
Multi-Round Algorithms for Scheduling

Divisible Loads

Yang Yang1 Henri Casanova1,2

1 Dep. of Computer Science and Engineering2 San Diego Supercomputer Center

University of California San Diego

Abstract

Divisible load applications occur in many fields of science and engineering, can be eas-

ily parallelized in a master-worker fashion, but pose several scheduling challenges. While a

number of approaches have been proposed that allocate work to workers in a single round,

using multiple rounds improves overlap of computation withcommunication. Unfortunately,

multi-round algorithms are difficult to analyze and have thus received only limited attention.

In this paper we answer three open questions in the multi-round divisible load scheduling

area: (i) How to account for latencies? (ii) How to account for heterogeneous platforms; and

(iii) How many rounds should be used? To answer (i), we derivethe first closed-form optimal

schedule for a homogeneous platform with both computation and communication latencies,

for a given number of rounds. To answer (ii) and (iii), we present a novel algorithm, UMR. We

use simulation to evaluate UMR in a variety of realistic scenarios.

Keywords: Parallel Processing, Scheduling, Divisible Loads, Multi-Round Algorithms.

1

1 Introduction

Assigning the tasks of a parallel application to distributed computing resources to minimize appli-

cation execution time, ormakespan, has been studied for a variety of application models, such as

the well-known directed acyclic task graph model. Another popular application model is that of

independent tasks with no task synchronizations and no inter-task communications, which, albeit

simple, arises in most fields of science and engineering. A possible model for independent tasks

is one for which the number of tasks and the task sizes, i.e. their computational costs, are set in

advance. In this case, the scheduling problem is akin to bin-packing and many heuristics have been

proposed in the literature (see [1] for a survey). Another flavor of the independent tasks model is

one in which the number of tasks and the task sizes can be chosen arbitrarily. This corresponds to

the case when the application consists of an amount of computation, orload, that can be arbitrarily

divided into any number of independent pieces, orchunks. In practice, this model is an approxi-

mation of an application that consists of large numbers of identical, low-granularity units of work.

Thisdivisible loadmodel arises in practice in many domains [2, 3, 4, 5, 6, 7, 8, 9,6] and has been

widely studied in the last several years [10, 11].

Divisible load applications are amenable to straightforward master-worker computing and can

thus be easily deployed on computing platforms ranging fromcommodity clusters to computa-

tional grids. However, efficient scheduling is challengingbecause of the overhead involved when

starting tasks. This overhead is due to: (i) the time to transfer application input/output data to/from

each compute resource; and (ii) the potential latencies involved when initiating a computation

or a communication. The scheduling problem is difficult whenthe application is neither fully

computation-intensive, nor fully communication-intensive. There are two types of approaches for

divisible load scheduling. First, one can divide the load inas many chunks as the number of pro-

cessors, and dispatch them in asingle roundof work allocation. This scheme is simple to design

and implement, but leads to poor overlap of communication and computation. The second possi-

bility is to dispatch the load inmultiple rounds; in each round each worker is allocated a chunk

2

of the load. While single-round approaches have been studied thoroughly (see [11] for a survey),

multi-round algorithms are significantly more difficult to analyze and fewer results are available.

The seminal “Multi-Installment” (MI) algorithm [12] is thefirst (and to the best of our knowl-

edge the only) multi-round algorithm that focuses on minimizing application makespan using mul-

tiple rounds to improve overlap of communication with computation. The MI approach provides

a closed-form solution for the scheduling problem, given a fixed number of rounds [13]. An

important limitation is that alinear cost modelis assumed, by which a chunk computation or

communication is assumed to take a time exactly proportional to the chunk size (that is the num-

ber of independent load units in the chunk). In other words, the MI approach does not consider

the latencies (i.e., start-up costs) that arise in all real-world platforms. In this paper, we focus

on minimizing application makespan using multiple rounds,but we consider anaffine cost model

that incorporates both communication and computation latencies. Although this model has been

used for single-round algorithms [14, 15, 16], it is an open question whether a closed-form multi-

round schedule can be developed with affine costs. Furthermore, the work in [12] is only for

homogeneous platforms, and it is also an open question to develop a multi-round algorithm that is

applicable to heterogeneous platforms.

With linear cost models, the more rounds the lower the application makespan, as noted in [13].

By contrast, with affine cost models there is a clear trade-off: dividing the load into small chunks

(i.e. many rounds) makes it possible to overlap communication with computation effectively, but

dividing the load into large chunks (i.e. few rounds) reduces the overhead due to latencies, and

thus the overall makespan. The implication is that there exists anoptimal number of roundsfor

multi-round scheduling. Determining this optimum is againan open question.

In this paper we address the above three open questions for multi-round divisible load schedul-

ing on platforms with a star topology. Our novel contributions are:

1. We obtain the first (to our knowledge) closed-form solution to the divisible load scheduling

problem on homogeneous star platforms with affine costs, which are more realistic than the

3

previously used linear costs.

2. We propose a new multi-round scheduling algorithm, UMR (Uniform Multi-Round), which

is applicable to heterogeneous platforms and computes a near-optimal number of rounds,

with affine costs. We use simulation to compare UMR with previously proposed algorithms

and demonstrate the benefits of our approach for wide ranges of scenarios.

This paper is organized as follows. In Section 2 we discuss relevant related work in detail. Sec-

tion 3 describes our models for the application and the computing platform. Section 4 presents our

closed-form solutions for multi-round divisible load scheduling on homogeneous platforms with

affine cost models. Section 5 presents the UMR algorithm, which is then evaluated via simulation

in Section 6. Finally, Section 7 concludes the paper and discusses future directions.

2 Related Work

Single-Round algorithms –Previous works on single-round algorithms defined recursion rela-

tions for chunk sizes that guarantee or approach an optimal schedule and that can be solved to

obtain a closed-form solution to the scheduling problem on trees [17], linear arrays [18], 3-D

mesh [19], or on hypercubes [20]. The asymptotic performance as the number of processors grows

to infinity was studied on linear networks [21, 18], buses andtrees [17], rings and 2-D meshes [22],

and 3-D meshes [19]. While all the above works only consider homogeneous platforms, heteroge-

neous platforms are studied in [23, 12, 16].

