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Abstract

Divisible load applications occur in many fields of science &ngineering, can be eas-
ily parallelized in a master-worker fashion, but pose savecheduling challenges. While a
number of approaches have been proposed that allocate waevkrkers in a single round,
using multiple rounds improves overlap of computation veitimmunication. Unfortunately,
multi-round algorithms are difficult to analyze and havestheceived only limited attention.
In this paper we answer three open questions in the multigaivisible load scheduling
area: (i) How to account for latencies? (ii) How to accoumtHeterogeneous platforms; and
(iif) How many rounds should be used? To answer (i), we dehedirst closed-form optimal
schedule for a homogeneous platform with both computatiwh @@mmunication latencies,
for a given number of rounds. To answer (ii) and (iii), we grsa novel algorithm, UMR. We
use simulation to evaluate UMR in a variety of realistic svers.
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1 Introduction

Assigning the tasks of a parallel application to distrilbuitemputing resources to minimize appli-
cation execution time, anakespanhas been studied for a variety of application models, ssch a
the well-known directed acyclic task graph model. Anothepydar application model is that of
independent tasks with no task synchronizations and notias& communications, which, albeit
simple, arises in most fields of science and engineering. $sipte model for independent tasks
is one for which the number of tasks and the task sizes, igr tomputational costs, are set in
advance. In this case, the scheduling problem is akin tgphoking and many heuristics have been
proposed in the literature (see [1] for a survey). Anothesoitaof the independent tasks model is
one in which the number of tasks and the task sizes can berchdsirarily. This corresponds to
the case when the application consists of an amount of catipaf orload, that can be arbitrarily
divided into any number of independent piecesclaunks In practice, this model is an approxi-
mation of an application that consists of large numbers @fiidal, low-granularity units of work.
Thisdivisible loadmodel arises in practice in many domains [2, 3, 4, 5, 6, 7, 8] @nd has been
widely studied in the last several years [10, 11].

Divisible load applications are amenable to straightfodvaaster-worker computing and can
thus be easily deployed on computing platforms ranging fommmodity clusters to computa-
tional grids. However, efficient scheduling is challengbegause of the overhead involved when
starting tasks. This overhead is due to: (i) the time to fearepplication input/output data to/from
each compute resource; and (ii) the potential latenciesived when initiating a computation
or a communication. The scheduling problem is difficult whiee application is neither fully
computation-intensive, nor fully communication-interesi There are two types of approaches for
divisible load scheduling. First, one can divide the loadsnmany chunks as the number of pro-
cessors, and dispatch them isiagle roundof work allocation. This scheme is simple to design
and implement, but leads to poor overlap of communicatiah@mputation. The second possi-

bility is to dispatch the load imultiple rounds in each round each worker is allocated a chunk



of the load. While single-round approaches have been stud@oughly (see [11] for a survey),
multi-round algorithms are significantly more difficult toayze and fewer results are available.

The seminal “Multi-Installment” (MI) algorithm [12] is thérst (and to the best of our knowl-
edge the only) multi-round algorithm that focuses on miaing application makespan using mul-
tiple rounds to improve overlap of communication with corgtion. The MI approach provides
a closed-form solution for the scheduling problem, givenxadinumber of rounds [13]. An
important limitation is that dinear cost models assumed, by which a chunk computation or
communication is assumed to take a time exactly propottimnide chunk size (that is the num-
ber of independent load units in the chunk). In other words,MI approach does not consider
the latencies (i.e., start-up costs) that arise in all vealld platforms. In this paper, we focus
on minimizing application makespan using multiple rouruig,we consider aaffine cost model
that incorporates both communication and computatiomés. Although this model has been
used for single-round algorithms [14, 15, 16], it is an opaagjion whether a closed-form multi-
round schedule can be developed with affine costs. Furthrerntioe work in [12] is only for
homogeneous platforms, and it is also an open question &ajea multi-round algorithm that is
applicable to heterogeneous platforms.

With linear cost models, the more rounds the lower the apptio makespan, as noted in [13].
By contrast, with affine cost models there is a clear tradleedfiding the load into small chunks
(i.e. many rounds) makes it possible to overlap commurinatiith computation effectively, but
dividing the load into large chunks (i.e. few rounds) reduttee overhead due to latencies, and
thus the overall makespan. The implication is that therstexnoptimal number of roundfor
multi-round scheduling. Determining this optimum is agamopen question.

