
Scheduling Parallel Iterative Applications on Volatile Resources

Henri Casanova
University of Hawai‘i at Mānoa, USA

henric@hawaii.edu

Fanny Dufossé, Yves Robert, Frédéric Vivien
Ecole Normale Supérieure de Lyon, France

Fanny.Dufosse,Yves.Robert,Frederic.Vivien@ens-lyon.fr

Abstract—In this paper we study the execution of itera-
tive applications on volatile processors such as those found
on desktop grids. We develop master-worker scheduling
schemes that attempt to achieve good trade-offs between
worker speed and worker availability. A key feature of
our approach is that we consider a communication model
where the bandwidth capacity of the master for sending
application data to workers is limited. This limitation
makes the scheduling problem more difficult both in a
theoretical sense and in a practical sense. Furthermore,
we consider that a processor can be in one of three states:
available, down, or temporarily preempted by its owner.
This preempted state also complicates the scheduling
problem. In practical settings, e.g., desktop grids, master
bandwidth is limited and processors are temporarily
reclaimed. Consequently, addressing the aforementioned
difficulties is necessary for successfully deploying master-
worker applications on volatile platforms.

Our first contribution is to determine the complexity of
the scheduling problem in its off-line version, i.e., when
processor availability behaviors are known in advance.
Even with this knowledge, the problem is NP-hard, and
cannot be approximated within a factor 8/7. Our second
contribution is a closed-form formula for the expectation
of the time needed by a worker to complete a set of
tasks. This formula relies on a Markovian assumption
for the temporal availability of processors, and is at the
heart of some heuristics that aim at favoring “reliable”
processors in a sensible manner. Our third contribution is
a set of heuristics, which we evaluate in simulation. Our
results provide guidance to selecting the best strategy as a
function of processor state availability versus average task
duration.

I. INTRODUCTION

We study the problem of efficiently executing par-
allel applications on platforms that comprise volatile
resources. More specifically we focus on iterative appli-
cations implemented using the master-worker paradigm.
The master coordinates the computation of each itera-
tion as the execution of a fixed number of indepen-
dent tasks. A synchronization of all tasks occurs at
the end of each iteration. This scheme applies to a
broad spectrum of scientific computations including, but
not limited to, mesh based solvers (e.g., elliptic PDE
solvers), signal processing applications (e.g., recursive
convolution), and image processing algorithms (e.g.,

stencil algorithms). We study such applications when
they are executed on networked processors whose avail-
ability evolves over time, meaning that each processor
alternates between being available for executing a task
and being unavailable.

Solutions for executing master-worker applications,
and in particular applications implemented with the
Message Passing Interface (MPI), on failure-prone plat-
forms have been developed (e.g., [1], [2], [3], [4]). In
these works, the focus is on tolerating failures caused
by software or hardware faults. For instance, a software
fault will cause the processor to stall, but computations
may be restarted from scratch or be resumed from a
saved state after rebooting. A hardware failure may keep
the processor down for a long period of time, until
the failed component is repaired or replaced. In both
cases, fault-tolerant mechanisms are implemented in the
aforementioned solutions to make faults transparent to
the application execution.

In addition to failures, processor volatility can also
be due to temporary interruptions. Such interruptions
are common in volunteer computing platforms [5] and
desktop grids [6]. In these platforms processors are
contributed by resource owners that can reclaim them
at any time, without notice, and for arbitrary durations.
A task running on a reclaimed processor is simply sus-
pended. At a later date, when the processor is released
by its owner, the task can be resumed without any
wasted computation. In fact, fault-tolerant MPI solu-
tions were proposed in the specific context of desktop
grids [4], which is also the context of this work. While
mechanisms for executing master-worker applications
on volatile platforms are available, our focus is on
scheduling algorithms for deciding which processors
should run which tasks and when.

At a given time a (volatile) processor can be in one
of three states: UP (available), DOWN (crashed due
to a software or hardware fault), or RECLAIMED
(temporarily preempted by owner). Accounting for the
RECLAIMED state, which arises in desktop grid plat-
forms, complexifies scheduling decisions. More specifi-
cally, since before going to the DOWN state a proces-



sor may alternate between the UP and RECLAIMED
states, the time needed by the processor to compute a
given workload to completion is difficult to predict. A
way to make such prediction tractable is to assume that
state transitions obey a Markov process. The Markov
(i.e., memoryless) assumption is popular because it
enables analytical derivations. In fact, recent work on
desktop grid scheduling has made use of this assump-
tion [7]. Unfortunately, the memoryless assumption is
known to not hold in practice. Several authors have
reported that the durations of availability intervals in
production desktop grids are not sampled from expo-
nential distributions [8], [9], [10]. There is no true con-
sensus regarding what is a “good” model for availability
intervals defined by the elapsed time between processor
failures, let alone regarding a model for the durations
of recoverable interruptions. Note that some authors
have attempted to model processor availabilities using
(non-memoryless) semi-Markov processes [11]. Faced
with the lack of a good model for transitions between
the UP , DOWN , and RECLAIMED states, and not
knowing whether such a model would be tractable or
not, for now we opt for the Markovian model. The
goal of this work is to provide algorithmic foundations
for scheduling iterative master-worker applications on
processors that can fail or be temporarily reclaimed. A
3-state Markovian model allows us to achieve this goal,
and the insight from our results should provide guidance
for dealing with more complex, and hopefully more
realistic, stochastic models of processor availabilities.

A unique aspect of this work is that we account
for network bandwidth constraints for communication
between the master and the workers. More specifically,
we bound the total outgoing communication bandwidth
of the master while ensuring that each communication
uses a reasonably large fraction of this bandwidth. The
master is thus able to communicate simultaneously with
only a limited number of workers, sending them either
the application program or input data for tasks. This
assumption, which corresponds to the bounded multi-
port model [12], applies to concurrent data transfers
implemented with multi-threading. One alternative is to
simply not consider these constraints. In this case, a
scheduling strategy could enroll a large (and vastly sub-
optimal) number of processors to which it would send
data concurrently each at very low bandwidth. Another
alternative is to disallow concurrent data transfers from
the master to the workers. In this case, the bandwidth
capacity of the master may not be fully exploited,
especially for workers executing on distant processors.
We conclude that considering the above bandwidth

constraints is necessary for applications that do not have
extremely low communication-to-computation ratios. It
turns out that the addition of these constraints makes the
problem dramatically more difficult at the theoretical
level, and thus complicates the design of practical
scheduling strategies.

The specific scheduling problem under consideration
is to maximize the number of application iterations
that are successfully completed before a deadline. In-
formally, during each iteration, we have to identify the
“best” processors among those that are available (e.g.,
the fastest, the likeliest to remain available, etc.). In
addition, since processors can become available again
after being unavailable for some time, it may be ben-
eficial to change the set of enrolled processors even if
all enrolled processors are available. We thus have to
decide whether to release enrolled processors, to decide
which ones should be released, and to decide which
ones should be enrolled instead. Such changes come at a
price: the application program file must be sent to newly
enrolled processors, which consumes some (potentially
precious) fraction of the master’s bandwidth.