The aforementioned works assume a linear cost model for communication and computation,

but the work in [14] accounts for fixed latencies associated with network communication via an

affine model, which is more realistic and has since been used in [24, 15]. The work in [15] also

uses an affine cost model for computation. The introduction of affine costs renders the single-

round scheduling problem significantly more complex on heterogeneous platforms. Some results

are available when the platform is only partially heterogeneous [16]. For the general cases one

4

must resort to Linear Programming [25].

Multi-Round algorithms – In spite of the known limitations of one-round algorithms, namely

poor overlap of computation with communication, work on multi-round algorithms is rather lim-

ited. Proposed approaches belong in three categories: (i) those that focus on minimizing applica-

tion makespan by improving overlap of communication with computation; (ii) those that focus on

minimizing application makespan in the presence of performance prediction errors; and (iii) those

that focus on maximizing steady-state application performance. Our work belongs to the first

category, but we review all three categories below.

The first multi-round algorithm in category (i) is the Multi-Installment approach proposed

in [13] for homogeneous platforms; little progress has beenmade in the area since then. Multi-

Installment proceeds by dispatching chunks of work to compute resources in multiple rounds. The

algorithm starts with small chunks andincreasesthe chunk size throughout application execution

to achieve effective overlap of communication and computation. In this paper we directly im-

prove on the results in [13] for homogeneous platforms by considering latencies associated with

computation and communication. Latencies naturally raisethe question of the optimal number of

rounds, which is not answered in [13]. We address this question both in the homogeneous and the

heterogeneous case with a novel scheduling algorithm, UMR.

In the real world, the actual time a compute job or a transfer takes is always different than what

we predict by some amount, either due to shared computing platforms or to non-deterministic

applications. Multi-round algorithms that account for significant performance prediction errors

were proposed in [26, 27]. Instead of increasing chunk size throughout application execution,

these approaches start with large chunks anddecreasechunk size throughout application execu-

tion. Chunks are dispatched to compute resources in a greedyfashion. The major disadvantage is

that these algorithms can lead to very poor overlap of computation with communication. In [28]

we have proposed an approach that combines UMR and Factoring[26], so it first increases and

then decreases chunk size throughout application execution to achieve both effective overlap of

5

computation with communication and robustness to performance prediction errors. In this paper

we do not consider performance prediction errors.

Finally, multi-round algorithms have also been developed to maximizesteady-stateapplication

performance [29, 30, 31]. They use identical rounds and the schedules are periodic. In this work

we are solely concerned with minimizing application makespan.

3 Models

3.1 Application

Divisible load applications are characterized by input, orload that consists of large numbers of

independentunits, and can thus be divided intochunksthat contain arbitrary numbers of units. The

time for processing one unit is very small compared to that for processing the whole input, and it

is assumed that the load, which we denote asWtotal is arbitrarily and continuously divisible.

Many applications fall into the divisible load category. For example, bioinformatics applica-

tions, such as HMMER [32], take a query DNA/protein sequenceand search it against a dictionary

file containing millions of sequences, typically returninga few matching sequences. The dictio-

nary file may be arbitrarily divided into many chunks and eachsequence is a load unit. Volume

rendering applications [9, 33, 7, 8, 6] also qualify as divisible loads. For example, the male spec-

imen dataset from the Visible Human Project [9] contains 180MB (MR data), 730MB (CT data)

and 62GB (photo data). These applications takeN3 amount of data and produce images of size

N2, and load units are voxels. MPEG video compression [34, 35] is also an example: input video

is composed of large number of frames or Group of Pictures (GOP), each frame or GOP is a load

unit that can be processed independently. While an input in raw DV format may take 13GB of

space, the output is much smaller, ranging from 200MB∼2GB depending on the compression rate.

More examples include Radar data analysis [5], and Datamining [36, 37, 38].

To examine the spectrum of divisible load applications, we benchmarked three applications on

6

Table 1: Characteristics of divisible applications
Application input size (MB) running time (sec) R
HMMER 802.0 534 6.7
MPEG 716.8 2494 34.8
VFleet 87.5 600 68.0
Data Mining 400.0 3150 78.0

a Athlon 1.8GHz machine: HMMER; Mencoder [39], a video compression tool; and Vfleet [40], a

volume rendering software. We show in Table 1 the input size,running time, and the computation

to communication ratio,R, if the input data were to be transferred over a 100Mb network. Data

from a data mining application presented in [41] is also shown.

In this paper, we do not model transfer of output data back to the master. This is a common

and perhaps surprising assumption made in previous work on multi-round divisible load schedul-

ing [13]. (The work in [29] models output but only considers steady-state application performance

as opposed to makespan minimization.) One rationale is thatthe output data size in many divisible

load application is orders of magnitude smaller than input data size, as is the case with the appli-

cations we referenced earlier. The problem of deciding on anoptimal way to return output to the

master is open. In [42] we have provided a simple solution: return output from a round right before

sending out input for the next round. This is straightforward to apply to multi-round algorithms

including the ones presented in this paper, and performs reasonably well in practice.

3.2 Computing Platform

Our target computing platforms are clusters and grids that consist of multiple clusters. The input

data is originally located on a single machine, themaster. From the master’s perspective the

platform’s logical topology is effectively a single-leveltree/star (see Fig. 1). LetN be the number

of workersin the platform.

The master sends out chunks to the workers over a network. We assume that the master uses its

network connection in a sequential fashion: chunks are not sent to workers simultaneously. This

7

is the common assumption in the literature and is justified bythe behavior of the network (e.g.

LAN), or local I/O bottlenecks. We discuss why one may consider removing this assumption in

Section 7. We assume that workers can receive data from the network and perform computation

simultaneously (conforming to the ”with front-end” model in [13]).

Link

Master

Worker

Network

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

! ! ! ! !
! ! ! ! !
! ! ! ! !
! ! ! ! !

" " " " " "
" " " " " "
#
#

$ $ $ $ $
$ $ $ $ $
$ $ $ $ $
$ $ $ $ $
$ $ $ $ $
$ $ $ $ $
$ $ $ $ $

% % % % %
% % % % %
% % % % %
% % % % %
% % % % %
% % % % %
% % % % %

& & & & &
& & & & &
& & & & &
& & & & &

' ' ' ' '
' ' ' ' '
' ' ' ' '
' ' ' ' '

(((((
(((((
)))))
)))))

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Figure 1: Computing platform model.

