
Characterizing Fault Tolerance in Genetic Programming

Daniel Lombraña Gonzáleza, Francisco Fernández de Vegaa, Henri Casanovab

aUniversity of Extremadura, Santa Teresa Jornet 38, 06800 Mérida, Badajoz, Spain.
bUniversity of Hawai’i at Manoa, PST #317, 1680 East-West Road, Honolulu, HI 96822, U.S.A.

Abstract

Evolutionary Algorithms, including Genetic Programming (GP), are frequently employed to solve difficult
real-life problems, which can require up to days or months of computation. An approach for reducing the
time-to-solution is to use parallel computing on distributed platforms. Large such platforms are prone to
failures, which can even be commonplace events rather than rare occurrences. Thus, fault tolerance and
recovery techniques are typically necessary. The aim of this article is to show the inherent ability of Parallel
GP to tolerate failures in distributed platforms without using any fault-tolerant technique. This ability is
quantified via simulation experiments performed using failure traces from real-world distributed platforms,
namely, desktop grids, for two well-known problems.

Key words: Fault-tolerance, Parallel Genetic Programming, Desktop Grids.

1. Introduction

Evolutionary Algorithms (EAs) are employed to
solve real-world problems. However, when difficult
problems are faced, large and often prohibitive times-
to-solution ensue. A common approach is then to use
parallel versions of the algorithm. Successful Paral-
lel Evolutionary Algorithms (PEAs) have been pro-
posed [1, 2, 3]. Additionally, development frame-
works for PEAs have been implemented (e.g., Ca-
lypso [4]), some specifically for Parallel Genetic Pro-
gramming (PGP) [5].

PEAs can be run on potentially large-scale par-
allel computing platforms. Two types of paral-
lel platforms have achieved very high scales: clus-
ters and desktop grids. In the last decade large
clusters have become mainstream, and clusters ac-
count today for more than 80% of the Top500 list,

Email addresses: daniellg@unex.es (Daniel Lombraña
González), fcofdez@unex.es (Francisco Fernández de Vega),
heric@hawaii.edu (Henri Casanova)

which ranks the 500 fastest supercomputers based on
the LINPACK benchmark [6]. The term “desktop
grid” (DG) refers to distributed networks of hetero-
geneous individual systems that contribute comput-
ing resources when idle. A well-known example of
DG is the Berkeley Open Infrastructure for Network
Computing (BOINC) [7], which hosts the famous
SETI@home [8] project. At the time this article is
being written, BOINC enlists around 500,000 volun-
teer computers. Smaller, but still impressive, DG in-
frastructures, are deployed within enterprises or data
centers [9]. Such deployments comprise more power-
ful, more available, and less heterogeneous comput-
ers than Internet-wide DGs. The main advantage of
DGs is that they provide large-scale parallel comput-
ing capabilities at a very low cost for specific types
of applications.

The aforementioned large-scale parallel comput-
ing platforms hold promises for running large PEAs.
However, with large scale there is a higher risk that
processors experience failures during the execution
of an application (e.g., a crash). In this paper the

Preprint submitted to Future Generation Computer Systems January 12, 2010

terms “failure” and “fault” are used without mak-
ing the subtle distinction between them, as it is not
necessary for our purpose. Failures occur frequently
in large-scale clusters [10]. In DGs, failures are the
common case: a participating computer can be re-
claimed by its owner at any time (e.g., when the
owner launches an application, when the keyboard/-
mouse is used). In this case, the DG application is
abruptly suspended or terminated, which it is seen as
a failure.

In order to circumvent and/or alleviate failures,
many researchers have developed different techniques
for an application to not be terminated when one
or more of the participating processors experience
a failure. This ability is known as fault tolerance,
and ensures that the application behaves in a well-
defined manner (e.g., with graceful degradation of
performance) when a failure occurs [11]. Various
fault tolerance techniques have been developed [12].
These techniques can be employed with parallel ap-
plications, and support many types of computational
and communication failures [13]. In general, the
employment of fault tolerance mechanisms requires
the modification of the application, and sometimes
the parallel algorithms themselves. The developer
thus could face a sharp increase in software complex-
ity. For this reason, generic fault tolerance solutions
have been developed as libraries or software environ-
ments [14, 15, 16].

To the best of our knowledge, there has been lit-
tle investigation of the behaviors of PEAs in general,
and of PGP in particular, in the presence of failures.
Nevertheless, there are different tools available that
can be used to parallelize and run any EA, and thus
GP, in volunteer computing environments [17], where
failures are common.

In previous work [18, 19], we presented preliminary
results about fault tolerance in PGP under several
simplified assumptions. We showed that PGP ap-
plications exhibit inherent fault-tolerant behaviors.
Therefore, it seems feasible to run them on large-
scale computing infrastructures, which suffer from
failures, but without the burden of implementing/us-
ing any kind of fault tolerance techniques, and with-
out sacrificing overall application efficiency signifi-
cantly. We then extended those preliminary results

in two ways [20]. First, two different PGP prob-
lems were used for running simulations using host
availability data collected from real-world DG de-
ployments (instead of using simplistic, and ultimately
unrealistic, processor availability models). Second,
the simulations used availability data from different
platforms, making it possible to study the impact of
different host availability profiles on application ex-
ecution. To the best of our knowledge, this was the
first time that an attempt for characterizing PGP
had been performed from the fault-tolerance point of
view. The results showed that in some specific con-
texts, PGP can tolerate various failure rates.

All previous results were obtained using a strin-
gent assumption: once unavailable, a resource never
becomes available again. This is, however, not the
case in real-world DGs. In this paper we extend the
work in [20] and run simulations in which resources
can become available again. This should further im-
prove the graceful degradation feature of PGP as the
number of resources fluctuates throughout applica-
tion execution instead of continuously decreasing.

This paper is organized as follows. Section 2 re-
views related works beyond the ones described ear-
lier. Section 3 provides an overview of the different
types of failures that may arise as well as the rele-
vant fault tolerance techniques. Section 4 describes
our experimental methodology, and results are dis-
cussed in Section 5. Section 6 concludes the paper
with a summary of our results and future directions.

2. Background and Related Work

When using EAs, and especially GP, to solve real-
world problems researchers and practitioners often
face prohibitively long times-to-solution on a sin-
gle computer. For instance, Trujillo et al. required
more than 24 hours to solve a computer vision prob-
lem [21], and times-to-solution can be much longer,
measured in weeks or even months. Consequently,
several researchers have studied the application of
parallel computing to Spatially Structured EAs in
order to shorten times-to-solution [1, 2, 3]. Such
PEAs have been used for decades, for instance, on
the Transputer platform [22], or, more recently, via
software frameworks such as Beagle [23], grid based

2

tools like Paradiseo [24], or BOINC-based EA frame-
works for execution on DGs [17].

Failures in a distributed system can be local, af-
fecting only a single processor, or they can be com-
munication failures, affecting a large number of par-
ticipating processors. Such failures can disrupt a
running application, for instance mandating that
the application be restarted from scratch. As dis-
tributed computing platforms become larger and/or
lower-cost through the use of less reliable or non-
dedicated hardware, failures occur with higher prob-
ability [25, 26, 27]. Failures are, in fact, the com-
mon case in DGs. For this reason, fault-tolerant
techniques are necessary so that parallel applications
in general, and in our case PEAs, can benefit from
large-scale distributed computing platforms. Fail-
ures can be alleviated, and in some cases completely
circumvented, using techniques such as checkpoint-
ing [28], redundancy [29], long-term-memory [30],
specific solutions to message-passing [31] or rejuve-
nation frameworks [32]. It is necessary to embed
the techniques in the application and the algorithms.
While some of these techniques may be straightfor-
ward to implement (e.g., failure detection and restart
from scratch), the more involved ones typically lead
to an increase in software complexity. Regardless,
fault tolerance techniques always requires extra com-
puting resources and/or time.