In this paper we address the above three open questions ftsround divisible load schedul-

ing on platforms with a star topology. Our novel contribusare:

1. We obtain the first (to our knowledge) closed-form solutio the divisible load scheduling

problem on homogeneous star platforms with affine costs;iwéiie more realistic than the



previously used linear costs.

2. We propose a hew multi-round scheduling algorithm, UMRiftrm Multi-Round), which
is applicable to heterogeneous platforms and computesraopéenal number of rounds,
with affine costs. We use simulation to compare UMR with prasly proposed algorithms

and demonstrate the benefits of our approach for wide rarfgeegparios.

This paper is organized as follows. In Section 2 we discussaat related work in detail. Sec-
tion 3 describes our models for the application and the caimguplatform. Section 4 presents our
closed-form solutions for multi-round divisible load sdiaing on homogeneous platforms with
affine cost models. Section 5 presents the UMR algorithmchwis then evaluated via simulation

in Section 6. Finally, Section 7 concludes the paper andidses future directions.

2 Related Work

Single-Round algorithms —Previous works on single-round algorithms defined recurséba-
tions for chunk sizes that guarantee or approach an optioh&dsile and that can be solved to
obtain a closed-form solution to the scheduling problemreeg [17], linear arrays [18], 3-D
mesh [19], or on hypercubes [20]. The asymptotic perforraascthe number of processors grows
to infinity was studied on linear networks [21, 18], busestaeés [17], rings and 2-D meshes [22],
and 3-D meshes [19]. While all the above works only considendgeneous platforms, heteroge-
neous platforms are studied in [23, 12, 16].

The aforementioned works assume a linear cost model for eonwation and computation,
but the work in [14] accounts for fixed latencies associatétd metwork communication via an
affine model, which is more realistic and has since been usg#i 15]. The work in [15] also
uses an affine cost model for computation. The introductioaffine costs renders the single-
round scheduling problem significantly more complex on fegieneous platforms. Some results

are available when the platform is only partially heteragmrs [16]. For the general cases one



must resort to Linear Programming [25].

Multi-Round algorithms — In spite of the known limitations of one-round algorithmanmely
poor overlap of computation with communication, work on thrdund algorithms is rather lim-
ited. Proposed approaches belong in three categoriesio@tthat focus on minimizing applica-
tion makespan by improving overlap of communication witinpaitation; (ii) those that focus on
minimizing application makespan in the presence of peréooe prediction errors; and (iii) those
that focus on maximizing steady-state application perforoe. Our work belongs to the first
category, but we review all three categories below.

The first multi-round algorithm in category (i) is the Multistallment approach proposed
in [13] for homogeneous platforms; little progress has beaale in the area since then. Multi-
Installment proceeds by dispatching chunks of work to campesources in multiple rounds. The
algorithm starts with small chunks aimttreaseghe chunk size throughout application execution
to achieve effective overlap of communication and companat In this paper we directly im-
prove on the results in [13] for homogeneous platforms bysm®ring latencies associated with
computation and communication. Latencies naturally rdisequestion of the optimal number of
rounds, which is not answered in [13]. We address this questth in the homogeneous and the
heterogeneous case with a novel scheduling algorithm, UMR.

In the real world, the actual time a compute job or a transfiees is always different than what
we predict by some amount, either due to shared computirtfppias or to non-deterministic
applications. Multi-round algorithms that account forrsfgcant performance prediction errors
were proposed in [26, 27]. Instead of increasing chunk direughout application execution,
these approaches start with large chunks @ecteasechunk size throughout application execu-
tion. Chunks are dispatched to compute resources in a gfasdipn. The major disadvantage is
that these algorithms can lead to very poor overlap of coatjmurt with communication. In [28]
we have proposed an approach that combines UMR and Fac{@6hgso it first increases and

then decreases chunk size throughout application exectdiachieve both effective overlap of



computation with communication and robustness to perfanagrediction errors. In this paper
we do not consider performance prediction errors.