Consider a portion of the total load,chunki ≤ Wtotal, which is to be processed on worker

i, 1 ≤ i ≤ N . We model the time required for workeri to perform the computation,Tcompi, as

Tcompi = αi +
chunki

Si

, (1)

whereαi is a fixed latency, in seconds, for starting the computation,andSi is the computational

speed of the worker, in units of load per second. It is important to note thatchunki in the above

equation is in units of load and not necessarily in bytes. Therefore, this equation does not imply

that the computational complexity of a single unit of load has to be linear in the size of the unit in

bytes. In fact, a unit may be one dictionary sequence for HMMER, one video frame for Mencoder,

or one voxel for Volume rendering, and these the applications, described in Section 3.1, all exhibit

various computational complexities. Because the units areindependent, the execution time of a

chunk is just the sum of the execution times of all its load units, and is proportional to the number

8

of units, hence thechunki

Si
term.

We model the time for sendingchunki units of load to workeri, Tcommi, as:

Tcommi = βi +
chunki

Bi

, (2)

whereβi is the latency, in seconds, incurred by the master to initiate a data transfer to workeri and

Bi is the data transfer rate to workeri, in units of load per second.

Although previous work on multi-round divisible load scheduling [13] has used linear functions

for Tcomp andTcomm we use affine models as they are more realistic. Theα component may be

caused by the delay for starting a remote process; for instance, when establishing anSsh session

or when accessing a resource via grid middleware services that involve resource acquisition, user

authentication, service instantiation, etc. [43]. Theβ component includes the time to pre-process

application data, to initiate a TCP connection or even anScp session, and to the physical network

latency. Both components can be significant in practice. We have implemented a software envi-

ronment to deploy divisible load applications on grid platforms [44]. We experienced values ofα

ranging from 0.1 to 0.7 seconds, and values ofβ ranging from 0.7 to 7 seconds, on a real-world

grid testbed [44]. In fact, measurements reported by a recent grid benchmarking project [45] show

values forα up to 45 seconds. We conclude that modeling both latencies iskey to a realistic model.

Our platform model is flexible enough that it encompasses most previously used models in the

divisible load literature that set bothα andβ to zero [13], onlyα to zero [14], or bothα andβ

non-zero [15, 24]. To the best of our knowledge, only these two last works use a non-zeroα, but

only for a single-round algorithm.

4 Extension of Multi-Installment to Affine Costs

The MI algorithm in [13] only considers linear cost models. We evolve MI so that it can account for

affine cost models for communication and computation and call the new algorithm XMI (eXtended

9

MI). In this section we consider a homogeneous star platform, meaning thatBi = B, Si = S,

αi = α, andβi = β for all 1 ≤ i ≤ N .

4.1 Chunk Size Recursion

We useTtotal to denote the amount of time to processWtotal units of load on a single worker. LetM

be the total number of rounds, which should be given by the user as a parameter and not computed

by XMI (this is precisely one disadvantage of MI/XMI that we address in Section 5.) Fig. 2 depicts

the computation on 5 workers in 3 rounds, i.e. with 15 chunks of load. Chunk transfers from the

master are shown in light gray boxes, whereas chunk computations are shown in white boxes, and

latencies are shown in black and dark gray. For convenience,we number the chunks in the reverse

order in which they are allocated to workers: the last chunk is numbered 0, the worker receiving

the last chunk is numbered 0, and the last round is also numbered 0. Our goal is to compute the

values of all chunk sizes,chunki, for i = 0, . . . , N × M − 1.

worker 0

worker 1

worker 2

worker 3

worker 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A B

g/R

αβ

Figure 2: Illustration of the chunk size recursion.

Instead of developing a recursion on thechunki series directly, we definegi = chunki/S as

the time to compute theith chunk on a worker. Let us also define the computation-communication

10

ratio of the platform,R = B/S. With these two definitions,Tcommi andTcompi are:

Tcommi = β + chunki/B = β + gi/R, and Tcompi = α + gi.

As in [13], so that both the network and the workers are kept asbusy as possible, each worker must

compute a chunk in exactly the time required for all the nextN chunks to be sent to the workers:

α + gi = (gi−1 + gi−2 + · · ·+ gi−N)/R + N × β.

For example, in Fig. 2, we can write that while worker 2 computes chunk 7 (from time A to time

B) chunks 6 to 2 must be sent to workers 1, 0, 4, 3, and 2:α+g7 = (g6 +g5 + · · ·+g2)/R+5×β.

The above equation is only valid fori ≥ N . For i < N we need the following modification:

α + gi = (gi−1 + gi−2 + gi−3 + · · ·+ gi−N)/R + i × β + g0 + α,

where we letgi = 0 for i < 0. We summarize our recursion as:

∀ i ≥ N α + gi = (gi−1 + gi−2 + gi−3 + · · ·+ gi−N)/R + N × β, (3)

∀ 0 ≤ i < N α + gi = (gi−1 + gi−2 + gi−3 + · · ·+ gi−N)/R + i × β + g0 + α, (4)

∀ i < 0 gi = 0. (5)

Due to latencies, this recursion is more complex than the on in [13], but we will see that it is

nevertheless amenable to an analytical solution.

4.2 Solving the Recursion

The recursion in the previous section can be solved via generating functions. We only present a

sketch of the solution as it is only technical (the complete derivations are given in [42]). LetG(x)

11

be the generating function for the seriesgi: G(x) =
∑

∞

i=0 gix
i. By multiplying Eq. 3 and Eq. 4

by xi, summing for alli ≥ 0, and using the well known property that thenth coefficient ofG(x)
1−x

is

computed as
∑n

i=0 gi, one obtains:

G(x) =
g0(1 − xN) − α × xN + β(x + x2 + x3 + ... + xN)

(1 − x) − x(1 − xN)/R

= g0G
′(x) + G′′(x),

whereG′ andG′′ are two generating functions with the same denominator,Q(x).