Our contributions are the following. First, we assess
the complexity of the problem in its off-line version,
i.e., when processor availability behaviors are known in
advance. Even with this knowledge, the problem is NP-
hard, and cannot be approximated within a factor 8/7.
Next, relying on the Markov assumption for processor
availability, we provide a closed-form formula for the
expectation of the time needed by a worker to complete
a set of tasks. This formula is at the heart of several
heuristics that aim at giving priority to “reliable” re-
sources rather than to “fast” ones. In a nutshell, when
the task size is very small in comparison to the expected
duration of an interval between two consecutive proces-
sor state changes, “classical” heuristics based upon the
estimated completion time of a task perform reasonably
well. But when the task size is no longer negligible with
respect to the expected duration of such an interval, it
is mandatory to account for processor reliability, and
only those heuristics building upon such knowledge
are shown to achieve good performance. Altogether,
we design a set of heuristics, which we thoroughly
evaluate in simulation. The results provide insights for
selecting the best strategy as a function of processor
state availability versus task duration.

This paper is organized as follows. Section II dis-
cusses related work. Section III describes the application
and platform models. Complexity results for the off-line
study are given in Section IV; these results do not rely
on any assumption regarding stochastic distribution of

2



resource availability. In Section V, we describe our 3-
state Markovian model of processor availability, and we
show how to compute the expected time for a processor
to complete a given workload. Heuristics for the on-line
problem are described in Section VI, some of which
use the result in Section V for more informed resource
selection. An experimental evaluation of the heuristics
is presented in Section VII. Section VIII concludes with
a summary of our findings and perspectives on future
work.

II. RELATED WORK

There is a large literature on scheduling master-
worker applications, or applications that consist of a
sequence of iterations where each iteration can be
executed in master-worker fashion [13], [14], [15]. In
this work we focus on executions on volatile resources,
such as desktop resources. The volatility of desktop
or other resources is well documented and charac-
terizations have been proposed [8], [9], [10]. Several
authors have studied the master-worker (or “bag-of-
tasks”) scheduling problem in the face of such volatility
in the context of desktop grid computing, either at an
Internet-wide scale or with an Enterprise [16], [17],
[18], [19], [7], [20], [21], [22]. Most of these works
propose simple greedy scheduling algorithms that rely
on mechanisms to pick processors according to some
criteria. These processor selection criteria include static
ones (e.g., processor clock-rates or benchmark results),
simple ones based on past host behavior [16], [18],
[20], and more sophisticated ones based on statistical
analysis of past host availability [21], [22], [19], [7].
In a global setting, the work in [17] includes time-zone
as a criterion for processor selection. These criteria are
used to rank processors, but also to exclude them from
consideration [16], [18]. The work in [7] is particularly
related to our own in that it uses a Markov model
of processor availability (but without accounting for
preemption). Most of these works also advocate for task
replication as a way to cope with volatile resources.
Expectedly, injecting task replicas is sensible toward
the end of application execution. Given the number of
possible variants of scheduling algorithms, in [20] the
authors propose a method to automatically instantiate
the parameters that together define the behavior of a
scheduling algorithm. Works published in this area are
of a pragmatic nature, and few theoretical results have
been sought or obtained (one exception is the work
in [23]).

A key difference between our work and all the
above is that we seek to develop scheduling algorithms

that explicitly manage the master’s bandwidth. Lim-
ited master bandwidth is a known issue for desktop
grid computing [24], [25], [26] and must therefore be
addressed even though it complexifies the scheduling
problem. To the best of our knowledge no previous work
has made such an attempt.

III. PROBLEM DEFINITION

In this section, we detail our application and platform
models, describe the scheduling model, and provide a
precise statement of the scheduling problem.

A. Application Model

We target an iterative application in which iterations
entail the execution of a fixed number m of same-
size independent tasks. Each iteration is executed in
a master-worker fashion, with a synchronization of all
tasks at the end of the iteration. A processor is assigned
one or more tasks during an iteration. Each task needs
some input data, of constant size Vdata in bytes. This data
depends on the task and the iteration, and is received
from the master. Such applications allow for a natural
overlap of computation and communication: computing
for the current task can occur while data for the next
task (of the same iteration) is being received. Before it
can start computing, a processor needs to receive the
application program from the master, which is of size
Vprog in bytes. This program is the same for all tasks
and iterations.

B. Platform Model

We consider a platform that consists of p processors,
P1, . . . , Pp, encompassing with this term compute nodes
that contain multiple physical processor cores. Each
processor is volatile, meaning that its availability for
computing application tasks varies over time. More
precisely, a processor can be in one of three states:
UP (available for computation), RECLAIMED (tem-
porarily reclaimed by its owner), or DOWN (crashed
and to be rebooted). We assume that the master, which
implements the scheduling algorithm, executes on a
host that is always UP (otherwise a simple redundancy
mechanism such as primary back-up [27] can be used
to ensure reliability of the master). We also assume that
the master is aware of the states of the processors, e.g.,
via a simple heart-beat mechanism [28]. Processor avail-
abilities evolve independently, and all state transitions
are allowed, with the following implications:
• When a UP or RECLAIMED processor becomes

DOWN , it loses the application program, all the

3



data for its assigned tasks, and all partially com-
puted results. When it later becomes UP it has to
acquire the program again before executing tasks;

• When a UP processor becomes RECLAIMED ,
its activities are suspended. However, when it
becomes UP again it can simply resume task
computations and data transfers.

We discretize time so that the execution occurs over
a sequence of discrete time slots. We assume that task
computations and data transfers all require an integer
number of time slots, and that processor state changes
occur at time-slot boundaries. We leave the time slot du-
ration unspecified. The time slot duration that achieves
a good approximation of continuous time varies for
different applications and platforms.

The temporal availability of Pq is described by a
vector Sq whose component Sq[t] ∈ {u, r, d} represents
its state at time-slot t. Here u corresponds to the
UP state, r to the RECLAIMED state, and d to the
DOWN state. Vector Sq is unknown before executing
the application.

Processor Pq requires wq time-slots of availability
(i.e., UP state) to compute a task. If all wq values
are identical, then the platform is homogeneous. We
model communications between the master and the
workers using the bounded multi-port communication
model [12]. In this model, the master can initiate
multiple concurrent communications, each to a different
worker. Each communication is allotted a bandwidth
fraction of the master’s network card, and the sum of all
fractions cannot exceed the total capacity of the card.
This model is enabled by popular multi-threaded com-
munication libraries [29]. We consider that the master
can communicate up to bandwidth BW (we use the term
“bandwidth” loosely to mean maximum data transfer
rate). Communication to each worker is performed
at some fixed bandwidth bw. This bandwidth can be
enforced in software or can correspond to same-capacity
communication paths from the master’s processor to
each other processor. We define ncom = BW/bw as the
maximum number of workers to which the master can
send data simultaneously (i.e., the maximum number
of simultaneous communications). For simplicity, we
assume ncom to be an integer. Let nprog be the number
of processors receiving the application program at time
t, and ndata be the number of processors receiving the
input data of a task at time t. Given that the bandwidth
of the master must not be exceeded, we have

nprog + ndata ≤ ncom = BW/bw.