Finally, multi-round algorithms have also been developathaximizesteady-statapplication
performance [29, 30, 31]. They use identical rounds and¢hedules are periodic. In this work

we are solely concerned with minimizing application malesp

3 Models

3.1 Application

Divisible load applications are characterized by inputjoad that consists of large numbers of
independentinits and can thus be divided intlhunkghat contain arbitrary numbers of units. The
time for processing one unit is very small compared to thapfocessing the whole input, and it
is assumed that the load, which we denotélas,,; is arbitrarily and continuously divisible.

Many applications fall into the divisible load category.rfexample, bioinformatics applica-
tions, such as HMMER [32], take a query DNA/protein sequeammksearch it against a dictionary
file containing millions of sequences, typically returniagew matching sequences. The dictio-
nary file may be arbitrarily divided into many chunks and esefjuence is a load unit. Volume
rendering applications [9, 33, 7, 8, 6] also qualify as dblesloads. For example, the male spec-
imen dataset from the Visible Human Project [9] containsMBQMR data), 730MB (CT data)
and 62GB (photo data). These applications tAkeamount of data and produce images of size
N2, and load units are voxels. MPEG video compression [34,88ld0 an example: input video
is composed of large number of frames or Group of PicturesRjG€ach frame or GOP is a load
unit that can be processed independently. While an inpuawnDV format may take 13GB of
space, the output is much smaller, ranging from 200M2EB depending on the compression rate.
More examples include Radar data analysis [5], and Datagii3i6, 37, 38].

To examine the spectrum of divisible load applications, eedhmarked three applications on



Table 1: Characteristics of divisible applications

Application | input size (MB)| running time (sec) R

HMMER 802.0 534 6.7
MPEG 716.8 2494 34.8
VFleet 87.5 600 68.0
Data Mining 400.0 3150 78.0

a Athlon 1.8GHz machine: HMMER; Mencoder [39], a video coagsion tool; and Vfleet [40], a
volume rendering software. We show in Table 1 the input sizening time, and the computation
to communication ratioR, if the input data were to be transferred over a 100Mb netwbr&ta
from a data mining application presented in [41] is also show

In this paper, we do not model transfer of output data backéomaster. This is a common
and perhaps surprising assumption made in previous workuwti-raund divisible load schedul-
ing [13]. (The work in [29] models output but only considersasly-state application performance
as opposed to makespan minimization.) One rationale ishkaiutput data size in many divisible
load application is orders of magnitude smaller than in@iadize, as is the case with the appli-
cations we referenced earlier. The problem of deciding oamimal way to return output to the
master is open. In [42] we have provided a simple solutiotrneoutput from a round right before
sending out input for the next round. This is straightforvir apply to multi-round algorithms

including the ones presented in this paper, and perforns®nedoly well in practice.

3.2 Computing Platform

Our target computing platforms are clusters and grids tbasist of multiple clusters. The input
data is originally located on a single machine, thaster From the master's perspective the
platform’s logical topology is effectively a single-levete/star (see Fig. 1). Lé{ be the number
of workersin the platform.

The master sends out chunks to the workers over a networksSveree that the master uses its

network connection in a sequential fashion: chunks are et t® workers simultaneously. This



is the common assumption in the literature and is justifiedhgybehavior of the network (e.qg.
LAN), or local I/O bottlenecks. We discuss why one may coesi@moving this assumption in
Section 7. We assume that workers can receive data from thw@rkeand perform computation

simultaneously (conforming to the "with front-end” model[iL3]).
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Figure 1: Computing platform model.

Consider a portion of the total loadhunk; < W4, Which is to be processed on worker

7,1 < i < N. We model the time required for workéto perform the computatiofi;comp;, as

chunk;

Tcomp; = o; + ,

(1)

whereq; is a fixed latency, in seconds, for starting the computatonl,S; is the computational

speed of the worker, in units of load per second. It is impdrta note thathunk; in the above

equation is in units of load and not necessarily in bytes.rdfoee, this equation does not imply
that the computational complexity of a single unit of load kabe linear in the size of the unitin
bytes. In fact, a unit may be one dictionary sequence for HNRyiéhe video frame for Mencoder,
or one voxel for Volume rendering, and these the applicatidescribed in Section 3.1, all exhibit
various computational complexities. Because the unitsratependent, the execution time of a

chunk is just the sum of the execution times of all its loadsyrand is proportional to the number
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of units, hence thé’%’“i term.