The simple rational expansion theorem [46] can be used to determine the coefficients ofG(x),

given the roots of its denominator polynomial.Q(x) hasN + 1 roots (one of these roots is1). Let

θj , j = 0, ..., N , be the inverses of these roots. The partial fraction and rational expansion theorem

gives thegi series as:

gi = g0

N
∑

j=0

ηjθ
i
j +

N
∑

j=0

ξjθ
i
j , (6)

where theηj and theξj series can be computed respectively forG′ and forG′′ as in [46]. One

can computeg0 by simply writing that thegi series sums up toTtotal. Note that the simple rational

expansion theorem can only be applied if all roots are of degree1. In [42] we proved that this is the

case whenR 6= N . WhenR = N , we proved that the only root of degree higher than1 is the root

x = 1, and it is of degree2. In this specific case it is straightforward to apply thegeneralrational

expansion theorem, also given in [46]. In all cases, each chunk size,gi × S, turns out to be a

linear combination ofN geometric series. This completes our derivation of a closed-form solution

for the XMI schedule on a homogeneous star platform with affine costs for both computation and

communication. This is a direct improvement over the work in[13] that only considered linear

costs. As explained in Section 1, the introduction of affine costs raises a critical question: what

is the optimal number of rounds? Next, we introduce a novel scheduling algorithm that not only

determines a near-optimal number of rounds but is also applicable to heterogeneous platforms.

12

5 The UMR Algorithm

In this section we propose a novel multi-round scheduling algorithm: Uniform Multi-Round (UMR).

Like XMI, UMR increases the chunk size in between rounds to reduce the overhead due to commu-

nication and computation latencies. However, UMR imposes the restriction that rounds be “uni-

form”, meaning that chunk sizes arefixedwithin each round. This restriction, while precluding

optimal overlap of communication with computation, makes it possible to compute a near-optimal

number of rounds, which we denote byM∗. We found that the algebraic solution of XMI is too

complex for computingM∗. Instead, with the uniform round restriction we can computeit and

obtain a schedule that is reasonably close to the XMI-M∗ schedule. This intuition also comes

partly from the uniform round concept introduced in [26] in which the Factoring algorithm sends

out chunks in uniform rounds ofdecreasingsizes to dynamically allocate to workers. Factoring

was designed without considering communication delays butconsidering uncertainty on chunk

computation time. In this work we consider communication delay but assume no uncertainty on

computation times. This led us to still using uniform round with increasing chunk sizes. Finally,

and perhaps most important, UMR is applicable to heterogeneous platforms, unlike previously

proposed multi-round algorithms. In this section,M denotes the number of rounds to be computed

by UMR. We first describe the UMR algorithm for homogeneous platforms.

5.1 UMR on Homogeneous Platforms

Induction on chunk sizes – Let chunkj, for j = 0, .., M − 1, be the chunk size used for all

workers at roundj. We illustrate the operation of UMR in Fig. 3. At timeTA, the master starts

dispatching chunks of sizechunkj+1 for roundj + 1 while the workers are performing computa-

tions for roundj. Platform utilization is maximized if the time for workerN to compute the round

j chunk is equal to the time for the master to send work for round(j + 1) to all N workers (from

13

6

7

8

9

0

1

2

3

4

j

j

j

j

j

j+1

j+1

j+1

j+1

j+1

TA TB

5 worker 0

worker 1

worker 2

worker 3

worker 4

Figure 3: UMR dispatches the load in rounds, where the chunk size is fixed within a round and
increases between rounds.

timeTA to timeTB in Fig. 3). Therefore, one can write:

α +
chunkj

S
= N(

chunkj+1

B
+ β). (7)

The left-hand side of Eq. 7 is the time workerN spends initiating and performing a chunk com-

putation during roundj. The right-hand side is the time it takes for the master to send data to all

N workers during roundj + 1. One can then distinguish two cases for derivingchunkj given the

simple induction defined in Eq. 7:

if NS 6= B then ∀j chunkj = (B
NS

)j(chunk0 − ∆) + ∆, where∆ = BS
B−NS

(N × β − α).

if NS = B then ∀j chunkj = chunk0 + jS(α − Nβ).

(8)

We have thus obtained a geometric series of chunk sizes whenNS 6= B , and an arithmetic series

whenNS = B, wherechunk0 is an unknown. If we compare Eq. 8 with Eq. 3, we can see that

UMR essentially satisfies Eq. 3 only for the last chunk in a round. For example, in Fig 3, the

compute time of chunk 5 is equal to the transfer time of chunk 0∼ chunk 4, and satisfy Eq 3, but

14

the compute time of chunk 6 is greater than the transfer time of chunks 1 to 5.

Constrained minimization problem – The objective of our algorithm is to minimizeEx(M, chunk0),

the makespan of the application:

Ex(M, chunk0) =
Wtotal

NS
+ M × α +

1

2
× N(β +

chunk0

B
).

The first term is the time for workerN to perform its computation. The second term is the overhead

incurred at each round to initiate a computation. The third term corresponds to the time for the

master to send all the data for round0. The 1
2

factor is due to an optimization for the last round,

during which the master allocates chunks of decreasing sizes to the workers to ensure that they all

finish computing at the same time. This is exactly the same approach as used for the last round of

the MI and XMI algorithms and details are provided in a technical report [47].

We also have the constraint that the amount of work sent out bythe master during the execution

sums up to the entire load:

G(M, chunk0) =
M−1
∑

j=0

N × chunkj − Wtotal = 0.

This constrained minimization problem, withM andchunk0 as unknowns, can be solved with

the Lagrange Multiplier method [48]. The multiplier,L(chunk0, M, λ), is defined as:

L(chunk0, M, λ) = Ex(M, chunk0) + λ × G(M, chunk0),

and we must solve:

∂L
∂λ

= G = 0

∂L
∂M

= ∂Ex
∂M

+ λ × ∂G
∂M

= 0

∂L
∂chunk0

= ∂Ex
∂chunk0

+ λ × ∂G
∂chunk0

= 0.

15

This system of equations reduces to the following equationsfor M :

if NS 6= B then N∆ − Wtotal−NM∆

1−(B
NS

)M

(

B
NS

)M
ln

(

B
NS

)

− 2α × B
1−(B

NS
)M

1− B
NS

= 0,

if NS = B then M =
√

(2NWtotal

B(3α+Nβ)
).

(9)

The first equation can be solved numerically by bisection. The solve is fast (on the order of 0.017

seconds on a 1.6GHz Athlon) and can thus be implemented in a runtime scheduler with negligible

overhead. Once we have computedM∗, the solution to Eq. 9,chunk0 follows as:

if NS 6= B then chunk0 =
(1− B

NS
)(Wtotal−NM∗∆)

N×(1−(B
NS

)M∗)
+ ∆,

if NS = B then chunk0 = S(2M∗α − (M∗ − 1
2
)(α − Nβ)).