Currently available PEA frameworks employ fault
tolerant mechanisms to tolerate failures in dis-
tributed systems like in DGs. For instance ECJ [33],
ParadisEO [34], DREAM [35] or Distributed Beagle
[23]. These frameworks have distinct features (pro-
gramming language, parallelism models, etc.) that
may be considered in combination with DGs, and
provide different techniques to cope with failures:

• ECJ [33] is a Java framework that employs
a master-worker scheme to run PEAs using
TCP/IP sockets. When a remote worker fails,
ECJ handles this failure by rescheduling and
restarting the computation to another available
worker.

• ParadisEO [34] is a C++ framework for run-
ning a master-worker model using MPI [36],

PVM [37], or POSIX threads. Initially, Par-
adisEO did not provide any fault-tolerance. The
developers later implemented a new version on
top of the Condor-PVM resource manager [38]
in order to provide a checkpointing feature [28].
This framework, however, is not the best choice
for DGs because these systems are: (i) loosely
coupled and (ii) workers may be behind prox-
ies, firewalls, etc. making it difficult to deploy a
ParadisEO system.

• DREAM [35] is a Java peer-to-peer (P2P) frame-
work for PEAs that provides a fault-tolerance
mechanism called long-term-memory [30]. This
framework is designed specifically for P2P sys-
tems. As a result, it cannot be compared directly
with our work since we focus on a master-worker
architecture on DGs.

• Distributed BEAGLE [23] is a C++ framework
that implements the master-worker model using
TCP/IP sockets as ECJ. Fault-tolerance is pro-
vided via a simple time-out mechanism: a com-
putation is re-sent to one or more new available
workers if this computation has not been com-
pleted by its assigned worker after a specified
deadline.

While these PEA frameworks provide fault-tolerant
features, the relationship between fault tolerance and
specific features of PEAs has not been studied.

An interesting and relatively recent development is
the use of dynamic populations [39, 40, 41, 42], i.e.,
population size is reduced and/or increased in order
to minimize fitness stagnation. In 2003, Fernández
et al. [40] introduced a new operator named plague,
which reduces the population size at a linear rate.
The same year, Luke et al. [41] introduced a simi-
lar idea: reducing population size according to dif-
ferent layouts. In 2004, Tomassini et al. [39] pre-
sented a study on dynamic populations by remov-
ing/adding individuals to avoid fitness stagnation.
More recently, Kouchakpour et al. [43] introduced a
population variation scheme to add/remove individ-
uals from the population, and in [42] improved the
work presented by Tomassini et al. by proposing a

3

new pivot function and four new measures for char-
acterizing the stagnation phase.

Our key observation is that the loss of individ-
uals due to worker failures inherently leads to dy-
namic populations, albeit in a random and thus less
controlled fashion. Based on this observation, the
intriguing question is whether one could simply al-
low individuals to be lost without taking any partic-
ular fault-tolerant measures, thereby achieving dy-
namic population and fault tolerance “for free”. We
first explored this idea in [44, 45], and, as explained
in Section 1, attempted a preliminary quantifica-
tion of the fault tolerance characteristics of PGP
in [18, 19]. These results were extended in our more
recent work [20], using more realistic failure models
based on real-world observations of DG platforms. In
this paper we further extend the realism of the results
in [20] by allowing workers to become available again
after they have experienced a failure, as it is the case
in real-world DGs. Our objective is to quantify the
graceful degradation feature of PGP as the number
of resources fluctuates throughout application execu-
tion.

3. Fault Tolerance

3.1. Failure Models

Fault tolerance can be defined as the ability of a
system to behave in a well-defined manner once a
failure occurs. In this paper we only take into ac-
count failures at the process level. A complete de-
scription of failures in distributed systems is beyond
the scope of our discussion. According to Ghosh [13],
failures can be classified as follows: crash, omission,
transient, Byzantine, software, temporal, or security
failures. However, in practice, any system may expe-
rience a failure due to the following reasons [13]: (i)
Transient failures: the system state can be corrupted
in an unpredictable way; (ii) Topology changes : the
system topology changes at runtime when a host
crashes, or a new host is added; and (iii) Environ-
mental changes : the environment – external vari-
ables that should only be read – may change with-
out notice. Once a failure has occurred, a mecha-
nism is required to bring back the system into a valid

state. There are four major types of such fault tol-
erance mechanisms: masking tolerance, non-masking
tolerance, fail-safe tolerance, and graceful degrada-
tion [13].

To discuss fault-tolerance in the context of PGP,
we first need to specify the way in which the GP
application is parallelized. Parallelism has been tra-
ditionally applied to GP at two possible levels: the
individual level or the population level [2, 3, 46, 47].
At the individual level, it is common to use a master-
worker scheme, while at the population level, a.k.a.
the “island model”, different schemes can be em-
ployed (ring, multi-dimensional grids, etc.).

In light of previous studies [2, 46] and taking into
account the specific parallel features of DGs [48, 49],
we focus on parallelization at the individual level. In-
deed, DGs are loosely-coupled platforms with volatile
resources, and therefore ideally suited to and widely
used for embarrassingly parallel master-worker appli-
cations. Furthermore parallelization at the individual
level is popular in practice because it is easy to im-
plement and does not require any modification of the
evolutionary algorithm [3, 46, 47].

The server, or “master”, is in charge of running
the main algorithm and manages the whole popula-
tion. It sends non evaluated individuals to different
processes, the “workers,” that are running on hosts
in the distributed system. This model is effective as
the most expensive and time-consuming operation of
the application is typically the individual evaluation
phase. The master waits until all individuals in gen-
eration n are evaluated before generating individuals
for generation n + 1. In this scenario, the following
failures may occur:

• A crash failure – The master crashes and the
whole execution fails. This is the worst case.

• An omission failure – One or more workers do
not receive the individuals to be evaluated, or
the master does not receive the evaluated indi-
viduals.

• A transient failure – A power surge or lighting
affects the master or worker program, stopping
or affecting the execution.

• A software failure – The code has a bug and the

4

execution is stopped either on the master or on
the worker(s).

We make the following assumptions: (i) we con-
sider all the possible failures that can occur during
the transmission and reception of individuals between
the master and each worker, but we assume that all
software is bug-free and that there are no transient
failures; (ii) the master is always in a safe state and
there is no need for master fault tolerance (unlike
for the workers, which are untrusted computing pro-
cesses). This second assumption is justified because
the master is under a single organization/person’s
control, and, besides, known fault tolerance tech-
niques (e.g., primary backup [29]) could easily be
used to tolerate master failures.

Our system only suffers from omission failures:
(i) the master sends N > 0 individuals to a worker,
and the worker never receives them (e.g., due to net-
work transmission problems); or (ii) the master sends
N > 0 individuals to a worker, the worker receives
them but never returns them (e.g., due to a worker
crash or to network transmission problems).

3.2. Fault-Tolerant and Non-Fault-Tolerant Strate-
gies

Since our objective in this work is to study the
implicit fault-tolerant nature of the PGP paradigm,
we need to perform comparison with the use of a
reasonable and explicit fault-tolerant strategy. In the
master-worker scheme, four typical approaches can
be applied to cope with failures:

1. Restart the computation from scratch on an-
other host after a failure.

2. Checkpoint locally (with some overhead) and
restart the computation on the same host from
the latest checkpoint after a failure.

3. Checkpoint on a checkpointing server (with more
overhead) and move to another host after a fail-
ure, restarting the computation from the last
checkpoint.

4. Use task replication by sending the same individ-
ual to two or more hosts, each of them perform-
ing either 1, 2, or perhaps even 3 above. The
hope is that one of the replicas will finish early,
possibly without any failure.