We model the time for sendinghunk; units of load to worket, T'comm;, as:

chunk;

Tcomm,; = 3; + ,

(2)

whereg; is the latency, in seconds, incurred by the master to ieiadata transfer to workéand
B; is the data transfer rate to workglin units of load per second.

Although previous work on multi-round divisible load sclidg [13] has used linear functions
for T'comp andT comm we use affine models as they are more realistic. dlsemponent may be
caused by the delay for starting a remote process; for instamhen establishing &sh session
or when accessing a resource via grid middleware serviegsrvolve resource acquisition, user
authentication, service instantiation, etc. [43]. Theomponent includes the time to pre-process
application data, to initiate a TCP connection or eveisap session, and to the physical network
latency. Both components can be significant in practice. ¥We implemented a software envi-
ronment to deploy divisible load applications on grid paths [44]. We experienced values of
ranging from 0.1 to 0.7 seconds, and valuegiatinging from 0.7 to 7 seconds, on a real-world
grid testbed [44]. In fact, measurements reported by a tegahbenchmarking project [45] show
values fora up to 45 seconds. We conclude that modeling both latencikey it a realistic model.

Our platform model is flexible enough that it encompassed presiously used models in the
divisible load literature that set bothand 5 to zero [13], onlya to zero [14], or bothw and 3
non-zero [15, 24]. To the best of our knowledge, only theselagt works use a non-zerg but

only for a single-round algorithm.

4 Extension of Multi-Installment to Affine Costs

The Ml algorithm in [13] only considers linear cost modelse @/olve MI so that it can account for

affine cost models for communication and computation arldlemhew algorithm XMI (eXtended



MI). In this section we consider a homogeneous star platfen@aning thatB; = B, S; = 5,

a; =a,andg; = g foralll <i < N.

4.1 Chunk Size Recursion

We us€l},,; to denote the amount of time to procégs,,; units of load on a single worker. L&t

be the total number of rounds, which should be given by theasa parameter and not computed
by XMl (this is precisely one disadvantage of MI/XMI that wedress in Section 5.) Fig. 2 depicts
the computation on 5 workers in 3 rounds, i.e. with 15 churikead. Chunk transfers from the
master are shown in light gray boxes, whereas chunk comepnusadre shown in white boxes, and
latencies are shown in black and dark gray. For convenieme@umber the chunks in the reverse
order in which they are allocated to workers: the last chisnkumbered 0, the worker receiving
the last chunk is numbered 0, and the last round is also nwedtiErOur goal is to compute the

values of all chunk sizeshunk;, fori =0,...,N x M — 1.
— gR
3 i*a
| | worker 4
9 4 |
[ [ worker 3
H 8 h 3 |
I worker 2
7 2 |
| 1
6 1 |

I]l 10'] 5 rh 0 | worker 0
A

Figure 2: lllustration of the chunk size recursion.

worker 1

Instead of developing a recursion on ek, series directly, we defing, = chunk;/S as

the time to compute th#&" chunk on a worker. Let us also define the computation-comaatioin

10



ratio of the platformR = B/.S. With these two definitions]'comm; andT comp; are:

Tcomm; = [ + chunk;/B = 3+ g;/R, and Tcomp; = a + g;.

As in [13], so that both the network and the workers are keptiag as possible, each worker must

compute a chunk in exactly the time required for all the méxthunks to be sent to the workers:

a+gi=(gi1+giat -+g-n)/R+Nxp.

For example, in Fig. 2, we can write that while worker 2 congsuthunk 7 (from time A to time
B) chunks 6 to 2 must be sent to workers 1, 0, 4, 3, and-2g; = (¢gs+gs+---+¢g2)/R+5 x .