(10)

Finally, thechunkj series can now be computed with Eq. 8. Complete details on these derivations

are provided in a technical report [47]. In that technical report we also develop necessary conditions

for all workers to be utilized: the smaller the computation-computation ratio, the fewer the number

of workers that can be utilized effectively. Simply put, it is beneficial to useN workers only when

N ≤ R, whereR is the computation-communication ratioB/S. Otherwise, just reduceN . In all

our experimental results we ensure that all workers are utilized.

5.2 UMR on Heterogeneous Platforms

The analysis of UMR in the heterogeneous case is more involved than that for the homogeneous

case but follows exactly the same steps. While in the homogeneous case we fixed the chunk size

at a round, in the heterogeneous case we fix thetime it takes for each worker to compute a chunk

during a round:αi + chunkji/Si = tj for all i = 1, .., N wherechunkji is the amount of load sent

out to workeri during roundj, and quantitytj depends only onj. Let roundj =
∑n

i=1 chunkji

be the amount of load processed during roundj. By these two definition it is straightforward to

expresschunkji as an affine function ofroundj. One can then write an equation Similar to Eq. 7

16

to express the fact that the master sends roundj+1 data to all N workers while workerN performs

its roundj computation:
N

∑

i=1

(
chunkj+1,i

Bi

+ βi) = tj .

After replacingchunkj+1,i andtj in the above equation by their expressions in terms ofroundj,

one obtains:

roundj = θj × (round0 − η) + η,

whereη andθ are constants depending on platform parametersαi, βi, Si, Bi (1 ≤ i ≤ N). As for

the homogeneous case, we have a constrained optimization problem:

minimize Ex(M, round0) =
∑M−1

j=0 tj + 1
2

∑N

i=1

(

chunk0,i

Bi
+ βi

)

,

subject to G(M, round0) = Mη + round0−η

1−θ
× (1 − θM) − Wtotal = 0,

which can be solved with the Lagrange multiplier method. Since the derivation is purely technical

but rather cumbersome, all details are provided in a technical report [42].

On an heterogeneous platform, resource selection is neededwhen the full platform cannot

be utilized effectively (in the homogeneous case one can just reduce the value ofN). For the

heterogeneous case UMR implements a simple resource selection criterion, which is inspired by

the work in [30]: processors with faster network connections are selected first. We evaluate how

UMR perform on heterogeneous platforms in Section 6.3.

6 Evaluation of UMR

To evaluate UMR we developed a simulator with the SIM GRID [49] toolkit, which provides the

necessary tools and abstractions for studying scheduling strategies for parallel applications on

distributed platforms. We used our simulator for three setsof experiments. First, we compared

UMR to the XMI algorithm developed in Section 4.1. Second, westudy the impact of system

parameters (S, B, α, andβ) on UMR’s choice for the optimal number of rounds. Third, we

17

Table 2: Parameter values for the experiments presented in Section 6.1.

Parameter Values

Number of processors N = 5, 10, 15, . . . , 50
Workload (unit) Wtotal = 2000
Compute rate (unit/s) S = 1
Comp./comm. ratio R = N, N + 2, N + 4, . . . , 80
Computation latency (s) α = 0.0, 0.5, . . . , 10
Communication latency (s) β = 0.0, 0.5, . . . , 10

evaluate how robust UMR is to platform heterogeneity.

6.1 Comparison with Previous Algorithms

In [50] we had compared an early version of UMR with the MI approach [13] in scenarios with

both computation and communication latencies. This comparison was in some sense unfair as MI

ignores latencies while UMR takes them explicitly into account. Now that we have developed XMI,

which is strictly superior to MI, we revisit our earlier comparison. The goal of our simulations is to

answer the following question: does UMR’s ability to compute a near-optimal number of rounds

outweigh the penalty due to the restriction it imposes on chunk sizes, when compared with the

XMI algorithm? Note that, to the best of our knowledge, UMR isthe first multi-round algorithm

to support heterogeneous platforms, and is in this sense inherently superior to XMI. Nevertheless,

we present simulation results on homogeneous platforms to be able to answer the question above.

Since XMI does not compute a number of rounds, we use XMI with 1to 8 rounds, denoted as

XMI- x for x = 1, . . . , 8. Note that XMI-1 is identical to the one-round algorithm proposed in [24].

6.1.1 Experimental Scenario

We evaluate UMR and XMI-x for the range of parameter values in Table 2, which correspond to

the spectrum of real-world application data shown in Table 1and to the range ofα andβ values

observed in practice (see Section 3.2). The compute speed isset to 1 load unit/second, and the

total load is set to 2000 units, so that the total execution time corresponds to 2000 seconds, roughly

18

Table 3: Comparison between UMR and XMI-x, averaged over 9,529,110 experiments.
UMR XMI- 1 XMI- 2 XMI- 3 XMI- 4 XMI- 5 XMI- 6 XMI- 7 XMI- 8

Normalized 1.00 1.03 1.10 1.49 1.68 1.82 1.94 2.06 2.16
Makespan
% Degradation 0.88 2.85 9.37 40.43 59.11 74.09 86.90 99.21 110.00
from Best

falling in the middle of the range of execution times in Table1. We varyN andR to explore a

range of scenarios withN <= R, ensuring that all workers can be utilized (see the discussion at

the end of Section 5.1). For each instantiation of these parameters we simulated UMR and XMI-x,

and computed the makespans they achieved.

6.1.2 Aggregate Results

Table 3 shows the comparison between UMR and XMI-x, averaged over all parameter configura-

tions. The first row shows the ratio of makespan achieved by XMI-x to that achieved by UMR;

the second row shows the percentage degradation from best. This metric is commonly used in

the scheduling literature: at each parameter instantiation, compute for each algorithm how far the

makespan achieved by that algorithm is from the best algorithm considered for that parameter

instantiation, in percentage; take the average over all parameter instantiations.

The main observation is that UMR outperforms XMI-x on average: all XMI-x have an average

makespan higher than that of UMR, and UMR has the lowest average degradation from best (by

≈ 2%). Over all the experiments, UMR is the best algorithm in 66.57% of the cases. In the

cases where UMR is not the best, it is on average within 2.64% of its competitors, with a standard

deviation of 4.52%. On average the best XMI-x algorithm is XMI-1, but we will see that this is

not true in all regions of our parameter space.