Let Pq be a processor engaged in communication at time
t, for receiving either the program or input data. In both

cases, it does this with bandwidth bw. Hence the time
for a worker to receive the program is Tprog = Vprog/bw,
and the time to receive the data is Tdata = Vdata/bw.

C. Scheduling Model

Let config(t) denote the set of processors enrolled
for computing the m application tasks in an iteration,
or configuration, at time t. Enrolled processors work in-
dependently, and execute their tasks sequentially. While
a processor could conceivably execute two tasks in
parallel (provided there is enough available memory),
this would only delay the completion time of the first
task, thereby increasing the risk of not completing it
at all due to volatile availability. The scheduler assigns
tasks to processors and may choose a new configuration
at each time-slot t. Let Pq be a newly enrolled processor
at time t, i.e., Pq ∈ config(t + 1) \ config(t). Pq

needs to receive the program unless it already received
a copy of it and has not been in the DOWN state
since. In all cases, Pq needs to receive data for a task
before computing it. This holds true even if Pq had
been enrolled at some previous time-slot t′ < t but
has been un-enrolled since: we assume any received
data is discarded when a processor is un-enrolled. In
other words, any input data communication is resumed
from scratch, even if it had previously completed. Note
that a processor that is un-enrolled keeps the application
program until it eventually goes to the DOWN state.

If a processor becomes DOWN at time t, the sched-
uler may simply use the remaining UP processors in
config(t) to complete the iteration, or enroll a new
processor. Even if all processors in config(t) are in
the UP state, the scheduler may decide to change the
configuration. This can be useful if a more desirable
(e.g., faster, more available) but un-enrolled processor
has just returned to the UP state. Removing an UP
processor from config(t) has a cost: partial results of
task computations, partial task data being received, and
previously received task data are all lost. Note, however,
that results obtained for previously completed tasks are
not lost because already sent back to the master. Due to
the possibility of a processor leaving the configuration
(either due to becoming DOWN or due to a decision of
the scheduler), the scheduler enforces that task data is
received for at most one task beyond the one currently
being computed. In other terms, the processor does not
accumulate task data beyond that for the next task. This
is sensible so as to allow some overlap of computation
and communication while avoiding wasting bandwidth
for data transfers that would be increasingly likely to
be redone from scratch.

4



D. Problem Statement

The scheduling problem we address in this work is
that of maximizing the number of successfully com-
pleted application iterations before a deadline. Given
the discretization of time, the objective of the scheduling
problem is then to maximize the number of successfully
completed iterations within some integral number of
time slots, N . In the off-line case (see Section IV), if an
efficient algorithm can be found to solve this problem,
then, using a binary search, an efficient algorithm can
be designed to solve the problem of executing a given
number of iterations in the minimum amount of time.

IV. OFF-LINE COMPLEXITY

In this section, we study the off-line complexity
of the problem. This means that we assume a priori
knowledge of all processor states. In other words, the
value of Sq[j] is known in advance, for 1 ≤ q ≤ p
and 1 ≤ j ≤ N . The problem turns out to be difficult:
even minimizing the time to complete the first iteration
with same-speed processors is NP-complete. We also
identify a polynomial instance with ncom = +∞, which
highlights the impact of communication contention.

For the off-line study, we can simplify the model
and have only two processor states, UP (also denoted
by u) and RECLAIMED (also denoted by r). Indeed,
suppose that processor Pq is DOWN for the first time
at time-slot t: Sq[t] = d. We can replace Pq by two 2-
state processors Pq′ and Pq′′ such that: 1) for all j < t,
Sq′ [j] = Sq[j] and Sq′′ [j] = r, 2) Sq′ [t] = Sq′′ [t] = r,
and 3) for all j > t, Sq′ [j] = r and Sq′′ [j] = Sq[i].
In this way, we remove a DOWN state and add a
two-state processor. If we do this modification for each
DOWN state, we obtain an instance with only UP
or RECLAIMED processors. In the worst case, the
total number of processors is multiplied by N , which
does not affect the problem’s complexity (polynomial
versus NP-hard). Let OFF-LINE denote the problem of
minimizing the time to complete the first iteration, with
same-speed processors:

Theorem 1. Problem OFF-LINE is NP-hard.

Proof: Consider the associated decision problem:
given a number m of tasks, of computing cost w and
communication cost Tdata, a program of communica-
tion cost Tprog, and a platform of p processors, with
availability vectors Sq , a bound ncom on the number
of simultaneous communications, and a time limit N ,
does there exist a schedule that executes one iteration
in time less than N? The problem is in NP: given a
set of tasks, a platform, a time limit and a schedule

(of communications and computations), we can check
the schedule and compute its completion time with
polynomial complexity.

C6C5C4C3C2C1

x1
x̄1

x2
x̄2
x3
x̄3
x4
x̄4

Figure 1. Proof of NP-completeness of OFF-LINE.

The (surprisingly difficult to establish)(surprisingly
difficult to establish) proof follows from a reduction
from 3SAT. Let I1 be an instance of 3SAT : given
a set U = {x1, ..., xn} of variables and a collection
{C1, ..., Cm} of clauses, does there exist a truth assign-
ment of U? We suppose that each variable is present in
at least one clause.

We construct the following instance I2 of the OFF-
LINE problem with m tasks and p = 2n processors:
ncom = 1, Tprog = m, Tdata = 0, wi = w = 1, N =
m(n + 1) and ∀i ∈ [1, n],∀j ∈ [1,m], 1) if xi ∈ Cj

then S2i−1[j] = u else S2i−1[j] = r, 2) if x̄i ∈ Cj then
S2i[j] = u else S2i[j] = r, 3) S2i[mi+j] = S2i−1[mi+
j] = u and 4) ∀k ∈ [1, n], i 6= k, S2k−1[mi + j] =
S2k[mi + j] = r. The size of I2 is polynomial in the
size of I1. Figure 1 illustrates this construction for I1 =
(x̄1 ∨x3 ∨x4)∧ (x1 ∨ x̄2 ∨ x̄3)∧ (x2 ∨x3 ∨ x̄4)∧ (x1 ∨
x2 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x̄2 ∨ x3 ∨ x4).

Suppose that I1 has a solution A with, for all j ∈
[1, n], xj = A[j]. For any i ∈ [1,m], there exists at least
one true literal of A in Ci. We pick one arbitrarily. Let
xj be the associated variable. Then during time-slot i,
if A[j] = 1, processor P2i−1 will download (a fraction
of) the program, while if A[j] = 0, processor P2i will
download it. During this time-slot, no other processor
communicates with the master. Then, for all ∀i ∈ [1, n]:
• if A[j] = 1, between mi+ 1 and m(i+ 1), P2i−1

completes the reception of the program and then
executes as many tasks as possible, P2i stays idle

• if A[j] = 0, then P2i−1 is idle and P2i completes
downloading its copy of the program and computes
as many tasks as possible.