Based on the analysis in Section 2 of existing PEA
frameworks that are relevant in the context of DGs,
namely ECJ and Distributed Beagle, the common
technique to cope with failures is the first one: re-
send lost individuals after detecting the failure. The
advantage of this technique is that it is low overhead,
very simple to implement, and reasonably effective.
More specifically, its modus-operandi is as follows:

1. After assigning individuals to workers, the mas-
ter waits at most T time-units per generation. If
all individuals have been computed by workers
before T time-units have elapsed, then the mas-
ter computes fitness values, updates the popula-
tion, and proceeds with the next generation.

2. If after T time-units some individuals have not
been evaluated, then the master assumes that
workers have failed or are simply so slow that
they may not be useful to the application. In
this case:

(a) individuals that have not been evaluated
are resent for evaluation to available work-
ers, and the master waits for another T
time-units for these individuals to be eval-
uated.

(b) If there are not enough available workers to
evaluate all unevaluated individuals, then
the master proceeds in multiple phases of
duration T . For instance, if after the ini-
tial period of T time-units there remain 5
unevaluated individuals and there remain
only 2 available workers, the master will use
⌈ 5

2⌉ = 3 phases (assuming that all future
individual evaluations are successful).

This method provides a simple fault-tolerant mecha-
nism for handling worker failures as well as slow work-
ers, which is a common problem in DGs due to high
levels of host heterogeneity [7, 13, 50]. For the sake of
simplicity, we make the assumption that individuals
that are lost and resent for evaluation to new workers
are always evaluated successfully. This is unrealistic
since future failures could lead to many phases of re-
sends. However, this assumption represents a best-
case scenario for the fault-tolerant strategy. The dif-
ference between the failure-free and the failure-prone

5

case is the extra time due to resending individuals.
In the failure-free case, with G generations, the exe-
cution time should be Texecutiontime = G × T , while
in a failure-prone case it will be higher.

By contrast with this fault-tolerant mechanism,
we propose a simple non-fault-tolerant approach
that consists in ignoring lost individuals, consider-
ing their loss just a kind of dynamic population fea-
ture [39, 40, 41, 42]. In this approach the master does
not attempt to detect failures and no fault tolerance
technique is used. The master waits a time T per
generation, and proceeds to the next generation with
the available individuals at that time, likely losing
individuals at each generation. The hope is that the
loss of individuals is not (significantly) detrimental
to the achieved, while the overhead of resending lost
individuals for recomputation is not incurred.

4. Experimental Methodology

We rely on simulation experiments. Simulation al-
lows us to perform a statistically significant number
of experiments in a wide range of realistic scenarios.
Most importantly, our experiments are repeatable,
via “replaying” host availability trace data collected
from real-world DG platforms [49], so that fair com-
parison between simulated application executions is
possible.

4.1. Application and Failure Model

We perform experiments for two well-known GP
problems, even parity 5 (EP5) and 11-multiplexer
(11M) [51]. The EP5 problem tries to build a pro-
gram capable of calculating the parity of a set of 5
bits, while the 11M problem consists in learning the
boolean 11-multiplexer function. All the GP param-
eters, including population sizes, are Koza-I/II stan-
dard [51]. See Table 1 for all details. For both prob-
lems, fitness is measured as the error in the obtained
solution, with zero meaning that a perfect solution
has been found. Even if the required time for fit-
ness evaluation for the problems at hand is short,
we simulate larger evaluation times representative of
difficult real-world problems (so that 51 generations,
the maximum, correspond to approximately 5 hours
of computation in a platform without any failures).

Table 1: Parameters of selected problems.

EP5 11M
Population 4000 4000
Generations 51 51
Elitism Yes Yes
Crossover Probability 0.90 0.90
Reproduction Probability 0.10 0.10
Selection: Tournament 7 7
Max Depth in Cross 17 17
Max Depth in Mutation 17 17
ADFs Yes -

Two kind of experiments are performed: (i) for the
failure-free case, i.e., assuming that no worker fail-
ures occur; and (ii) replaying and simulating failures
traces from real-world DGs. In the failure-free case
the amount of available computing power is steady
throughput execution, while in a real-world environ-
ment it varies between generations.

The simulation of host availability in the DG is per-
formed based on three real-world traces of host avail-
ability that were measured and reported in [49]: ucb,
entrfin, and xwtr. These traces are time-stamped ob-
servations of the host availability in three DGs. The
ucb trace was collected for 85 hosts in a graduate stu-
dent lab in the EE/CS Department at UC Berkeley
for about 1.5 months. The entrfin trace was collected
for 275 hosts at the San Diego Supercomputer Cen-
ter for about 1 month. The xwtr trace was collected
for 100 hosts at the Université Paris-Sud for about 1
month. See [49] for full details on the measurement
methods and the traces, and Tab. 2 for a summary
of its main features.

Table 2: Features of Desktop Grid Traces

Trace Hosts Time in months Place
entrfin 275 1 SD Supercomputer Center
ucb 85 1.5 UC Berkeley
xwtr 100 1 Université Paris-Sud

6

Figure 1 shows example availability data from the
ucb trace: the number of available hosts in the plat-
form versus time over 24 hours. The figure shows
the typical churn phenomenon, with available hosts
becoming unavailable and later becoming available
again. We performed our experiments over such 24-
hour segments of our availability traces.

4.2. Determining T

Recall that in the approaches described in Sec-
tion 3.2, the master waits a time T before declaring
that individuals have been lost. T is a common pa-
rameter of DGs middlewares like BOINC [7]. The T
parameter is used both to distinguish between slow
and fast hosts and to detect host failures. Thus, it is
recommended to estimate how much time would be
needed on average to run an application on a typi-
cal host. This estimation is commonly carried out by
GP researchers, when they are faced with complex
and open problems. Furthermore, as several GP pa-
rameters (population size, generations, probability of
crossover, probability of mutation, selection method,
etc.) must be tuned, a common practice is to make
some preliminary runs of the algorithm trying dif-
ferent values, in order to find out good values for
the parameter set [51, 52]. As a result, the GP re-
searcher will have an estimation of individual eval-
uation times, through which T can be determined.
Additionally, DG systems are often designed to send
jobs to hosts that are likely to finish them before a
specified deadline, in this case T , like in BOINC [50].

4.3. No Churn vs. Churn

We use two different scenarios when simulating
host failures based on trace data. In the first sce-
nario a stringent assumption is used: hosts that be-
come unavailable never become available again. An
example of the number of hosts throughout time for
this scenario is shown in Figure 1, as the curve “trace
without return.” For this scenario, we arbitrarily
select the time within each 24-hour segment with
the largest number of available hosts as the begin-
ning of application execution. In the second scenario
hosts can become available again after a failure and
reused by the application. This phenomenon is called

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

C
o
m

p
u
te

rs

Time Step
Original Trace Trace without return

Figure 1: Host availability for 1 day of the ucb trace.

“churn,” and is typical of what is implemented in
real-world DG systems. For this scenario, applica-
tion execution starts at an arbitrary time in the seg-
ment. Note that in the first “no churn scenario,”
population size (i.e., the number of individuals) be-
comes progressively smaller as the application makes
progress, while population size may fluctuates in the
“churn scenario.”

4.4. Distribution of Individuals to Workers

At the onset of each generation the master sends
as equal as possible numbers of individuals to each
worker. This is because the master assumes homo-
geneous workers and thus strives for perfect load-
balancing. We call this number I. Thus, if a worker
does not return individual evaluations before time T ,
then those I individuals are considered lost. In the
fault-tolerant approach in Section 3.2, such individ-
uals are simply resent to other workers. In our non-
fault-tolerant approach, these individuals are simply
lost and do not participate in the subsequent gener-
ations.

Note that for our non-fault-tolerant approach the
execution time per generation in the failure-free and
the failure-prone case are identical: with P individ-
uals to be evaluated at a given generation and W
workers, the master sends I = P/W individuals to
each worker. When a worker fails I individuals are

7

lost. Given that these individuals are discarded for
the next generation and that the initial population
size is never exceeded by new extra individuals, the
remaining workers will continue evaluating I indi-
viduals each, regardless of the number of failures or
newly available hosts.