6.1.3 Impact of Computation/Communication Ratio on Makespan

For each value ofR we compute the makespan of XMI-x normalized to that achieved by UMR,

averaged over all other parameters. We only discuss XMI-x results forx = 1, . . . , 4 as trends are

19

0 20 40 60 80
0.8

1

1.2

1.4

1.6

1.8

2

R (computation/communication ratio)

R
el

at
iv

e
P

er
fo

rm
an

ce
 (

X
M

I−
x/

U
M

R
)

XMI−1
XMI−2
XMI−3
XMI−4

Figure 4: XMI-x makespan normalized to UMR makespan vs.R.

identical forx ≥ 4. Results are shown in Fig. 4.

Results for α ≥ 0 and β ≥ 0 – At lower values ofR, communication is relatively expensive,

and it is wise to use more rounds to start up quickly, as is shown in the figure; atR ≈ 10, XMI-

3, 4 are better than XMI-1, 2. They are even better than UMR as they do not have the uniform

round restriction and thus overlap communication and computation better. But asR increases,

communication becomes less critical, and latencies play and increasingly important part in the

overhead of communication. As a result, XMI-3, 4 degrade whenR increases, while the makespan

of XMI- 1 gradually drops, and that of XMI-2 initially drops and then increases afterR > 12. Over

the entire range ofR, we see that UMR achieves the lowest makespan or one close to the lowest.

Results forα = 0 and β = 0 – We just mentioned that XMI overlaps communication and com-

putation better than UMR. To give a perspective of how much different they are in this respect, we

compared their makespans when there are no latencies. Underthis condition the optimal number

of rounds is∞. To enable a fair comparison we limit XMI-x to x ≤ 8 in our experiments and

force UMR to use the same number of roundsx as XMI-x. We found that XMI-x indeed outper-

forms UMR because it is not restricted to using uniform rounds and can therefore achieve better

20

0
2

4
6

8
10

0

5

10

0

5

10

15

20

α (seconds)β (seconds)

M
*

Figure 5:M∗ versusβ andα.

overlap between computation and communication. However, UMR is only within 1.6% of XMI-x

on average. This quantifies the net performance penalty due to using uniform rounds.

6.2 Impact of System Parameters onM∗

UMR is able to improve over previously proposed algorithms in spite of the uniform round re-

striction, and precisely because this restriction makes itpossible to compute an optimal number of

rounds. In this section we study how the optimal number of rounds varies with system parameters.

6.2.1 Impact of Latencies onM∗

Fig. 5 plots theM∗ value chosen by UMR versus bothα andβ when they vary between0 and10.

The other parameters are fixed and set toN = 5, Wtotal = 2000, andR = 5. These parameter

values correspond to cases in which it may be beneficial to usemultiple rounds. For smallerR val-

ues, for instance, UMR may always useM∗ = 1. Fig. 5 demonstrates that UMR chooses different

values ofM∗ for different scenarios, in this case between 4 and 10 rounds. M∗ decreases when

either the communication or computation latency increases, which is expected as fewer rounds

21

lead to less overhead.

One may wonder why UMR reducesM∗ at all whenβ increases since the communication

latency is hidden after the first round. Asβ increases, larger chunks need to be sent during the

first round so that the first worker finishes computing after the communication to the last worker

has been completed. Therefore,chunk0 has to be larger and since the series of chunk sizes is

increasing, fewer rounds are necessary to dispatch the entire load. Hence the decrease inM∗.

6.2.2 Impact of the Computation/Communication Ratio onM∗

Fig. 6 plotsM∗ versusR ratio for three different(α, β) values. Two different mechanisms are at

play here:

#1. α = 5, β = 0: Whenβ is insignificant, the only overhead is the one incurred by computation

at each round, which is minimized by using as few rounds as possible. But whenR is low,

that is when communication is relatively expensive, it is beneficial to use more rounds for

better overlapping of communication with computation. This is seen on the black solid line

in Fig. 6, withM∗decreasingfrom 6 to 2 asR increases.

#2. α = 0, β = 5: Whenα is insignificant, the only overhead is the one due to worker idle time

while waiting for round 0 data, which is minimized by a smallchunk0 value and a large

number of rounds. However, UMR must send out sufficient load to workers in the first round

so that they are kept busy computing while data transfers take place. More specifically, we

see in Eq. 8 thatchunk0 must be greater than∆ = R(Nβ − α)/(R − N), which decreases

with R and increases withβ. Therefore, whenβ is significant, UMR is forced to use a

relatively large value forchunk0 at low R, which prevents the use of many rounds. More

rounds can be used asR increases. This is seen on the black dashed line in Fig. 6, with

M∗increasingfrom 2 to 14 asR increases.

The grey line in Fig 6 (α = β = 5) shows a combination of these two effects with first an

increase and then a decrease of the number of rounds. At lowR, the overhead due to the network

22

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

Computation/Communication ratio R

M
*

α=5 β=0
α=0 β=5
α=5 β=5

Figure 6: Effect of the computation/communication ratio onM∗. Wtotal = 2000, N = 5.

communications in round 0 is dominant, and UMR increases thenumber of round withR as in

item #2 above. In this experiment, whenR ≈ 10 the overhead due to computation latencies is now

dominant, and UMR starts using fewer and fewer rounds to limit its impact as in item #1 above.

6.3 UMR on Heterogeneous Platform

To show that UMR works well on heterogeneous platforms, we simulated UMR on a platform

consisting of 10 processors withWtotal = 2000 and randomSi, αi, βi andBi values sampled from

a uniform distribution on the interval((1− het−1
1+het

)mean, (1 − het−1
1+het

)mean, wheremean is 1, 1, 1,

and20 for Si, αi, βi, andBi, respectively. In other words, processor and link characteristics can

differ by as much as a factor ofhet between processors.

Fig. 7 plots the normalized makespan achieved by UMR versushet (solid curve). The normal-

ized makespan is computed as the ratio of the makespan versusthe “ideal” makespan which could

only be achieved if all communication costs were zero, that is Wtotal/
∑

Si. Every data point in

the figure is obtained as an average over 100 samples. The solid line show results with the resource

selection scheme described in Section 5.2. One can see that UMR is robust and handles heteroge-

neous platforms well. For extreme cases in which processor or link performances differ by a factor

up to 1,000, UMR still managed to achieve a makespan which is within 30% of the ideal. For

comparison, the dotted lines shows the normalized makespanwhen no resource selection scheme

23

10
0

10
1

10
2

10
3

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Heterogeneity
N

or
m

al
iz

ed
 M

ak
es

pa
n

with resource selection
without resource selection

Figure 7: Heterogeneous platform, normalized makespan versushet, with and without resource
selection.

is used, showing that our resource selection scheme is effective.