For all i ∈ [1, 2n], let Li be the number of commu-
nication time-slots for processor Pi between time-slots
1 and m. By the choice of the processor receiving the
program at any time-slot t ∈ [1,m], if A[i] = 0, then
L2i−1 = 0, else L2i = 0. Let, for all i ∈ [1, n],
p(i) = 2i− A[i]. Then, for all i ∈ [1, n], between time
mi+1 and m(i+1), Pp(i) is available and Pp(i)+2A[i]−1

5



is idle. Pp(i) completes receiving its program at the
latest at time mi + Tprog − Lp(i) = m(i + 1) − Lp(i)

and can execute Lp(i) tasks before being reclaimed.
Overall, the processors execute X =

∑n
i=1 Lp(i) tasks.

For any j ∈ [1,m], by construction there is exactly one
processor downloading the program during time-slot j.
Consequently, X = m, and thus I2 has a solution.

Suppose now that I2 has a solution. As ncom = 1,
for all i ∈ [1, n], processors P2i−1 and P2i receive the
program during at m time slots before time m. After
time m, processors P2i−1 and P2i are only available
between time mi+1 and m(i+1). Then, at time N , the
sum S of the time-slots spent in receiving the program
on processors P2i−1 and P2i is S ≤ 2m. This means
that at most one of these processors can execute tasks
before time N . Among P2i−1 and P2i, let p(i) be the
processor computing at least one task. If neither P2i−1
nor P2i computes any task, let p(i) = 2i. Let A be
an array of size n such that if p(i) = 2i − 1, then
A[i] = 1 else A[i] = 0. We will prove that all clauses
of I1 are satisfied with this assignment. Without loss of
generality we assume that no communication is made to
a processor that does not execute any task. Suppose that
for i ∈ [1,m], a processor Pj with j = p(k) receives a
part of the program during time-slot i. Then, by defini-
tion of the function p, either A[k] = 1 and xk ∈ Ci, or
A[k] = 0 and x̄k ∈ Ci. This means that assignment A
satisfies clause Ci. Let X be the number of true clauses
with assignment A. For all i ∈ [1, 2n], we define Li as
the number of communication time-slots for processor
Pi between times 1 and m. Then, X ≥

∑n
j=1 Lp(i). In

addition, processor Pp(i) completes the reception of the
program at the latest at time m(i + 1) − Li, and then
computes at most Li tasks before being reclaimed at
time m(i+1). Overall, the processors compute m tasks.
Then,

∑n
j=1 Lp(i) ≥ m, and X ≥ m. Consequently, all

clauses are satisfied by A, i.e., I1 has a solution, which
concludes the proof.

Proposition 1. Problem OFF-LINE cannot be approxi-
mated within 8

7 − ε for all ε > 0.

Proof: MAXIMUM 3-SATISFIABILITY can-
not be approximated within 8

7 − ε for all ε > 0 [30].
The result is immediate for problem OFF-LINE by
construction of the proof of Theorem 1.

Now we show that the difficulty of problem OFF-
LINE is due to the bound ncom: if we relax this bound,
the problem becomes polynomial.

Proposition 2. OFF-LINE is polynomial when ncom =
+∞, even with different-speed processors.

Proof: Consider a strategy that sends the program

to processors as soon as possible, at the beginning of
the execution. Then, task by task, it greedily assigns the
next task to the processor that can terminate its execu-
tion the soonest; this is the classical MCT (Minimum
Completion Time) strategy, whose complexity is m×p.

To show that this strategy is optimal, let S1 be an
optimal schedule, and let S2 the MCT schedule. Let T1
and T2 be the associated completion times. We aim at
proving that T2 = T1. We first modify the schedule
S1 as follows. Suppose that processor Pq begins a
computation or a communication at time t, and that it
is available but idle during time-slot t − 1. Then, we
can shift forward the operation and execute it at time
t−1 without breaking any rules and without increasing
the completion time of the current iteration. We repeat
this modification as many times as possible, and finally
obtain a schedule S′1 with completion time T ′1 = T1.
Assume now that Pq executes i tasks under schedule S′1
and j under S2. The first min{i, j} tasks are executed at
the same time by S′1 and by S2. Suppose that T2 > T1.
Consider S2 right before the allocation of the first task
whose completion time is t > T1. At this time, at least
one processor Pq0 has strictly fewer tasks in S2 than in
S′1. We can thus allocate a task to Pq0 with completion
time t ≤ T1. The MCT schedule should have chosen
the latter allocation, and we obtain a contradiction. The
MCT schedule S2 is thus optimal.

The MCT algorithm is not optimal if ncom < +∞.
Consider an instance with Tprog = Tdata = 2, two
tasks (m = 2) and two identical processors (p = 2,
wq = w = 2). Suppose that ncom = 1, and that S1 =
[u, u, u, u, u, u, r, r, r] and S2 = [r, u, u, u, u, u, u, u, u].
The optimal schedule computes both tasks in time 9 as
follow: stay idle for one time-slot and then send the
program and data to P2. However, MCT executes the
first task on P1, and is thus not optimal.

V. COMPUTING THE EXPECTATION OF A WORKLOAD

In this section, we first introduce a Markov model for
processor availability, and then show how to compute
the expected execution time of a processor to complete
a given workload.

The availability of processor Pq is described by a
3-state recurrent aperiodic Markov chain, defined by 9

probabilities: P (q)
i,j , with i, j ∈ {u, r, d}, is the probabil-

ity for Pq to move from state i at time-slot t to state j at
time-slot t+ 1, which does not depend on t. We denote
by π

(q)
u , π(q)

r and π
(q)
d the limit distribution of Pq’s

Markov chain (i.e., steady-state fractions of state oc-
cupancy for states UP , RECLAIMED , and DOWN ).
This limit distribution is easily computed from the
transition probability matrix, and π(q)

u +π
(q)
r +π

(q)
d = 1.

6



When designing heuristics to assign tasks to pro-
cessors, it seems important to take into account the
expected execution time of a processor until it com-
pletes all tasks assigned to it. Indeed, speed is not the
only factor, as the target processor may well become
RECLAIMED several times before executing all its
scheduled computations. We develop an analytical ex-
pression for such an expectation as follows.

Consider a processor Pq in the UP state at time t,
which is assigned a workload that requires W time-
slots in the UP state for completing all communications
and/or computations. To complete the workload, Pq

must be UP during another W − 1 time-slots. It can
possibly become RECLAIMED but never DOWN in
between. What is the probability of the workload being
completed? And, if it is completed, what is the expec-
tation of the number of time-slots until completion?

Definition 1. Knowing that Pq is UP at time-slot t1, let
P

(q)
+ be the conditional probability that it will be UP

at a later time-slot, without going to the DOWN state
in between. Formally, knowing that Sq[t1] = u, P (q)

+ is
the conditional probability that there exists a time t2
such that Sq[t2] = u and Sq[t] 6= d for t1 < t < t2.