Regardless of the approach in use, if there is host
churn then population size can be increased through-
out application execution due to newly available
hosts. We impose the restriction that the master
never overcomes the specified population size (see Ta-
ble 1). This may leave some workers idle in case a
large number of workers become available. In this
case, it would be interesting to re-adjust the number
I of individuals sent to each worker so as to utilize all
the available workers. We leave such load-balancing
study outside the scope of this work and maintain I
constant.

In the churn scenario, one important question is:
what work is assigned to newly available workers?
When a new worker appears, the master simply cre-
ates I new random individuals and increases the pop-
ulation size accordingly (provided it remains below
the initial population size). These new individuals
are sent to the new worker. Note that when there
are no available workers at all, the master loses all its
individuals except the best one thanks to the elitism
parameter (see Table 1). The master then proceeds
to the next generation by waiting the specified time
T for newly available workers.

In the churn scenario, or in the non-churn scenario
using a non-fault-tolerant approach, population size
can change dynamically as individuals are added or
lost. Recall that dynamic population variation has
been applied to sequential versions of EAs [39, 41, 42].
In those studies (except [41] where Luke et al. only
reduce the population size like in our non-churn sce-
nario), a pivot function is applied to control the
stagnation of fitness and act accordingly by remov-
ing/adding individuals from/to the population. By
contrast, in our case population size changes without
any consideration for fitness quality.

4.5. Experimental Procedure

We have performed a statistical analysis of our re-
sults based on 100 trials for each experiment, ac-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50

 0

 25

 50

 75

 100

In
d
iv

id
u
al

s

%
 o

f
L

o
ss

Generations
entrfin 1
entrfin 2

ucb 1
ucb 2

xwtr 1
xwtr 2

Figure 2: Population size vs. generation.

counting for the fact that different individuals can
be lost depending on which individuals were assigned
to which hosts. We have analyzed the normality
of the results using the Kolgomorov-Smirnov and
Shapiro-Wilk tests, finding out that all results are
non-normal. Therefore, to compare two samples, the
failure-free case with each trace (with and without
churn), we used the Wilcoxon test. Table 6 and 7
present the Wilcoxon analysis of the data. The fol-
lowing sections discuss these results in detail.

5. Experimental Results

5.1. Results without Churn

In this section we consider the scenario in which
hosts never become available again (no churn):
the number of individuals per generation is non-
increasing. Figure 2 shows the evolution of the num-
ber of individuals in each generation for the EP5 and
11M problems when simulated over two 24-hour peri-
ods, denoted by Day 1 and Day 2, randomly selected
out of each of three of our traces, entrfin, ucb, and
xwtr, for a total of 6 experiments.

Table 3 shows a summary of the obtained fitness for
the EP5 and 11M problems (two last columns) and
of the fraction of lost individuals by the end of ap-
plication execution. The first row of the table shows

8

fitness values assuming a failure-free case. The frac-
tion of lost individuals depends strongly on the trace
and on the day. For instance, the Day 1 period of
the entrfin trace exhibits on its 10 first generations a
severe loss of individuals (almost half); the ucb trace
on its Day 2 period loses almost the entire popula-
tion after 25 generations (96.15% loss); and the xwtr
exhibits more moderate losses, with overall 23.52%
and 12.08% loss after 51 generations for Day 1 and
Day 2, respectively.

Table 3: Obtained fitness for EP5 and 11M

EP5 11M
Trace Loss(%) Fitness Fitness

Error free 0.00 2.56 14.4
entrfin (Day 1) 48.02 3.58 30.36
entrfin (Day 2) 13.04 2.44 18.84

ucb (Day 1) 68.00 3.98 49.04
ucb (Day 2) 96.15 5.13 67.07
xwtr (Day 1) 23.52 2.78 20.92
xwtr (Day 2) 12.08 2.61 16.16

The broad conclusion from this table is that the
fitness values achieved by our non-fault-tolerant ap-
proach is not necessarily much worse than that in the
failure-free case. In some cases, however, it leads to
significantly worse fitness due to severe losses (e.g.,
for 11M and Day 2 of ucb).

An interesting question is the additional time that
would be required in case the fault-tolerant approach
described in Section 3 is used. While this approach
leads to the same fitness as the failure-free case, it
leads to longer execution times due to individuals
being resent upon a host failure. Therefore, the ex-
ecution time depends on host failures and on host
availability. By contrast, in our non-fault-tolerant
approach, the server waits T seconds for each gener-
ation, independently of failures and host availability.
Therefore, in all cases, the execution time is equal to
the number of generations multiplied by T .

Table 4 shows simulated execution times for both
approaches, as multiples of T , for all our traces.
Our non-fault-tolerant approach leads to an execu-
tion time equal to 51 × T . This fault-tolerant ap-
proach fails for three traces, for which the execution
time is shown as infinite in Table 4. In these cases,

no more hosts are available (recall that we are in the
non-churn scenario) and individuals still need to be
evaluated.

Given that the non-fault-tolerant approach
achieves acceptable fitness values in many cases,
these results provide a strong indication that using a
fault-tolerant approach is not worthwhile given the
dramatic increase in execution time. Nevertheless,
the cases in which our non-fault-tolerant approach
achieves fitness values significantly lower than those
in the failure-free case are a concern. In the next
section we discuss the results in Table 3 in more
depth for both EP5 and 11M, and propose a simple
technique to improve the fitness achieved by our
approach.

Table 4: Execution time of the fault-tolerant approach in terms
of T for the non-churn scenario. The non-fault-tolerant ap-
proach has an execution time equal to 51 × T .

Period entrfin ucb xwtr

Day 1 101 × T ∞ 95 × T

Day 2 100 × T ∞ ∞

5.1.1. Even Parity 5 (EP5)

The obtained fitness in the failure-free case is 2.56,
and it ranges from 2.44 to 5.13 for the failure-prone
cases (see Table 6 for statistical significance of re-
sults). The quality of the fitness depends on host
losses in each trace. The entrfin and ucb traces
present the most severe losses. The ucb trace ex-
hibits 68% losses for Day 1 and 96.15% for Day 2.
Therefore, the obtained fitness in these two cases are
the worst ones relatively to the failure-free fitness.
The entrfin trace exhibits 48.02% and 13.04% host
losses for Day 1 and Day 2, respectively. As with the
previous trace, when losses are too high, as in Day 1,
the quality of the solution is significantly worse than
that in the failure-free case; when losses are lower, as
in Day 2, the obtained fitness is not significantly far
from the failure-free case. Similarly, the xwtr trace
with losses under 25% leads to a fitness that it is not
significantly different from the failure-free case.

We conclude that, for the EP5 problem, it is pos-
sible to tolerate a gradual loss of up to 25% of the
individuals without sacrificing solution quality. This

9

is the case without using any fault tolerance tech-
nique. However, if the loss of individuals is too large,
above 50%, then solution quality is significantly di-
minished. Since real-world DGs do exhibit such high
failure rates when running PGP applications, we at-
tempt to remedy this problem. Our simple idea is to
increase the initial population size (in our case by 10,
20, 30, 40, or 50%). The goal is to compensate for
lost individuals by starting with a larger population.

Increasing population likely also affects the fitness
in the failure-free case. We simulated the EP5 prob-
lem in the failure-free case with a population size in-
creased by 10, 20, 30, 40 and 50%. Results are shown
in Figure 5.1.1(a), which plots the evolution of fitness
versus the “computing effort.” The computing effort
is defined as the total number of evaluated individ-
uals nodes so far (we must bear in mind that GP
individuals are variable size trees), i.e., from genera-
tion 1 to generation G, as described in [40]. We have
fixed a maximum computing effort which corresponds
to 51 generations and the population size introduced
by Koza [51], which is employed in this work. Fig-
ure 5.1.1(a) shows that population sizes M > 4, 000
for a similar effort obtain worse fitness values when
compared with the original M = 4, 000 population
size. Thus, for static populations, increasing the pop-
ulation size is not a good option, provided a judicious
population size is chosen to begin with. Nevertheless,
we content that such population increase could be ef-
fective in a failure-prone case.