7 Conclusion

In this paper we have presented multi-round algorithms for scheduling divisible loads on star net-

works. We set out to answer three open questions: (i) given a fixed number of rounds, is it possible

to obtain a closed-form optimal schedule analogous to the ones given in [13] for homogeneous

platforms, but with computation and communication latencies? (ii) is it possible to design an

effective multi-round algorithm applicable to heterogeneous platforms; and (ii) is it possible to

compute an optimal number of rounds? Our contributions are as follows. First, building on the

work in [13], we have developed the XMI algorithm, which provides a new closed-form solution

for multi-installment scheduling on homogeneous star platforms with affine cost models, i.e. with

communication and computation latencies. Second, we have introduced a new multi-round algo-

rithm, UMR (Uniform Multi-Round), which sends a fixed amountof work to each worker within

each round. This restriction makes it possible to compute a near-optimal number of rounds, which

was not possible for previously proposed algorithms. Furthermore, to the best of our knowledge,

UMR is the first proposed multi-round algorithm that is amenable to heterogeneous platforms. Our

24

simulation results demonstrate that UMR’s ability to compute a near-optimal number of rounds

outweighs on average the penalty due the restriction it imposes on chunk sizes, when compared

with the XMI algorithm. We also showed that UMR utilizes heterogeneous platforms effectively.

The above contributions make it possible to achieve our goalof implementing multi-round

divisible load scheduling algorithms in practice. In this paper we have assumed that the times

required for chunk transfers and computations are perfectly predictable. This common assumption

often breaks down in real-world situations and we have revisited it in our most recent work to

design a more robust version of UMR [28]. We have implementedthis robust UMR as part of a

grid application execution environment [44] that leverages our research on scheduling algorithms

to deploy divisible load applications in practice. One future direction is to allow the master to

perform simultaneous communications to workers. This can be beneficial on wide area networks

due to bandwidth-sharing properties [51] that make it possible to achieve higher throughput with

parallel TCP streams. This will require the development of new multi-round scheduling algorithms.

References

[1] Jr. E.G. Coffman, M.R. Garey, and D.S. Johnson.Bin Packing Approximation Algorithms: A

Survey. PWS Publishing Co., Boston, MA., 1996.

[2] M. Drozdowski and P. Wolniewicz. Experiments With Scheduling Divisible Tasks in Clus-

ters of Workstations. InInternational Conference on Paralle and Distributed Computing

(Europar), pages 311–319, 2000.

[3] V. Bharadwaj and S. Ranganath. Theoretical and Experimental Study on Large Size Image

Processing Applications Using Divisible Load Paradigm on Distributed Bus Networks.Image

and Vision Computing, 20(13-14):917–1034, 2002.

[4] C.K. Lee and M. Hamdia. Parallel Image Processing Applications on a Network of Worksta-

tion. Parallel Computing, 21:137–160, 1995.

25

[5] Graig Miller, David G. Payne, Thanh N. Phung, Herb Siegel, and Roy Williams. Parallel

Processing of Spaceborne Imaging Radar Data. InProceedings from The International Con-

ference for High Performance Computing and Communications(SC’95), 1995.

[6] Yi-Jen Chiang, Ricardo Farias, Claudio T. Silva, and BinWei. A unified infrastructure for

parallel out-of-core isosurface extraction and volume rendering of unstructured grids. In

Proceedings of the IEEE Symposium on Parallel and Large-data Visualization and Graphics,

pages 59–66, 2001.

[7] Wes Bethel, Brian Tierney, Jason lee, Dan Gunter, and Stephen Lau. Using High-speed

WANs and Network Data Caches to Enable Remote and Distributed Visualization. InPro-

ceedings of The International Conference for High Performance Computing and Communi-

cations (SC’00), 2000.

[8] Antonio Garcia and Hen-Wei Shen. Parallel volume rendering: An interleaved parallel vol-

ume renderer with PC-clusters. InProceedings of the Fourth Eurographics Workshop on

Parallel Graphics and Visualization, pages 51–59, 2002.

[9] Visible human project. http://www.nlm.nih.gov/research/visible/

visible_human.html.

[10] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi.Scheduling Divisible Loads in

Parallel and Distributed Systems. IEEE Computer Society Press, 1996.

[11] Special issue ondivisible load scheduling. Cluster Computing, 6, 1, 2003.

[12] V. Bharadwaj, D. Ghose, and V. Mani. Optimal Sequencingand Arrangement in Single-Level

Tree Networks With Communication Delays.IEEE Transactions on Parallel and Distributed

Systems, 5(9):968–976, 1994.

[13] V. Bharadwaj, D. Ghose, and V. Mani. Multi-InstallmentLoad Distribution in Tree Networks

With Delays,.IEEE Trans. on Aerospace and Electronc Systems, 31(2):555–567, 1995.

26

[14] J. Blazewicz and M. Drozdowski. Distributed Processing of Divisible Jobs With Communi-

cation Startup Costs.Discrete Applied Mathematics, 76:21–41, 1997.

[15] V. Bharadwaj, X. Li, and C.C. Ko. on The Influence of Start-Up Costs in Scheduling Di-

visible Loads on Bus Networks.IEEE Transactions on Aerospace and electronic systems,

11(12):1288–1305, 2000.

[16] O. Beaumont, A. Legrand, and Y. Robert. Optimal Algorithms for Scheduling Divisible

Workloads on Heterogeneous Systems. Technical Report 2002-36, Ecole Normale Superieure

de Lyon, October 2002.

[17] S Bataineh, T.-Y. Hsiung, and T.G. Robertazzi. Closed Form Solutions for Bus and Tree

Networks of Processors Load Sharing a Divisible Job.IEEE Transations on Computers,

43(10), 1994.

[18] K. Li. Scheduling Divisible Tasks on Heterogeneous Linear Arrays With Applications to

Layered Networks. InProceedings of the 3rd International Workshop on Parallel and Dis-

tributed Scientific and Engineering Computing with Applications, 2002.