Definition 2. Let E(q)(W) be the conditional expec-
tation of the number of time-slots required by Pq to
complete a workload of size W knowing that it is UP
at the current time-slot t1 and will not become DOWN
before completing this workload. Formally, knowing that
Sq[t1] = u, and that there exist W − 1 time-slots
t2 < t3 < · · · < tW , with t1 < t2, Sq[ti] = u for
i ∈ [2,W ], and Sq[t] 6= d for t ∈ [t1, tW ], E(q)(W ) is
the conditional expectation of tW − t1 + 1.

Lemma 1. P (q)
+ = P

(q)
u,u +

P (q)
u,rP

(q)
r,u

1−P (q)
r,r

.

Proof: The probability that Pq will be available
again before crashing is the probability that it re-
mains available, plus the probability that it becomes
RECLAIMED and later returns to the UP state before
crashing. We obtain that

P
(q)
+ = P (q)

u,u + P (q)
u,r

(
+∞∑
t=0

(P (q)
r,r )t

)
P (q)
r,u ,

hence the result.

Theorem 2. E(q)(W ) = W + (W − 1) × P (q)
u,rP

(q)
r,u

1−P (q)
r,r

×
1

P
(q)
u,u(1−P (q)

r,r )+P
(q)
u,rP

(q)
r,u

.

Proof: To execute the whole workload, Pq needs
W − 1 additional time-slots of availability. Conse-
quently, the probability that Pq successfully executes

its entire workload before crashing is (P
(q)
+ )W−1. The

key idea to prove the result is to consider E(q)(up), the
expected value of the number of time-slots before the
next UP time-slot of Pq , knowing that it is up at time
0 and will not become DOWN in between:

E(q)(up) =
P

(q)
u,u +

∑
t≥0(t+ 2)P

(q)
u,r (P

(q)
r,r )tP

(q)
r,u

P
(q)
+

.

To compute E(q)(up), we study the value of

A =
∑

t≥0(t+ 2)P
(q)
u,r (P

(q)
r,r )tP

(q)
r,u

=
P (q)

u,rP
(q)
r,u

P
(q)
r,r

∑
t≥0(t+ 2)(P

(q)
r,r )t+1 =

P (q)
u,rP

(q)
r,u

P
(q)
r,r

g′(P
(q)
r,r )

with g(x) =
∑

t≥0 x
t+2 = x2

1−x . Differentiating, we
obtain g′(x) = x(2−x)

(1−x)2 and

A =
P

(q)
u,rP

(q)
r,u

P
(q)
r,r

× P
(q)
r,r (2− P (q)

r,r )

(1− P (q)
r,r )2

.

Letting z =
P (q)

u,rP
(q)
r,u

P
(q)
u,u(1−P (q)

r,r )
, we derive

E(q)(up) =
1 + z

(2−P (q)
r,r )

(1−P (q)
r,r )

1 + z
= 1 +

z

(1− P (q)
r,r )(1 + z)

We then conclude by noting that:
E(q)(W ) = 1 + (W − 1)× E(q)(up).

VI. ON-LINE HEURISTICS

A. Rationale

In this section, we propose heuristics to address the
on-line version of the problem. Conceptually, we can
distinguish three main classes of heuristics:
Passive heuristics that conservatively keep current

processors active as long as possible: the current
configuration is changed only when one of the
enrolled processors becomes DOWN .

Dynamic heuristics that may change configuration on
the fly, while preserving ongoing work. More pre-
cisely, if a processor is engaged in a computation,
it finishes it; if it is engaged in a communication,
it finishes it together with the corresponding com-
putation. But otherwise, tasks can be freely reas-
signed among processors, whether already enrolled
or not. Intuitively, the idea is to benefit from, say, a
fast and reliable resource that has just become UP ,
while not risking losing part of the work already
completed for the current iteration.

Proactive heuristics that would allow for the possibil-
ity of aggressively terminating ongoing tasks, at
the risk for an iteration to never complete.

7



In our model, the dynamic strategy is the most
appealing. Since tasks are executed one by one and
independently on each processor, using a passive ap-
proach by which all m tasks are assigned once and
for all without possible reassignment does not make
sense. A proactive strategy would have little impact
on the time to complete the iteration unless the last
tasks are assigned to slow processors. In this case,
these tasks should be terminated and assigned to faster
processors, which could have significant benefit when
m is small. A simpler and popular solution is to use
only dynamic strategies but to replicate these last tasks
on one or more hosts in the UP state, canceling all
remaining replicas when one of them completes. Task
replication may seem wasteful, but it is a commonly
used technique in desktop grid environments in which
resources are plentiful and often free of charge. While
never detrimental to execution time, task replication is
more beneficial when m is small.

In all the heuristics described hereafter, a task is
replicated whenever there are more processors in the
UP state than there are remaining tasks to execute.
We limit the number of additional replicas of a task
to two, which has been used in previous work [16] and
works well in our experiments (better performance than
with only one additional replica, not significantly worse
performance than with more additional replicas). For
simplicity, we describe all our heuristics assuming no
task replication, but it is to be understood that there
are up to 3m tasks (instead of m) distributed by the
master during each iteration; the m original tasks are
given priority over replicas, which are scheduled only
when room permits.

All heuristics assign tasks to processors (that must be
in the UP state) one-by-one, until m tasks are assigned.
More precisely, at time slot t, there are enrolled pro-
cessors that are currently active, either receiving some
message, or computing a task, or both. Let m′ be the
number of tasks whose communication or computation
has already begun at time t. Since ongoing activities are
never terminated, there remain m−m′ tasks to assign to
processors. The objective of the heuristics is to decide
which processors should be used for these tasks.

The dynamic heuristics below fall into two classes,
random and greedy. Most of these heuristics rely on the
assumption that processor availability follows a Markov
process, as discussed in Section V.

B. Random heuristics

The heuristics described in this section use random-
ness to select which processor, among the ones that are
in the UP state, will execute the next task. The simplest

heuristic, RANDOM, assigns the next task to a processor
picked randomly using a uniform probability distribu-
tion. Going beyond RANDOM, it is possible to assign a
weight to processor Pq , in a view to giving larger weight
to more “reliable” processors. Processors are picked
with a probability equal to their normalized weights.
We propose four ways of defining these weights:

1) Long time UP : the weight of Pq is P
(q)
u,u, the

probability that Pq remains UP , hence favoring to
processors that stay UP for a long time.

2) Likely to work more: the weight of Pq is P (q)
+ ,

the probability that Pq will be UP another time
slot before crashing (see Section V), hence favoring
processors with high probability of becoming UP
again before crashing.

3) Often UP : the weight of Pq is π(q)
u , the steady-

state fraction of time that Pq is UP , hence favoring
processors that are UP more often.

4) Rarely DOWN : the weight of Pq is (1 − π(q)
d ),

hence favoring processors that are DOWN less
often.

We call the corresponding heuristics RANDOM1, RAN-
DOM2, RANDOM3, and RANDOM4. For each of these
four heuristics Pq’s weight can be divided by wq ,
attempting to account for processing speed as well
as reliability. We thus obtain four additional variants,
designed by the suffix ’W’.

