute-intensiveness on our heuristics and because we are not aware of any mod-

els of representative operator complexities for query streaming application in the

literature. The same principle is used for the output size of each operator, setting

for all simulations δi = δl + δr. The application throughput ρ is fixed to 1 for all

simulations. Throughout the whole set of simulations we use the same server ar-

chitecture: we dispose of 6 servers, each of them equipped with a 10 GB network

card. The 15 different types of objects are randomly distributed over the 6 servers.

We assume that servers and processors are all interconnected by a 1 GB link. The

rest of the platform can be purchased at the costs from Table 1 (configurations

of Intel’s high-end, rack-mountable server, PowerEdge R900). Note that we do not

account for the cost of the network switch used to interconnect the processors and

servers. In case the switch needs to be purchased as well, then its cost could be

factored into the network card costs. Noting that more expensive switches may be

needed for higher-capacity network cards, high-end network cards may end up being

significantly more expensive, which would change our simulation results.

Table 1. Incremental costs for increases in processor performance or network card bandwidth
relative to a $7,548 base configuration (based on data from the Dell Inc. web site, as of early
March 2008).

Processor Network Card

Performance Cost Ratio Bandwidth Cost Ratio
(GHz) ($) (GHz/$) (Gbps) ($) (Gbps/$)

11.72 7,548 + 0 1.55 ×10−3 1 7,548 + 0 1.32 ×10−4

19.20 7,548 + 1,550 1.93 ×10−3 2 7,548 + 399 2.51 ×10−4

25.60 7,548 + 2,399 2.38 ×10−3 4 7,548 + 1,197 4.57 ×10−4

38.40 7,548 + 3,949 3.12 ×10−3 10 7,548 + 2,800 9.66 ×10−4

46.88 7,548 + 5,299 3.43 ×10−3 20 7,548 + 5,999 14.76 ×10−4

Results. Due to lack of space, we only present results for selected sets of significant

experiments (see [19] for more results).

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

14 A. Benoit and H. Casanova and V. Rehn-Sonigo and Y. Robert

In the first set of simulations, we study the behavior of the heuristics when the

download frequency is high (1/2s) and object sizes small (5-30MB). Fig. 3 shows

the cost as the number of nodes N in the tree increases, with a fixed compu-

tation factor α. As expected, Random performs poorly. Subtree-BU achieves the

best costs. All Greedy heuristics exhibit similar performance, poorer than Subtree-

BU. Perhaps surprisingly, the heuristics that pay special attention to basic objects,

Object-Grouping and Object-Availability, perform poorly. With a larger value of α

(cf. Fig. 3(b)) the operator tree size becomes a more limiting factor. For trees with

more than 80 operators, almost no feasible mapping can be found. However, the

relative performance of our heuristics remains almost the same, with two notable

features: a) Object-Grouping still finds some mappings for operator trees with up

to 120 operators; b) Comp-Greedy performs as well as and sometimes better than

Subtree-BU when the number of operators increases.

In the second set of simulations, we keep a high download frequency and small

object sizes, but we rather explore the behavior of the heuristics whenN is fixed and

the computation factor α increases, see Fig. 4. Up to a threshold, the α parameter

has no influence on the heuristics’ performance. When α reaches the threshold, the

solution cost of each heuristic increases until α exceeds a second threshold after

which solutions can no longer be found. Depending on the number of operators

both thresholds have lower or higher values. In the case of small operator trees with

only 20 nodes, (see Fig. 4(a)), the first threshold is for α=1.7 and the second at

α=2.2 (vs. α=1.6 and α=1.8 for operator trees of size 60, as seen in Fig. 4(b)).

Subtree-BU behaves in both cases the best, whereas Random performs the poorest.

Object-Grouping and Object-Availability change their position in the ranking: for

small trees Object-Grouping behaves better, for larger trees it is outperformed by

Object-Availability. The Greedy heuristics are between Subtree-BU and the object

sensitive heuristics.

(a) α = 0.9. (b) α = 1.7.

Fig. 3. Simulations with high frequency and small object sizes, increasing N .

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

Resource Allocation Strategies for Constructive In-Network Stream Processing 15

(a) N = 20. (b) N = 60.

Fig. 4. Simulations with high frequency and small object sizes, increasing α.