The above equation is only valid for> N. Fori < N we need the following modification:

a+g =91+ gi2+gimz+ -+ 9gi-n)/R+i x5+ g0+ a,

where we ley; = 0 for i < 0. We summarize our recursion as:

Vi>N a+gi=(9i-1+gia+ gi—s+ -+ 9i-n)/R+ N x (3, 3)
VO<i<N a+¢g=(g-1+Gg-2+0g-3+ - +g_-n~n)/R+ix B+ g+, (4)

Due to latencies, this recursion is more complex than thendi3], but we will see that it is

nevertheless amenable to an analytical solution.

4.2 Solving the Recursion

The recursion in the previous section can be solved via géingrfunctions. We only present a

sketch of the solution as it is only technical (the completevétions are given in [42]). Let(z)
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be the generating function for the serigs G(z) = > -, ¢:z*. By multiplying Eq. 3 and Eq. 4
by «?, summing for alli > 0, and using the well known property that th& coefficient of% is

computed a$ ", g;, one obtains:

go(1 =) —ax a4 Bla+a® +2° + .. 4 aV)
(1—z)—=2(l—-2V)/R

= goG'(z) + G"(x),

whereG’ andG” are two generating functions with the same denomingior,).

The simple rational expansion theorem [46] can be used trmé@te the coefficients @ (),
given the roots of its denominator polynomiél(z) hasN + 1 roots (one of these roots 13. Let
9;,7=0,...,N, be the inverses of these roots. The partial fraction andratexpansion theorem

gives they; series as:
N N
9= 90> _mby+>_ &0, 6)
j=0 j=0

where then; and the; series can be computed respectively d8rand forG” as in [46]. One
can compute, by simply writing that they; series sums up t9;..,;. Note that the simple rational
expansion theorem can only be applied if all roots are ofeksgrin [42] we proved that this is the
case whem? #£ N. WhenR = N, we proved that the only root of degree higher thas the root

x = 1, and itis of degre@. In this specific case it is straightforward to apply generalrational
expansion theorem, also given in [46]. In all cases, eacimicsize,g; x S, turns out to be a
linear combination ofV geometric series. This completes our derivation of a cldead solution
for the XMI schedule on a homogeneous star platform with effiosts for both computation and
communication. This is a direct improvement over the workli8] that only considered linear
costs. As explained in Section 1, the introduction of affinsets raises a critical question: what
is the optimal number of rounds? Next, we introduce a novetdualing algorithm that not only

determines a near-optimal number of rounds but is also @dpk to heterogeneous platforms.
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5 The UMR Algorithm

In this section we propose a novel multi-round scheduligg@ihm: Uniform Multi-Round (UMR).
Like XMI, UMR increases the chunk size in between rounds dince the overhead due to commu-
nication and computation latencies. However, UMR impokesréstriction that rounds be “uni-
form”, meaning that chunk sizes afi@ed within each round. This restriction, while precluding
optimal overlap of communication with computation, makgsoissible to compute a near-optimal
number of rounds, which we denote By*. We found that the algebraic solution of XMl is too
complex for computing\/*. Instead, with the uniform round restriction we can comptnd
obtain a schedule that is reasonably close to the XWlschedule. This intuition also comes
partly from the uniform round concept introduced in [26] ihiah the Factoring algorithm sends
out chunks in uniform rounds afecreasingsizes to dynamically allocate to workers. Factoring
was designed without considering communication delayscbusidering uncertainty on chunk
computation time. In this work we consider communicatiotagdout assume no uncertainty on
computation times. This led us to still using uniform rounithwncreasing chunk sizes. Finally,
and perhaps most important, UMR is applicable to heteragene@latforms, unlike previously
proposed multi-round algorithms. In this sectidih,denotes the number of rounds to be computed

by UMR. We first describe the UMR algorithm for homogeneowdfplms.