C. Greedy heuristics

We propose three general heuristics, each of which
can be enhanced to account for network contention.

1) MCT (Minimum Completion Time): Assigning a
task to the processor that can complete it the soonest is
the optimal policy in the offline case without network
contention (Proposition 2). We apply MCT here as
follows. For each processor Pq we compute Delay(q),
the delay before Pq finishes its current activities, and
after which it could be enrolled for one of the m−m′
remaining tasks to be scheduled. In addition to pro-
cessors finishing ongoing work, other processors could
need to receive all or part of the program. Because of
processors becoming RECLAIMED , we cannot exactly
compute Delay(q). As a first approach, we estimate it
assuming that Pq remains in the UP state and that there
is no network contention whatsoever. We then greedily
assign each of the remaining m−m′ tasks to processors,
picking each time the processor with the smallest task
completion time. More formally, for each processor Pq ,
let nq be the number of tasks already assigned to it
(out of the m −m′ tasks), and let CT (Pq, nq) be the
estimation of its completion time:

8



CT (Pq, nq) = Delay(q) + Tdata

+ max(nq − 1, 0) max(Tdata, wq) + wq . (1)

MCT assigns the next task to processor Pq0 , where q0 =
ArgMin{CT (Pq, nq + 1)} .
MCT with contention – The estimated completion time
in Equation 1 does not account for network contention
(caused by the master’s limited network capacity).
Because of the overlap between communications and
computations, it is difficult to predict network traffic.
Instead, we use a simple correcting factor, and replace
Tdata by

⌈
nactive
ncom

⌉
Tdata, where nactive denotes the number

of active processors, i.e., those processors that have been
assigned one or several of the m−m′ tasks. The nactive
counter is initialized to zero and is incremented when a
task is assigned to a newly enrolled processor. The intu-
ition is that this counter measures the average slowdown
encountered by a worker when communicating with the
master. This estimation is simple but pessimistic since
all scheduled communications do not necessarily take
place simultaneously. We derive the new estimation:

CT (Pq, nq) = Delay(q) +
⌈

nactive
ncom

⌉
Tdata

+ max(nq − 1, 0) max(
⌈

nactive
ncom

⌉
Tdata, wq) + wq

(2)

We call MCT∗ the version of the MCT heuristic that
uses the above definition of CT (Pq, nq).
Expected MCT – Given a workload (i.e., a num-
ber of needed time-slots of computation) CT (Pq, nq),
Theorem 2 gives the value of E(q)(CT (Pq, nq)), the
expected number of time-slots needed for Pq to be
UP during CT (Pq, nq) times-slots without becoming
DOWN in between. Using this expectation as the crite-
rion for selecting processors, and depending on whether
the correcting factor on Tdata is used, we obtain one new
version of MCT and one new version of MCT∗, which
we call EMCT and EMCT∗, respectively.

2) LW (Likely to Work): We build heuristics that
consider the probability that a processor Pq , which is
UP , will be UP again at least once before becoming
DOWN . This probability, P (q)

+ , is given by Lemma 1.
We assign the next task to processor Pq0 with the high-
est probability of being UP for at least the estimated
number of needed time-slots to complete its workload,
before becoming DOWN :

q0 = ArgMax
{

(P
(q)
+ )CT (Pq,nq+1)

}
.

Therefore, we first estimate the size W of the workload
and then the probability that a processor will be in the
UP state W time-slots without becoming DOWN in

between. Using Equation 2 instead of Equation 1, one
obtains the LW∗ heuristic.

3) UD (Unlikely Down): Here, we estimate the
number N of time-slots needed for a processor to
complete its workload, knowing that it can become
RECLAIMED . Then we compute the probability that
it will not become DOWN for N time-slots. Given that
Pq starts in the UP state, the probability that it does not
go to the DOWN state during k time-slots is:

P
(q)
UD(k) =

[
1 1

]
.

[
P

(q)
u,u P

(q)
u,r

P
(q)
r,u P

(q)
r,r

]k−1
.

[
1
0

]
.

We approximate this expression by forgetting the state
of Pq after the first transition:

P
(q)
UD(k) = (1−P (q)

u,d)

(
1−

P
(q)
u,dπ

(q)
u + P

(q)
r,d π

(q)
r

π
(q)
u + π

(q)
r

)k−2

.

We use this value with k = E(q)(CT (Pq, nq + 1)).
UD assigns the next task to the processor Pq0 that
maximizes the probability of not becoming DOWN
before the estimated number of time-slots needed for it
to complete its workload, counting the time-slots spent
in the RECLAIMED state:

q0 = ArgMax{P (q)
UD(E(q)(CT (Pq, nq + 1)))} .

Using Equation 2 instead of Equation 1, one obtains the
UD∗ heuristic.

VII. EXPERIMENTS

We have evaluated the heuristics described in the
previous section using a discrete-even simulator for
the execution of application on volatile resources (The
simulator is publicly available at http://navet.ics.hawaii.
edu/∼casanova/software/ipdps11 cp simulator.tgz).
The simulator takes as input values for all the
parameters listed in Section III, and it assumes that
temporal processor availability follows a Markov
process.

For the simulation experiments, rather than fixing N ,
the number of time-slots, we instead fix the number of
iterations to 10. The quality of an application execution
is then measured by the time needed to complete 10
iterations, or makespan. This equivalent problem is
simpler to instantiate since it does not require choosing
meaningful N values, which would depend on the
application and platform characteristics. We have exe-
cuted all heuristics presented above for several problem
instances. For each problem instance we compute the
degradation from best (dfb) of each heuristic, i.e., the
percentage relative difference between the makespan

9



Table I
PARAMETER VALUES FOR MARKOV EXPERIMENTS.

parameter values
p 20
n 5, 10, 20, 40
ncom 5, 10, 20
wmin 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

achieved by the heuristic and that achieved by the best
heuristic, all for that particular instance. A value of
zero means that the heuristic is best for the instance.
We use this metric because makespans vary widely
between instances depending on processor availability
patterns. We also count how often, over all instances,
each heuristic is the (or tied with the) best one, so that
we can report on numbers of wins for each heuristics.

All our experiments are for p = 20 processors.
The Markov chain that characterizes processor Pq’s
availability is defined as follows. We uniformly pick a
random value between 0.90 and 0.99 for each P (q)

x,x value
(for x = u, r, d). We then set P (q)

x,y to 0.5× (1− P (q)
x,x),

for x 6= y. An experimental scenario is defined by
the above and by three parameters: n, the number of
tasks per iteration, ncom, the constraint on the master’s
communication bandwidth, and the wmin parameter,
which is used as follows. For each processor Pq , we
pick wq uniformly between wmin and 10×wmin. Tdata is
set to wmin, meaning that the fastest possible processor
has a computation-communication ratio of 1. Tprog is set
to 5 × wmin, meaning that downloading the program
takes 5 times as much time as downloading the data
for a task. We define experimental scenarios for each
of the possible instantiations of (n, ncom, wmin) given
the values shown in Table I. We must emphasize that
our goal here is not to instantiate a representative model
for a desktop grid and application, but rather to create
arbitrary but simple synthetic experimental scenarios
that will highlight inherent strengths and weaknesses
of the heuristics.