With the same experimental setting but large object sizes (450-530MB), the

results are similar except that no feasible solution can be found as soon as the trees

exceed 45 nodes. In general, Subtree-BU still achieves the best costs, but at times

it is outperformed by Comm-Greedy. Subtree-BU even fails in two cases (the server

selection does not succeed because of bandwidth limitation), while other heuristics

find a solution. Please refer to [19] for the detailed results.

The behaviors of the heuristics with low download frequencies (fk = 1/50s) are

almost the same as for high frequency. In general the heuristics lead to the same

operator mapping, but in some cases the purchased processors have less powerful

network cards.

In another set of experiments, we study the influence of download rates on

the solution. Recall that the download rate of a basic object ok is computed by

ratek = fk×δk. A first result is that frequencies smaller than 1/10s have no further

influence on the solution. All heuristics find the same solutions for a fixed operator

tree (see figures in [19]). For frequencies between 1/2s and 1/10s, the solution cost

changes. In general the cost decreases, but for N = 160 the cost for the Object-

Grouping heuristic increases. Furthermore, the heuristic ranking remains: Subtree-

BU, followed by the Greedy heuristics, followed by the object sensitive ones, and

Random. Interestingly, the costs of Object-Availability decrease with the number of

operators. In this case the number of operators that need to download a basic object

increases, and hence the privileged treatment of basic objects in order of availability

on servers becomes more important. We conclude that the level of replication of

basic objects on servers may matter for application trees with specific structures

and download frequencies, but that in general we can consider that this parameter

has little or no effect on the heuristics’ performance.

The last set of experiments is dedicated to the evaluation of our heuristics versus

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

16 A. Benoit and H. Casanova and V. Rehn-Sonigo and Y. Robert

(a) α = 0.9. (b) α = 1.1.

Fig. 5. Simulations to compare the heuristics’ performances to the LP performance on homogeneous
platforms.

a lower bound given by the solution of our ILP. We use the commercial Cplex 11

solver to solve our linear program. Unfortunately, the ILP is so enormous that, even

when using only 5 possible groups of processors and using trees with 30 operators,

the ILP description file could not be opened in Cplex. For trees with 20 operators,

Cplex returns the optimal solution, which consists in all cases in buying a single

processor. Therefore, we decided to compare the heuristic solution with the optimal

solution only in a homogeneous setting, in which there is only a single processor

type. In this case we can skip the downgrading step after the server allocation step.

Both for α values lower and higher than 1, Subtree-BU finds the optimal solution

in most of the cases (see Figs. 5(a) and 5(b)).

The same ranking of the heuristics holds in the homogeneous setting: Subtree-

bottom up, the Greedy heuristics, followed by Object-Grouping, Object-Availability

and finally Random. Focusing on the Greedy heuristics, we observe that in most

cases Comm-Greedy achieves the best cost.

Summary of results. Results show that all our more sophisticated heuristics per-

form better than the simple random approach. Unfortunately, the object sensitive

heuristics, Object-Grouping and Object-Availability, do not show the desired per-

formance. We believe that in some situations these heuristics could lead to good per-

formance, but this is not observed on our set of random application configurations.

We have found that Subtree-BU outperforms other heuristics in most situations

and also produces results very close to the optimal (for the cases in which we were

able to determine the optimal). There are some cases for which Subtree-BU fails.

In such cases our results suggest that one should use one of our Greedy heuristics.

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

Resource Allocation Strategies for Constructive In-Network Stream Processing 17

7. Conclusion

In this paper we have studied the problem of resource allocation for in-network

stream processing. We formalized several operator-placement problems. We have

focused more particularly on a “constructive” scenario in which one aims at mini-

mizing the cost of a platform that satisfies an application throughput requirement.

The complexity analysis showed that all problems are NP-complete, even for the

simpler cases. We have derived an integer linear programming formulation of the

various problems, and we have proposed several polynomial time heuristics for the

constructive scenario. We compared these heuristics through simulation, allowing us

to identify one heuristic that is almost always better than the others, Subtree-BU.

Finally, we assessed the absolute performance of our heuristics with respect to the

optimal solution of the linear program for homogeneous platforms and small prob-

lem instances. It turns out that the Subtree-BU heuristic almost always produces

optimal results.

An interesting direction for future work is the study of the case when multiple

applications must be executed simultaneously so that a given throughput must be

achieved for each application (see preliminary results in [15]). In this case a clear

opportunity for higher performance with a reduced cost is the reuse of common sub-

expression between trees [22, 23]. Another direction is the study of applications that

are mutable, i.e., whose operators can be rearranged based on operator associativity

and commutativity rules. Such situations arise for instance in relational database

applications [6].