Table 5: EP5 fitness with increased population

Error Free fitness = 2.56

Traces entrfin ucb xwtr entrfin ucb xwtr

+0% 3.58 3.98 2.78 2.44 5.13 2.61
+10% 3.52 3.75 2.40 2.65 5.21 2.66
+20% 3.01 3.61 2.32 2.29 4.68 2.42
+30% 3.13 3.33 2.46 2.36 4.50 2.33
+40% 2.80 3.35 2.15 2.01 4.71 1.96
+50% 2.85 3.17 2.13 1.92 4.47 2.24

Table 5 shows results for the increased initial pop-
ulation size, based on simulations for the Day 1 and
Day 2 periods of all three traces. Overall, increasing
the initial population size is an effective solution to
tolerate failures while preserving (and even improv-

ing!) solution quality. For instance, for the Day 1 pe-
riod of the entrfin trace, with host losses at 48.02%,
starting with 50% extra individuals ensures solution
quality on par with the failure-free case. Similar re-
sults are obtained for the entrfin and xwtr two peri-
ods. Furthermore, for the Day 2 period of traces en-
trfin and xwtr, adding 40% or 50% extra individuals
results in obtaining solutions of better quality than
in the failure-free case. However, the increase of the
initial population is not enough for the ucb trace as
its losses are as high as 96.15% and 68% for Day 1
and Day 2, respectively. Note that in these difficult
cases the fault-tolerant approach does not succeed at
all (see Table 4).

From these results we conclude that increasing the
initial population size is effective to maintain fitness
quality at the level of that in the failure-free case.
The fraction by which the population is increased is
directly correlated to the host loss rate. If an esti-
mation of this rate is known, for instance based on
historical trends, then the initial population size can
be chosen accordingly. Also, one must keep in mind
that an increased population size implies longer exe-
cution time for each generation since more individuals
must be evaluated.

5.1.2. 11 Bits Multiplexer (11M)

For the 11M problem the failure-free fitness is
14.40, while it ranges from 16.16 to 67.07 for the
failure-prone cases (see Table 3). As for the EP5
problem, and for the same reason, the worst fitness
is obtained by the ucb trace in both periods. The
traces with host losses under 25% obtain solutions
not significantly different from the failure-free case.
Table 7 shows a summary of the results and of their
statistical significance.

Figure 5.1.1(b) is similar to Figure 5.1.1(a), but
shows fitness versus computational effort for the 11M
problem. The conclusion is the same as for the EP5
problem: increasing the population size beyond a ju-
diciously chosen population size is not a good option
in the failure-free case. Table 8 shows fitness values
for the entrfin, ucb and xwtr traces with increased
population sizes. The conclusion is the same as for
the EP5 problem, namely that increasing population
size is an effective way to cope with lost individuals.

10

Table 6: EP5 fitness comparison between failure-prone and failure-free cases using Wilcoxon test (Day 1 and 2) – “not
significantly different” means fitness quality comparable to the failure-free case.

Error Free fitness = 2.56

Trace Fitness
Wilcoxon Significantly

Fitness
Wilcoxon Significantly

Test different? Test different?

D
a
y

1

entrfin 3.58 W = 6726, p-value = 1.843e-05 yes

D
a
y

2

2.44 W = 4778.5, p-value = 0.5815 no

entrfin 10% 3.52 W = 6685, p-value = 2.707e-05 yes 2.65 W = 5201.5, p-value = 0.6167 no

entrfin 20% 3.01 W = 5760, p-value = 0.05956 yes 2.29 W = 4571, p-value = 0.2863 no

entrfin 30% 3.13 W = 5942.5, p-value = 0.01941 yes 2.36 W = 4732.5, p-value = 0.505 no

entrfin 40% 2.80 W = 5355, p-value = 0.3773 no 2.01 W = 4098, p-value = 0.02458 yes

entrfin 50% 2.85 W = 5620, p-value = 0.1233 no 1.92 W = 3994.5, p-value = 0.01213 yes

ucb 3.98 W = 7274, p-value = 1.789e-08 yes 5.13 W = 8735.5, p-value < 2.2e-16 yes

ucb 10% 3.75 W = 6927.5, p-value = 1.799e-06 yes 5.21 W = 8735.5, p-value < 2.2e-16 yes
ucb 20% 3.61 W = 6769, p-value = 1.123e-05 yes 4.68 W = 8266.5, p-value = 6.661e-16 yes

ucb 30% 3.33 W = 6390, p-value = 0.0005542 yes 4.50 W = 8152, p-value = 6.439e-15 yes

ucb 40% 3.35 W = 6408, p-value = 0.000464 yes 4.71 W = 8325.5, p-value = 2.220e-16 yes

ucb 50% 3.17 W = 6080, p-value = 0.007298 yes 4.47 W = 8024.5, p-value = 6.95e-14 yes

xwtr 2.78 W = 5509, p-value = 0.2043 no 2.61 W = 5238.5, p-value = 0.5524 no

xwtr 10% 2.40 W = 4762, p-value = 0.5532 no 2.66 W = 5215.5, p-value = 0.5927 no

xwtr 20% 2.32 W = 4643.5, p-value = 0.3753 no 2.42 W = 4686.5, p-value = 0.4364 no

xwtr 30% 2.46 W = 4802, p-value = 0.6221 no 2.33 W = 4611.5, p-value = 0.3336 no

xwtr 40% 2.15 W = 4363, p-value = 0.1121 no 1.96 W = 4033.5, p-value = 0.01574 yes

xwtr 50% 2.13 W = 4296.5, p-value = 0.08027 no 2.24 W = 4511, p-value = 0.2226 no

Results with Host Churn

entrfin 2.86 W = 5513.5, p-value=0.2012 no 2.75 W = 5404.5, p-value = 0.3142 no

ucb 8.87 W = 9997, p-value = 2.2e-16 yes 5.89 W = 9645, p-value < 2.2e-16 yes

xwtr 2.56 W = 4940, p-value = 08823 no 2.52 W = 5035, p-value = 0.9315 no

Table 7: 11M fitness comparison between failure-prone and failure-free cases using Wilcoxon test (Day 1 and 2) – “not
significantly different” means fitness quality comparable to the failure-free case.

Error Free fitness = 14.40

Trace Fitness
Wilcoxon Significantly

Fitness
Wilcoxon Significantly

Test different? Test different?