For each possible instantiation of the parameters in
Table I, we create 247 random experimental scenarios
as described above. For each experimental scenario, we
run 10 trials, varying the seed of the random number
generator used to determine Markov state transitions.
We compute average dfb values for each heuristic based
over these 10 trials, for each experimental scenarios.
The total number of generated problem instances is 4×
3× 10× 247× 10 = 296, 400.

Table II shows average dfb and number of wins
results, averaged over all experimental scenarios and
sorted by increasing dfb values, i.e., from best to worst.
In spite of the averaging over all problem instances,
the trends are clear. All four MCT algorithms perform

Table II
RESULTS OVER ALL PROBLEM INSTANCES

Algorithm Average dfb #wins
EMCT 4.77 80320
EMCT∗ 4.81 78947
MCT 5.35 73946
MCT∗ 5.46 70952
UD∗ 7.06 42578
UD 8.09 31120
LW∗ 11.15 28802
LW 12.74 19529
RANDOM1W 28.42 259
RANDOM2W 28.43 301
RANDOM4W 28.51 278
RANDOM3W 31.49 188
RANDOM3 44.01 87
RANDOM4 47.33 88
RANDOM1 47.44 36
RANDOM2 47.53 73
RANDOM 47.87 45

Table III
RESULTS FOR CONTENTION-PRONE EXPERIMENTS

Communication times ×5

Algorithm Average dfb
EMCT∗ 3.87
MCT∗ 4.10
UD∗ 5.23
EMCT 6.13
UD 6.42
MCT 7.70
LW∗ 8.76
LW 10.11

Communication times ×10

Algorithm Average dfb
UD∗ 2.76
UD 3.20
EMCT∗ 3.66
LW∗ 4.02
MCT∗ 4.22
LW 4.46
EMCT 8.02
MCT 15.50

best, followed closely behind by the UD, and then the
LW algorithms. The random algorithms perform signif-
icantly worse. Regarding these algorithms, one can note
that, expectedly, biasing the probability that a processor
Pq is picked by wq is a good idea (i.e., RANDOMxW
always outperforms RANDOMx). The other differences
in the definitions of the random algorithms do not lead
to significant performance differences. On average on all
problem instances, EMCT algorithms have makespans
10% smaller than the MCT algorithms, which shows
that taking into account the probability of state changes
does lead to improved performance.

To provide more insight than the overall averages
shown in Table II, Figure 2 plots dfb results averaged for
distinct wmin values, shown on the x-axis. We present
only results for the four MCT heuristics and for those
heuristics that do account for network contention (i.e.,
with a ∗), and leave out the random heuristics. Note
that increasing wmin amounts to scaling the unit time,
meaning that availability state transitions occur more
often during the execution of a task. In other words, the
right hand side of the x-axis in Figure 2 corresponds
to more difficult problem instances. Indeed, the larger
wmin, the higher the probability that a task’s processor

10



1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

 

 

mct

mct*

emct

emct*

ud*

lw*

Figure 2. Averaged dbf results vs. wmin.

experiences a state transition. Therefore, as wmin in-
creases, it becomes increasingly important to estimate
the negative impacts of the DOWN and RECLAIMED
states: the most powerful processor may no longer be
the best choice if it has a higher probability of going
into the states RECLAIMED or DOWN . The two
EMCT algorithms take into account the probability that
a processor enters the RECLAIMED state. We see that
they overtake the MCT algorithms when wmin becomes
larger than 3. The UD and LW algorithms also take into
account the probability that a processor goes DOWN .
UD heuristics consistently outperform their LW coun-
terparts. Also, UD (slightly) overtakes EMCT as soon
as wmin = 7. We conclude that when the probability
of state transitions rises one must use heuristics that
explicitly take into account that processors can go in
the states RECLAIMED and DOWN .

In our results, we do not see much difference between
the original versions of the heuristics and the versions
that try to account for network contention, i.e., the
heuristics thave have a ’∗’ in their names. Part of the
reason may be that, as stated in Section VI-C1, the
correcting factor used to account for contention is a
very coarse approximation. However, our experimental
scenarios correspond to compute-intensive executions,
meaning that processors typically spend much more
time computing than communicating. We ran a set of
experiments for n = 20, ncom = 5, and wmin = 1,
but with Tdata = 5wmin and Tprog = 25wmin, i.e.,
with communication times 5 times larger than those in
our base set of experimental scenarios. Results averaged
over 100 such “contention-prone” experimental scenar-
ios (each of which is ran for 10 trials) are shown in the
left-hand side of Table III. The right-hand side shows
similar results for communication that are 10 times

larger than those in our base set of scenarios. These
results confirm that, as the scenario becomes more
communication intensive, those algorithms that account
for network contention outperform their counterparts.

VIII. CONCLUSION

In this paper we have studied the problem of schedul-
ing master-worker iterative applications on volatile plat-
forms in which hosts can experience failures or be tem-
porarily reclaimed by their owners. A unique aspect of
our work is that we model the fact that communication
between the master and the workers is subject to a
bandwidth constraint, e.g., due to the limited capacity of
the master’s network card. In this context we have made
a theoretical contribution by characterizing the com-
putational complexity of the off-line problem, which
turns out to be NP-hard. Interestingly, without any
bandwidth constraint, the problem becomes solvable
in polynomial time. We have then proposed several
online scheduling heuristics. By assuming a Markov
model of processor availability, we were able to derive
a closed-form formula for the expectation of the time
needed by a volatile worker to complete a set of tasks.
Some of our heuristics use this expectation for making
scheduling decision (namely EMCT, EMCT*, UD,
UD*). Some heuristics also use a contention-correcting
factor as a way to account for the constraint on the
master’s bandwidth (namely EMCT*, LW*, UD*).
The evaluation of our heuristics in simulation has led
to the following conclusions:
• Our failure-aware heuristics deliver better perfor-

mance than classical heuristics when the prob-
ability that a task is subject to processor state
transitions becomes non negligible;

• Our contention-correcting factor improves perfor-
mance on contention-prone platforms, and does not
degrade performance otherwise;

• Our EMCT* heuristic delivers overall good per-
formance, leading to a 10% reduction over the
makespans achieved by MCT, the optimal algo-
rithm for the contention-free offline case;

• EMCT* is outperformed by UD* in scenarios
that exhibit very large state transition probabilities
when compared to task duration, or a highly con-
tented network.

The next step in this research is to challenge the
Markov assumption for processor availability. As ex-
plained in Section I, processor availability in desktop
grid platforms is not Markovian. We see two possible
avenues of research. First, we could rely on those
stochastic models of processor availability that are avail-
able [8], [9], [10], [11], and evolve our algorithmic

11



techniques, if at all possible, to account for those
models. Second, given that no consensus has emerged
regarding the correct models of processor availability
(and that perhaps there is none), we could embark on a
purey empirical study based on availability traces such
as those available in the Failure Trace Archive [31].