References

[1] B. Badcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in
data stream systems,” in Proceedings of the Intl. Conf. on Very Large Data Bases,
2004, pp. 456–467.

[2] U. Srivastava, K. Munagala, and J. Widom, “Operator Placement for In-Network
Stream Query Processing,” in Proceedings of the 24th Intl. Conf. on Principles of
Database Systems, 2005.

[3] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck, “Gigascope: high-
performance network monitoring with an SQL interface,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2002, pp. 623–633.

[4] R. van Rennesse, K. Birman, D. Dumitriu, and W. Vogels, “Scalable Management
and Data Mining Using Astrolabe,” in Proceedings from the First Intl. Workshop on
Peer-to-Peer Systems, 2002.

[5] E. Cooke, R. Mortier, A. Donnelly, P. Barham, and R. Isaacs, “Reclaiming Network-
wide Visibility Using Ubiquitous End System Monitors,” in Proceedings of the
USENIX Annual Technical Conf., 2006.

[6] J. Chen, D. J. DeWitt, and J. F. Naughton, “Design and Evaluation of Alternative
Selection Placement Strategies in Optimizing Continuous Queries,” in Proceedings of
ICDE, 2002.

[7] B. Plale and K. Schwan, “Dynamic Querying of Streaming Data with the dQUOB
System,” IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 4, pp.
422–432, 2003.

February 3, 2010 8:53 WSPC/INSTRUCTION FILE ijfcs09

18 A. Benoit and H. Casanova and V. Rehn-Sonigo and Y. Robert

[8] J. Kräme and B. Seeger, “A Temporal Foundation for Continuous Queries over Data
streams,” in Proceedings of the Intl. Conf. on Management of Data, 2005, pp. 70–82.

[9] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing,
and S. Zdonik, “Scalable distributed stream processing,” in Proc. of the CIDR Conf.,
January 2003.

[10] L. Chen, K. Reddy, and G. Agrawal, “GATES: a grid-based middleware for pro-
cessing distributed data streams,” High performance Distributed Computing, 2004.
Proceedings. 13th IEEE International Symposium on, pp. 192–201, 4-6 June 2004.

[11] D. Logothetis and K. Yocum, “Wide-Scale Data Stream Management,” in Proceedings
of the USENIX Annual Technical Conference, 2008.

[12] Y. Ahmad and U. Cetintemel, “Network aware query processing for stream-based
applications,” in Proceedings of the International Conference on Very Large Data
Bases, 2004, pp. 456–467.

[13] P. Pietzuch, J. Leflie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer,
“Network-Aware Operator Placement for Stream-Processing Systems,” in Proceedings
of the 22nd International Conference on Data Engineering (ICDE’06), 2006.

[14] “Amazon Elastic Compute Cloud (Amazon EC2),” http://aws.amazon.com/ec2/.
[15] A. Benoit, H. Casanova, V. Rehn-Sonigo, and Y. Robert, “Resource Allocation for

Concurrent In-Network Stream-Processing Applications,” in Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Platforms, HeteroPar’09, 2009.

[16] Y. E. Ioannidis, “Query optimization,” ACM Computing Surveys, vol. 28, no. 1, pp.
121–123, 1996.

[17] B. Hong and V. K. Prasanna, “Adaptive allocation of independent tasks to maximize
throughput,” IEEE Trans. Parallel Distributed Systems, vol. 18, no. 10, pp. 1420–
1435, 2007.

[18] O. Beaumont, A. Legrand, L. Marchal and Y. Robert, “Steady-state scheduling on
heterogeneous clusters,” Int. J. of Foundations of Computer Science, vol. 16, no. 2,
pp. 163-1942005.

[19] A. Benoit, H. Casanova, V. Rehn-Sonigo, and Y. Robert, “Resource Allocation Strate-
gies for In-Network Stream Processing,” LIP, ENS Lyon, France, Research Report
2008-20, June 2008. Available at http://graal.ens-lyon.fr/∼abenoit/.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, 1979.

[21] “Source Code for the Heuristics,” http://graal.ens-lyon.fr/∼vsonigo/code/query-
streaming/.

[22] V. Pandit and H. Ji, “Efficient in-network evaluation of multiple queries,” in HiPC,
2006.

[23] K. Munagala, U. Srivastava, and J. Widom, “Optimization of continuous queries with
shared expensive filters,” in PODS ’07: Proc. of the twenty-sixth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. ACM, 2007.