D
a
y

1

entrfin 30.36 W = 5858, p-value = 0.003781 yes

D
a
y

2

18.84 W = 5282.5, p-value = 0.2797 no

entrfin 10% 28.23 W = 5558.5, p-value = 0.04374 yes 14.36 W = 5077.5, p-value = 0.755 no

entrfin 20% 26.20 W = 5592, p-value = 0.03438 yes 10.40 W = 4881.5, p-value = 0.6093 no

entrfin 30% 22.98 W = 5470, p-value = 0.08639 no 10.40 W = 4923.5, p-value = 0.7464 no

entrfin 40% 8.88 W = 4866, p-value = 0.5631 no 1.92 W = 4485, p-value = 0.00752 yes

entrfin 50% 10.08 W = 4761.5, p-value = 0.2740 no 1.92 W = 4447, p-value = 0.003106 yes

ucb 49.04 W = 6413.5, p-value = 9.58e-06 yes 67.07 W = 7182, p-value = 2.870e-10 yes

ucb 10% 47.44 W = 6288, p-value = 4.426e-05 yes 73.76 W = 7516.5, p-value = 1.436e-12 yes
ucb 20% 35.24 W = 5934, p-value = 0.001779 yes 49.44 W = 6805.5, p-value = 7.762e-08 yes

ucb 30% 39.20 W = 6306.5, p-value = 3.755e-05 yes 54.98 W = 7009, p-value = 4.39e-09 yes

ucb 40% 23.09 W = 5483, p-value = 0.07804 no 46.80 W = 6478.5, p-value = 4.842e-06 yes

ucb 50% 25.20 W = 5696.5, p-value = 0.01573 yes 50.78 W = 6758, p-value = 1.449e-07 yes

xwtr 20.92 W = 5419, p-value = 0.1222 no 16.16 W = 5098, p-value = 0.6926 no

xwtr 10% 15.36 W = 5120.5, p-value = 0.6318 no 10.56 W = 4923.5, p-value = 0.7464 no

xwtr 20% 8.64 W = 4752.5, p-value = 0.2565 no 8.62 W = 4788.5, p-value = 0.3423 no

xwtr 30% 6.8 W = 4730.5, p-value = 0.2165 no 5.76 W = 4645, p-value = 0.08845 no

xwtr 40% 5.12 W = 4676, p-value = 0.1288 no 1.2 W = 4438.5, p-value = 0.002680 yes

xwtr 50% 10.32 W = 4844.5, p-value = 0.4939 no 1.6 W = 4483.5, p-value = 0.007348 yes

Results with Host Churn

entrfin 21.86 W = 5473, p-value = 0.08428 no 13.2 W = 5030.5, p-value = 0.9017 no

ucb 341.74 W = 10000, p-value < 2.2e-16 yes 85.16 W = 7985.5, p-value = 4.441e-16 yes

xwtr 11.98 W = 4970, p-value = 0.9018 no 11.36 W = 4898, p-value = 0.66 no

11

 2

 4

 6

 8

 10

 12

 14

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

F
it

n
es

s

Effort

M=4000
M=4400 (+10%)
M=4800 (+20%)
M=5200 (+30%)
M=5600 (+40%)
M=6000 (+50%)

(a) EP5

 0

 100

 200

 300

 400

 500

 600

 700

 0 100000 200000 300000 400000 500000 600000 700000

F
it

n
es

s

Effort

M=4000
M=4400 (+10%)
M=4800 (+20%)
M=5200 (+30%)
M=5600 (+40%)
M=6000 (+50%)

(b) 11M

Figure 3: Fitness vs. Effort with increased population for failure-free experiments

Here again, 50% extra individuals for the ucb trace is
not enough to fully compensate for its dramatic host
failure rate. In some cases the achieve fitness is bet-
ter than that in the failure-free case (e.g., Day 2 of
the xwtr trace with 40% or 50% extra individuals).

Table 8: 11M fitness with increased population

Error Free fitness = 14.40

Traces entrfin ucb xwtr entrfin ucb xwtr

+0% 30.36 49.04 20.92 18.84 67.07 16.16
+10% 28.23 47.44 15.36 14.36 73.76 10.56
+20% 26.20 35.24 8.64 10.40 49.44 8.62
+30% 22.98 39.20 6.8 10.40 54.98 5.76
+40% 8.88 23.09 5.12 1.92 46.80 1.2
+50% 10.08 25.20 10.32 1.92 50.78 1.6

In summary, for both the EP5 and the 11M
problem, we have demonstrated that our non-fault-
tolerant approach is preferable to a fault-tolerant ap-
proach. Further, unless host failure rates are ex-
tremely high, it can achieved good fitness thanks to a
simple initial population increase. These results were
obtained in the non-churn scenario, and in the next
section we turn our attention to the, arguably, more
realistic scenario in which there is churn.

5.2. Results with Churn

In this section we present results for the case in
which hosts can become available again after becom-
ing unavailable, leading to churn. Recall from the
discussion at the beginning of Section 4.4 that the
population size is capped at 4,000 individuals (ac-
cording to Table 1) and that each worker is assigned
I individuals. Such individuals are randomly gener-
ated by the master when assigned to a newly available
worker.

Table 9: Execution time of the fault-tolerant approach in terms
of T for the churn scenario. The non-fault-tolerant approach
has an execution time equal to 51× T .

Period entrfin ucb xwtr

Day 1 101 × T 165 × T 53 × T

Day 2 67 × T 154 × T 51 × T

Let us first compare the execution time of our non-
fault-tolerant approach to that of the fault-tolerant
one presented in Section 3. Table 9 shows execu-
tion times as multiples of T . Like in the non-churn
case, and for the same reasons, the fault-tolerant
approach leads to larger execution times than the
non-fault-tolerant one. Unlike in the non-churn case,
however, the fault-tolerant approach always succeeds
since hosts come back after a failure. For the entrfin
and ucb traces, the fault-tolerant approach takes sig-
nificantly (up to a factor 3) longer to execute than our

12

non-fault-tolerant one. For the xwtr trace, the dif-
ference is insignificant because the host failure rate
is low. Recall that the estimation of the execution
time for the fault-tolerant approach is optimistic as
we have assumed that an individual experiences at
most one host failure. In practice, this is clearly not
true and the execution times would likely be larger.
In the next sections we discuss fitness results for the
EP5 and the 11M problems.

5.2.1. Even Parity 5 (EP5)

Table 10 shows the obtained fitness for the EP5
problem on all traces. It also shows the host churn
represented by the minimum, median, mean, maxi-
mum, and variance of the number of available hosts
during application execution. Among all the traces,
the ucb trace is the worst possible scenario as it has
very few available hosts. This prevents the master
from sending individuals to workers, both in Day 1
and Day 2, leading to poor fitness values. For the
entrfin and xwtr traces, both for Day 1 and Day 2,
the obtained fitness value is comparable to that in
the failure-free case (see Table 6 for statistical signif-
icance).

If the variance of the number of available hosts for
a trace is zero, then the trace is equivalent to the
failure-free case, as the hosts do not experience any
failure. The obtained fitness should then be similar
to that in the failure-free case.

The xwtr trace, Day 2, exhibits such zero variance,
and indeed the obtained fitness value is similar to that
in the failure-free case (see Table 10). The variance of
the xwtr trace, Day 1, is low at 0.07, and the obtained
fitness is again on par with that in the failure-free
case. The entrfin trace, Day 1, exhibits the largest
variance. Nevertheless, the obtained fitness is bet-
ter than that of its counterpart in the non-churn sce-
nario, and similar to that in the failure-free case. This
shows that re-acquiring hosts is, expectedly, benefi-
cial. Finally the ucb trace leads to the worst fitness
values despite its low variability (see Table 10). The
reason is a low maximum number of available hosts (9
and 7 for Day 1 and Day 2, respectively), and many
periods during which no hosts were available at all
(in which case the master loses the entire population
except for the best individual). As a result, it is very

difficult to obtain solutions comparable to those in
the failure-free case.

5.2.2. 11 Bits Multiplexer (11M)

Results for 11M are shown in Table 10 and Table 7
and are essentially the same as those for EP5 for the
same reasons. The obtained fitness for the entrfin
and xwtr traces is similar to that in the failure-free
case, while the ucb trace has the worst fitness due
to low host availability. In the case of the entrfin
trace, Day 1 period, the obtained fitness is better
than in the non-churn case. This suggests that re-
using hosts that became available again is effective
when compared to the case in which one starts with
a large number of hosts but loses hosts forever once
they become unavailable, even if the trace exhibits a
large variance (see entrfin, Day 1, in Table 10). The
entrfin, Day 2, trace and xwtr, Day 1 and Day 2,
traces have the lowest variance and the number of
available hosts is always greater than zero along the
generations. Therefore, the obtained fitness for these
cases is comparable to that in the failure-free case
(see Table 7 for statistical significance).