[19] M. Drozdowski and W. Glazek. Scheduling Divisible Loads in a Three-Dimensional Mesh

of Processors.Parallel Computing, 25(4), 1999.

[20] K. Li. Parallel Processing of Divisible Loads on Partitionable Static Interconnection Net-

works. Cluster Computing, 6(1):47–55, 2003.

[21] D. Ghose and V. Mani. Distributed Computationa With Communication Delays: Asymptotic

Performance Analysis.Journal of Parallel and Distributed Computing, 23(3), 1994.

[22] J. Blazewicz. Performance Limits of a Two-DimensionalNetwork of Load Sharing Proces-

sors.Foundations of Computing and Decision Sciences, 21(1):3–15, 1996.

[23] H.-J. Kim, G.-I. Jee, and J.-G. Lee. Optimal Load Distribution for Tree Network Processors.

IEEE Transactions on Aerospace and Electronic Systems, 32(2):607–611, 1996.

27

[24] A.L. Rosenberg. Sharing Partitionable Workloads in Heterogeneous NOWs: Greedier Is

Not Better. InProceedings from 3rd IEEE International Conference on Cluster Computing

(CLUSTER’01), pages 124–131, 2001.

[25] M. Drozdowski and P. Wolniewicz. Divisible Load Scheduling in Systems With Limited

Memory. Cluster Computing, 6(1):19–29, 2003.

[26] S.F. Hummel. Factoring : a Method for Scheduling Parallel Loops.Communications of the

ACM, 35(8):90–101, August 1992.

[27] T. Hagerup. Allocating Independent Tasks to Parallel Processors: An Experimental Study.

Journal of Parallel and Distributed Computing, 47:185–197, 1997.

[28] Y. Yang and H. Casanova. RUMR: Robust Scheduling for Divisible Workloads. InProceed-

ings of the 12th IEEE Symposium on High-Performance Distributed Computing (HPDC-12),

pages 114–125, June 2003.

[29] D. Altilar and Y. Paker. An Optimal Scheduling Algorithm for Parallel Video Processing. In

Proceedings of the IEEE International Conference on Multimedia Computing and Systems,

pages 245–248, 1998.

[30] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-Centric Alloca-

tion of Independent Tasks on Heterogeneous Platforms. InProceedings of the International

Parallel and Distributed Processing Symposium (IPDPS), June 2002.

[31] O. Beaumont, A. Legrand, and Y. Robert. The Master-Slave Paradigm With Heterogeneous

Processors. Technical Report RR2001-13, Ecole Normale Superieure de Lyon, March 2001.

[32] HMMER Webpage.http://hmmer.wustl.edu/hmmer-html/.

[33] Alan Watt. 3D Computer Graphics, chapter 13. Addison-Wesley, 3 edition, 2000.

28

[34] Ke Shen, Lawrence A. Rowe, and Edward J. Delp. A ParallelImplementation of an MPEG1

Encoder: Faster than Real-Time! InProceedings of the SPIE Conference on Digital Video

Compression: Algorithms and Technologies, pages 407–418, February 1995.

[35] F. J. Gonzalez-Castãno and R. Asorey-Cacheda and R. P.Martinez-Alvarez and F. Comesaña-

Seijo and J. Vales-Alonso. DVD Transcoding via Linux Metacomputing. Linux Journal,

116:8, 2003.

[36] Nuno Amano, Joao Gama, and Fernando Silva. Exploiting Parallelism in Decision Tree

Induction. InProceedings from the ECML/PKDD Workshop on Parallel and Distributed

computing for Machine Learning, pages 13–22, September 2003.

[37] Sanjay Goil and Alok Choudhary. High performance multidimensional analysis of large

datasets. InProceedings of the 1st ACM international workshop on Data warehousing and

OLAP, pages 34–39, 1998.

[38] David Skillicorn. Strategies for Parallel Data Mining. IEEE Concurrency, 7(4):26–35, 1999.

[39] Mencoder media player.http://www.mplayerhq.hu.

[40] VFleet Webpage.http://www.psc.edu/Packages/VFleet_Home.

[41] M. Tamura, T. an Oguchi and M. Kitsuregawa. Parallel database processing on a 100 Node

PC cluster: cases for decision support query processing anddata mining. InProceedings

from The International Conference for High Performance Computing and Communications,

pages 1–16, November 1997.

[42] Y. Yang and H. Casanova. Extensions to The Multi-Installment Algorithm: Affine Costs

and Output Data Transfers. Technical Report CS2003-0754, Dept. of Computer Science and

Engineering, University of California, San Diego, July 2003.

[43] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Services for Distributed System Inte-

gration.Computer, 35(6), 2002.

29

[44] Krjn van der Raadt and Yang Yang and Henri Casanova. APST-DV: Divisible Load Schedul-

ing and Deployment on the Grid. Technical Report CS2004-0785, Dept. of Computer Science

and Engineering, University of California, San Diego, April 2004.

[45] Chun, G. and Dail, H. and Casanova, H. and Snavely, A. Benchmark Probes for Grid As-

sessment. InProceedings of the High-Performance Grid Computing Workshop, April 2004.

[46] R.L. Graham, D.E. Knuth, and O. Patashnik.Concrete Mathematics. Wiley, 1994.

[47] Y. Yang and H. Casanova. Multi-Round Algorithm for Scheduling Divisible Workload Ap-

plications: Analysis and Experimental Evaluation. Technical Report CS2002-0721, Dept. of

Computer Science and Engineering, University of California, San Diego, 2002.

[48] D. Bertsekas.Constrained Optimization and Lagrange Multiplier Methods. Athena Scien-

tific, Belmont, Mass., 1996.

[49] A. Legrand, L. Marchal, and H. Casanova. Scheduling Distributed Applications: The SIM -

GRID Simulation Framework. InProceedings of the Third IEEE International Symposium on

Cluster Computing and the Grid (CCGrid’03), May 2003.

[50] Y. Yang and H. Casanova. UMR: a Multi-Round Algorithm for Scheduling Divisible Work-

loads. InProceedings of the International Parallel and DistributedProcessing Symposium

(IPDPS 2003), April 2003.

[51] H. Casanova. Modeling Large-Scale Platforms for the Analysis and the Simulation of

Scheduling Strategies. InProceedings of the 6th Workshop on Advances in Parallel and

Distributed Computational Models, April 2004.

30