Acknowledgment: F. Dufossé, Y. Robert and F. Vivien
are with the Université de Lyon. Y. Robert is with
the Institut Universitaire de France. F. Vivien is with
INRIA. This work was supported in part by the ANR
StochaGrid project.

REFERENCES

[1] G. E. Fagg and J. Dongarra, “FT-MPI: Fault Tolerant
MPI, Supporting Dynamic Applications in a Dynamic
World,” in Proc. 7th EuroPVM/MPI. Springer-Verlag,
2000, pp. 346–353.

[2] J. R. de Souza, E. Argollo, A. Duarte, D. Rexachs, and
E. Luque, “Fault tolerant master-worker over a multi-
cluster architecture,” in Proc. of ParCo 2005. NIC
Series, Vol. 33, 2006, pp. 465–472.

[3] T. Leblanc, R. Anand, E. Gabriel, and J. Subhlok,
“VolpexMPI: An MPI Library for Execution of Paral-
lel Applications on Volatile Nodes,” in Proc. of Eu-
roPVM/MPI 2009. Springer-Verlag, 2009, pp. 124–133.

[4] D. Buntinas, C. Coti, T. Herault, P. Lemarinier, L. Pilard,
A. Rezmerita, E. Rodriguez, and F. Cappello, “MPICH-
V: Toward a Scalable Fault Tolerant MPI for Volatile
Nodes,” FGCS, vol. 24, no. 1, pp. 73–84, 2008.

[5] “BOINC: Berkeley Open Infrastructure for Network
Computing,” http://boinc.berkeley.edu.

[6] A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia:
Architecture and performance of an enterprise desktop
grid system,” J. Par. and Distr. Comp., vol. 63, pp. 597–
610, 2003.

[7] E. Byun, S. Choi, M. Baik, J. Gil, C. Park, and
C. Hwang, “MJSA: Markov job scheduler based on
availability in desktop grid computing environment,”
FGCS, vol. 23, no. 4, pp. 616–622, 2007.

[8] D. Nurmi, J. Brevik, and R. Wolski, “Modeling Machine
Availability in Enterprise and Wide-area Distributed
Computing Environments,” in Proc. of Europar, 2005.

[9] R. Wolski, D. Nurmi, and J. Brevik, “An Analysis of
Availability Distributions in Condor,” in Proc. of the
IPDPS Workshop on Next-Generation Software, 2007.

[10] B. Javadi, D. Kondo, J. Vincent, and D. Anderson,
“Mining for Statistical Models of Availability in Large-
Scale Distributed Systems: An Empirical Study of
SETI@home,” in Proc. of the 17th MASCOTS, 2009.

[11] X. Ren, S. Lee, R. Eigenmann, and S. Bagchi, “Pre-
diction of Resource Availability in Fine-Grained Cycle
Sharing Systems Empirical Evaluation,” Journal of Grid
Computing, vol. 5, no. 2, pp. 173–195, 2007.

[12] B. Hong and V. K. Prasanna, “Adaptive allocation of
independent tasks to maximize throughput,” IEEE TPDS,
vol. 18, no. 10, pp. 1420–1435, 2007.

[13] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, Paral-
lel Iterative Algorithms: From Sequential to Grid Com-
puting. Chapman and Hall/CRC Press, 2007.

[14] A. Heddaya and K. Park, “Mapping parallel iterative
algorithms onto workstation networks,” in HPDC’94,
1994, pp. 211 –218.

[15] A. Legrand, H. Renard, Y. Robert, and F. Vivien,
“Mapping and load-balancing iterative computations on
heterogeneous clusters with shared links,” IEEE TPDS,
vol. 15, pp. 546–558, 2004.

[16] D. Kondo, A. Chien, and H. Casanova, “Resource Man-
agement for Rapid Application Turnaround on Enterprise
Desktop Grids,” in Proc. of SC’04, 2004.

[17] D. Zhou and V. Lo, “Wave Scheduler: Scheduling for
Faster Turnaround Time in Peer-based Desktop Grid
Systems,” in Proc. of the 11th JSSPP Workshop, 2005.

[18] T. Estrada, D. Flores, M. Taufer, P. Teller, A. Kerstens,
and D. Anderson, “The Effectiveness of Threshold-
Based Scheduling Policies in BOINC Projects,” in Proc.
of e-Science’06, 2006.

[19] C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and
R. Wolski, “Fault-aware scheduling for Bag-of-Tasks
applications on Desktop Grids,” in Proc. of Grid Com-
puting, 2006, pp. 56–63.

[20] T. Estrada, O. Fuentes, and M. Taufer, “A distributed
evolutionary method to design scheduling policies for
volunteer computing,” SIGMETRICS Perf. Eval. Rev.,
vol. 36, no. 3, pp. 40–49, 2008.

[21] J. Wingstrom and H. Casanova, “Probabilistic Allocation
of Tasks on Desktop Grids,” in Proc. of PCGrid, 2008.

[22] E. Heien, D. Anderson, and K. Hagihara, “Comput-
ing Low Latency Batches with Unreliable Workers in
Volunteer Computing Environments,” Journal of Grid
Computing, vol. 7, no. 4, pp. 501–518, 2009.

[23] N. Fujimoto and K. Hagihara, “Near-Optimal Dynamic
Task Scheduling of Independent Coarse-Grained Tasks
onto a Computational Grid,” in Proc. of ICPP, 2003.

[24] C. Moretti, T. Faltemier, D. Thain, and P. Flynn, “Chal-
lenges in Executing Data Intensive Biometric Workloads
on a Desktop Grid,” in Proc. of PCGrid, 2007.

[25] T. Toyoma, Y. Yamada, and K. Konishi, “A Resource
Management System for Data-Intensive Applications in
Desktop Grid Environments,” in Proc. of PDCS, 2006.

[26] H. He, G. Fedak, B. Tang, and F. Cappello, “BLAST Ap-
plication with Data-Aware Desktop Grid Middleware,” in
Proc. of CCGrid, 2009, pp. 284–291.

[27] R. Guerraoui and A. Schiper, “Software-Based Replica-
tion for Fault Tolerance,” IEEE Computer, vol. 30, pp.
68–74, 1997.

[28] P. Stelling, C. DeMatteis, I. Foster, C. Kesselman,
C. Lee, and G. von Laszewski, “A fault detection service
for wide area distributed computations,” Cluster Com-
puting, vol. 2, no. 2, pp. 117–128, 1999.

[29] W. Gropp, “MPICH2: A New Start for MPI Implemen-
tations,” in PVM/MPI, 2002, p. 7.

[30] J. Håstad, “Some optimal inapproximability results,” in
STOC ’97. ACM, 1997, pp. 1–10.

[31] D. Kondo, B. Javadi, A. Iosup, and D. Epema, “The
Failure Trace Archive: Enabling Comparative Analysis
of Failures in Diverse Distributed Systems,” in Proc. of
CCGrid, 2010.

12