5.3. Summary of Results

Based on two standard applications, EP5 and 11M,
we have shown that PGP applications based on the
master-worker model running on DGs that exhibit
host failures can achieve solution qualities close to
those in the failure-free case, without resorting to any
fault tolerance technique. Two scenarios were tested:
(i) the scenario in which lost hosts never come back
but in which one starts with a large number of hosts;
and (ii) the scenario in which hosts can re-appear dur-
ing application execution. For scenario (i) we found
that there is an approximately linear degradation of
solution quality as host losses increase. This degrada-
tion can be alleviated by increasing initial population
size. For scenario (ii) the degradation varies during
application execution as the number of workers fluc-
tuates. The main observation is that in both cases
we have graceful degradation.

This result is coherent with previous theoretical
studies in GP: the replication and diffusion of com-
ponents of the solution – schemas – in the GP popu-
lation [53, 54, 55], as well as the convergence towards

13

Table 10: Obtained fitness for EP5 and 11M with host churn

Trace Hosts Fitness

Min. Median Mean Max. Var. (s2) EP5 11M
Error free - - - - - 2.56 14.4
entrfin (Day 1) 92 160 157.50 177 179.33 2.86 21.86
entrfin (Day 2) 180 181 181.30 183 0.75 2.75 13.20
ucb (Day 1) 0 1 1.51 9 2.21 8.87 341.74
ucb (Day 2) 0 2 2.57 7 4.29 5.89 85.16
xwtr (Day 1) 28 29 28.92 29 0.07 2.56 11.98
xwtr (Day 2) 86 86 86 86 0 2.52 11.36

a global solution. Thus, the inherent fault tolerance
features of distributed GP systems may have its ori-
gins in how schemas are propagated from one gener-
ation to the next one as described by Langdon et al.
in [53] and Poli et al. in [54, 55]: even when some in-
dividuals are lost, the population includes duplicated
information that may be used along generations.

Finally, our results show the similarity between the
inherent volatility of hosts in DGs and dynamic pop-
ulation variation techniques. The main difference is
that in DGs it is not necessary to use a pivot func-
tion [39, 42] to achieve dynamic populations. In fact,
combining such dynamic variations techniques with
the host volatility of DGs could be interesting.

6. Conclusions

In this paper we have analyzed the behavior of
Parallel Genetic Programming (PGP) applications
executing in distributed platforms with high failure
rates, with the goal of characterizing the inherent
fault tolerance capabilities of the PGP paradigm. We
have used two well-known GP problems and, to the
best of our knowledge, for the first time in this con-
text we have used host availability traces collected on
real-world Desktop Grid (DG) platforms.

Our main conclusion is that PGP inherently pro-
vides graceful degradation without the need for fault
tolerance techniques.

We have presented a simple method for tolerating
high host losses, which consists of increasing the ini-
tial population size. Additionally, results have shown
that DGs are the kind of platforms where dynamic
population variation techniques should be employed;

and that GP schema duplication and propagation in
the population –studied by the GP schema theory–
may be the origin of the inherent fault-tolerance na-
ture of GP: individuals can be lost, but their genetic
material may be still be present in the remaining in-
dividuals in the population.

To the best of our knowledge, this is the first time
that PGP is characterized from a fault-tolerance per-
spective. We contend that our conclusions can be ex-
tended to Parallel Evolutionary Algorithms (PEAs)
via similar experimental validation. An extension of
this work would be to plan to conduct such valida-
tion. Another promising direction is a study of load-
balancing techniques for exploiting all available hosts,
and of dynamic population variation methods applied
in addition to the dynamics of host failures.

7. Acknowledgments

This work was supported by University of Ex-
tremadura, regional government Junta de Ex-
tremadura, National Nohnes project TIN2007-68083-
C02-01 Spanish Ministry of Science and Education
and by the U.S. National Science Foundation under
Award #0546688.

References

[1] F. Fernandez, G. Spezzano, M. Tomassini,
L. Vanneschi, Parallel Genetic Programming, in:
E. Alba (Ed.), Parallel Metaheuristics, Parallel
and Distributed Computing, Wiley-Interscience,
Hoboken, New Jersey, USA, 2005, Ch. 6, pp.
127–153.

14

[2] M. Tomassini, Spatially Structured Evolution-
ary Algorithms, Springer, 2005.

[3] E. Cantu-Paz, A survey of parallel genetic algo-
rithms, Calculateurs Paralleles, Reseaux et Sys-
tems Repartis 10 (2) (1998) 141–171.

[4] A. Baratloo, P. Dasgupta, Z. Kedem, CA-
LYPSO: a novel software system for fault-
tolerant parallel processing on distributed plat-
forms, in: Proc. of the Fourth IEEE Interna-
tional Symposium on High Performance Dis-
tributed Computing, 1995.

[5] G. Folino, C. Pizzuti, G. Spezzano, CAGE: A
tool for parallel genetic programming applica-
tions, in: J. F. M. et. al. (Ed.), Genetic Program-
ming, Proceedings of EuroGP’2001, Vol. 2038 of
LNCS, Springer-Verlag, Lake Como, Italy, 2001,
pp. 64–73.

[6] Top 500 Supercomputer Sites, http://www.

top500.org/ (2009).

[7] D. Anderson, Boinc: a system for public-
resource computing and storage, in: Grid Com-
puting, 2004. Proceedings. Fifth IEEE/ACM In-
ternational Workshop on, 2004, pp. 4–10.

[8] D. P. Anderson, J. Cobb, E. Korpela, M. Lebof-
sky, D. Werthimer, Seti@home: an experiment
in public-resource computing, Commun. ACM
45 (11) (2002) 56–61.

[9] D. Kondo, G. Fedak, F. Cappello, A. A. Chien,
H. Casanova, Resource Availability in Enterprise
Desktop Grids, Journal of Future Generation
Computer Systems 23 (7) (2007) 888–903.

[10] B. Schroeder, G. A. Gibson, A Large-Scale
Study of Failures in High-Performance Comput-
ing Systems, in: Proc. of the International Con-
ference on Dependable Systems, 2006, pp. 249–
258.

[11] F. C. Gartner, Fundamentals of fault-tolerant
distributed computing in asynchronous environ-
ments, ACM Computing Surveys 31 (1) (1999)
1–26.

[12] M. L. Douglas Thain, The Grid 2, Morgan Kauf-
mann, 2004, Ch. 19, pp. 285–318.

[13] S. Ghosh, Distributed systems: an algorithmic
approach, Chapman & Hall/CRC, 2006.

[14] C. Coti, T. Herault, P. Lemarinier, L. Pilard,
A. Rezmerita, E. Rodriguez, F. Cappello, Block-
ing vs. Non-Blocking Coordinated Checkpoint-
ing for Large-Scale Fault Tolerant MPI, in:
Proc. of the ACM/IEEE SC Conference, 2006.

[15] G. Fagg, E. Gabriel, G. Bosilca, T. Angskun,
Z. Chen, J. Pjesivac-Grbovic, K. London,
J. Dongarra, Extending the MPI Specification
for Process Fault Tolerance on High Perfor-
mance Computing Systems, in: Proc. of the In-
ternational Supercomputer Conference, 2004.

[16] J. Pruyne, M. Livny, Managing checkpoints for
parallel programs, in: Workshop on Job Schedul-
ing Strategies for Parallel Processing (IPPS ’96),
Honolulu, HI, 1996.

[17] D. Lombraña, F. Fernández, L. Trujillo,
G. Olague, B. Segal, Customizable execution en-
vironments with virtual desktop grid computing,
Parallel and Distributed Computing and Sys-
tems, PDCS.

[18] D. Lombraña, F. Fernández, Analyzing fault
tolerance on parallel genetic programming by
means of dynamic-size populations, in: Congress
on Evolutionary Computation, Vol. 1, Singa-
pore, 2007, pp. 4392 – 4398.

[19] I. Hidalgo, F. Fernández, J. Lanchares, D. Lom-
braña, Is the island model fault tolerant?, in:
Genetic and Evolutionary Computation Confer-
ence, Vol. 2, London, England, 2007, p. 1519.

[20] D. L. González, F. F. de Vega, H. Casanova,
Characterizing fault tolerance in genetic pro-
gramming, in: Workshop on Bio-Inspired Al-
gorithms for Distributed Systems, Barcelona,
Spain, 2009, pp. 1–10.

[21] L. Trujillo, G. Olague, Automated Design of
Image Operators that Detect Interest Points,
Vol. 16, MIT Press, 2008, pp. 483–507.

15

[22] D. Andre, J. R. Koza, Parallel genetic program-
ming: a scalable implementation using the trans-
puter network architecture (1996) 317–337.

[23] C. Gagné, M. Parizeau, M. Dubreuil, Dis-
tributed beagle: An environment for parallel and
distributed evolutionary computations, in: Proc.
of the 17th Annual International Symposium on
High Performance Computing Systems and Ap-
plications (HPCS) 2003, 2003, pp. 201–208.

[24] N. Melab, S. Cahon, E.-G. Talbi, Grid comput-
ing for parallel bioinspired algorithms, J. Paral-
lel Distrib. Comput. 66 (8) (2006) 1052–1061.

[25] D. Reed, C. Lu, C. Mendes, Reliability chal-
lenges in large systems, Future Generation Com-
puter Systems 22 (3) (2006) 293–302.

[26] M. Shooman, Reliability of computer systems
and networks: fault tolerance, analysis and de-
sign, Wiley-Interscience, 2002.

[27] E. Vargas, High availability fundamentals, Sun
Blueprints series.

[28] E. Elnozahy, L. Alvisi, Y. Wang, D. John-
son, A survey of rollback-recovery protocols in
message-passing systems, ACM Computing Sur-
veys (CSUR) 34 (3) (2002) 375–408.

[29] R. Guerraoui, A. Schiper, Software-Based Repli-
cation for Fault Tolerance, IEEE Computer
30 (4) (1997) 68–74.

[30] M. Jelasity, M. Preuß, M. van Steen,
B. Paechter, Maintaining connectivity in a
scalable and robust distributed environment,
in: H. E. Bal, K.-P. Löhr, A. Reinefeld (Eds.),
Proceedings of the Second IEEE/ACM Inter-
national Symposium on Cluster Computing
and the Grid (CCGrid2002), IEEE Computer
Society, Berlin, Germany, 2002, pp. 389–394,
2nd GP2PC workshop.

[31] A. Agbaria, R. Friedman, Starfish: Fault-
tolerant dynamic mpi programs on clusters of
workstations, in: HPDC ’99: Proceedings of
the The Eighth IEEE International Symposium

on High Performance Distributed Computing,
IEEE Computer Society, Washington, DC, USA,
1999, p. 31.

[32] A. T. Tai, K. S. Tso, A performability-oriented
software rejuvenation framework for distributed
applications, in: DSN ’05: Proceedings of the
2005 International Conference on Dependable
Systems and Networks (DSN’05), IEEE Com-
puter Society, Washington, DC, USA, 2005, pp.
570–579.

[33] S. L. et al., Ecj a java-based evolu-
tionary computation research system,
http://cs.gmu.edu/ eclab/projects/ecj/ (2007).

[34] S. Cahon, N. Melab, E. Talbi, Building with par-
adisEO reusable parallel and distributed evolu-
tionary algorithms, Parallel Computing 30 (5-6)
(2004) 677–697.

[35] M. Arenas, P. Collet, A. Eiben, M. Jelasity,
J. Merelo, B. Paechter, M. Preuß, M. Schoe-
nauer, A framework for distributed evolutionary
algorithms, Lecture Notes in Computer Science
(2003) 665–675.

[36] M. P. I. Forum, Mpi: a message-passing inter-
face standard, International Journal Supercom-
put. Applic. 8 (3–4) (1994) 165–414.

[37] V. S. Sunderam, Pvm: A framework for paral-
lel distributed computing, Concurrency: Prac-
tice and Experience 2 (1990) 315–339.

[38] J. Pruyne, M. Livny, Interfacing Condor and
PVM to harness the cycles of workstation clus-
ters, FGCS. Future generations computer sys-
tems 12 (1) (1996) 67–85.

[39] M. Tomassini, L. Vanneschi, J. Cuendet, F. Fer-
nandez, A new technique for dynamic size pop-
ulations in genetic programming, in: Evolution-
ary Computation, 2004. CEC2004. Congress on,
Vol. 1, 2004.

[40] L. V. F. Fernández, M. Tomassini, Saving com-
putational effort in genetic programming by
means of plagues, Evolutionary Computation,
2003. CEC ’03. The 2003 Congress on.

16

[41] S. Luke, G. Balan, L. Panait, Population implo-
sion in genetic programming, Lecture Notes in
Computer Science (2003) 1729–1739.

[42] P. Kouchakpour, A. Zaknich, T. Bräunl, Dy-
namic population variation in genetic program-
ming, Information Sciences 179 (8) (2009) 1078–
1091.

[43] P. Kouchakpour, A. Zaknich, T. Bräunl, Popu-
lation variation in genetic programming, Infor-
mation Sciences 177 (17) (2007) 3438–3452.

[44] F. F. de Vega, A fault tolerant optimization al-
gorithm based on evolutionary computation, in:
Proceedings of the International Conference on
Dependability of Computer Systems, 2006.

[45] F. Fernández, D. Lombraña, Algoritmos evo-
lutivos tolerantes a fallos en entornos de com-
putación distribuida, in: XVII Jornadas de Par-
alelismo, Vol. 1, Albacete, Spain, 2006, pp. 401–
406.

[46] M. Tomassini, Parallel and distributed evolu-
tionary algorithms: A review, in: P. N. K. Miet-
tinen, M.Mäkelä, J. Periaux (Eds.), Evolution-
ary Algorithms in Engineering and Computer
Science, J. Wiley and Sons, Chichester, 1999,
pp. 113,133.

[47] E. Alba, M. Tomassini, Parallelism and evolu-
tionary algorithms, Evolutionary Computation,
IEEE Transactions on 6 (5) (2002) 443–462.

[48] D. Kondo, M. Taufer, C. Brooks, H. Casanova,
A. Chien, Characterizing and evaluating desktop
grids: An empirical study, in: Proceedings of
the International Parallel and Distributed Pro-
cessing Symposium (IPDPS’04), Citeseer, 2004.

[49] D. Kondo, G. Fedak, F. Cappello, A. Chien,
H. Casanova, Characterizing resource availabil-
ity in enterprise desktop grids, Vol. 23, Elsevier,
2007, pp. 888–903.

[50] D. Anderson, G. Fedak, The Computational
and Storage Potential of Volunteer Computing,

Proceedings of the IEEE International Sympo-
sium on Cluster Computing and the Grid (CC-
GRID’06).

[51] J. R. Koza, Genetic Programming: On the Pro-
gramming of Computers by Means of Natural
Selection, MIT Press, Cambridge, MA, USA,
1992.

[52] W. Banzhaf, F. D. Francone, R. E. Keller,
P. Nordin, Genetic programming: an introduc-
tion: on the automatic evolution of computer
programs and its applications, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA,
1998.

[53] W. Langdon, R. Poli, Foundations of genetic
programming, Springer Verlag, 2002.

[54] R. Poli, N. McPhee, General schema theory
for genetic programming with subtree-swapping
crossover: Part I, Evolutionary Computation
11 (1) (2003) 53–66.

[55] R. Poli, N. McPhee, General schema theory
for genetic programming with subtree-swapping
crossover: Part II, Evolutionary Computation
11 (2) (2003) 169–206.

17