5.1 UMR on Homogeneous Platforms

Induction on chunk sizes — Let chunk;, for j = 0,.., M — 1, be the chunk size used for all
workers at round. We illustrate the operation of UMR in Fig. 3. At tini#&,, the master starts
dispatching chunks of sizéunk;; for roundj + 1 while the workers are performing computa-
tions for round;. Platform utilization is maximized if the time for workéf to compute the round

j chunk is equal to the time for the master to send work for raynd 1) to all N workers (from

13
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Figure 3: UMR dispatches the load in rounds, where the chimis fixed within a round and
increases between rounds.

time T4 to timeTp in Fig. 3). Therefore, one can write:

o chunk; _ N

S

chunk;i,
B

+ 53). (7)

The left-hand side of Eq. 7 is the time work®&rspends initiating and performing a chunk com-
putation during round. The right-hand side is the time it takes for the master tal skta to all
N workers during round + 1. One can then distinguish two cases for derivihgnk; given the

simple induction defined in Eq. 7:

if NS+#B then Vj chunk; = () (chunky — A) + A, whereA = z23-(N x  — «).

if NS=B then Vj chunk; = chunky + jS(o — Nj3).
(8)

We have thus obtained a geometric series of chunk sizes Wiieg B , and an arithmetic series
when NS = B, wherechunk, is an unknown. If we compare Eg. 8 with Eq. 3, we can see that
UMR essentially satisfies Eq. 3 only for the last chunk in anchuFor example, in Fig 3, the

compute time of chunk 5 is equal to the transfer time of churkd¢hunk 4, and satisfy Eq 3, but

14



the compute time of chunk 6 is greater than the transfer tincaanks 1 to 5.

Constrained minimization problem — The objective of our algorithm is to minimizéz (M, chunk;),

the makespan of the application:

The first term is the time for worke¥ to perform its computation. The second term is the overhead
incurred at each round to initiate a computation. The therghtcorresponds to the time for the
master to send all the data for roudThe ; factor is due to an optimization for the last round,
during which the master allocates chunks of decreasing sizthe workers to ensure that they all
finish computing at the same time. This is exactly the sameoagp as used for the last round of
the Ml and XMI algorithms and details are provided in a techhreport [47].

We also have the constraint that the amount of work sent otltdognaster during the execution

sums up to the entire load:
M-1
G(M, chunke) = > N x chunk; — Wipar = 0.

=0

This constrained minimization problem, wifli andchunk, as unknowns, can be solved with

the Lagrange Multiplier method [48]. The multipligr(chunkq, M, X), is defined as:
L(chunky, M, \) = Ex(M, chunky) + XA x G(M, chunky),

and we must solve:

oL __ _
w=G=0
0L __ OEx oG __
onf = onr TAX gar = 0
oL __ _OEz —|—>\X oG =0

Ochunkg ~  Ochunkg Ochunkg ~—
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This system of equations reduces to the following equations/:

- Wiotai—NMA M I—(F)M
if NS 7é B then NA — W (%) In (%) —2ax B I—Nés = 0, (9)
1 2Afvvtota

The first equation can be solved numerically by bisectiore 3tive is fast (on the order of 0.017
seconds on a 1.6GHz Athlon) and can thus be implemented intisvei scheduler with negligible
overhead. Once we have compufdd, the solution to Eq. %;hunk, follows as:

- _ =) Wiotar=NM*A)
if NS # B then chunk,= Nx (1= ()7 + A, (10)

if NS=DB then chunky=S2M*a— (M*—31)(a— Np)).

Finally, thechunk; series can now be computed with Eq. 8. Complete details e ttierivations
are provided in a technical report [47]. In that technicplm we also develop necessary conditions
for all workers to be utilized: the smaller the computatammputation ratio, the fewer the number
of workers that can be utilized effectively. Simply put,gtieneficial to usé/ workers only when

N < R, whereR is the computation-communication ratiy.S. Otherwise, just reducd’. In all

our experimental results we ensure that all workers arzeil

5.2 UMR on Heterogeneous Platforms

The analysis of UMR in the heterogeneous case is more inddhan that for the homogeneous
case but follows exactly the same steps. While in the homemesicase we fixed the chunk size
at a round, in the heterogeneous case we fixitheit takes for each worker to compute a chunk
during a rounduy; + chunk;;/S; = t; foralli = 1, .., N wherechunk;; is the amount of load sent
out to worker: during round;j, and quantityt; depends only on. Letround; = Y, chunk;;

be the amount of load processed during royindy these two definition it is straightforward to

expresshunk;; as an affine function afound;. One can then write an equation Similar to Eq. 7
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to express the fact that the master sends rqundl data to all N workers while worke¥ performs

its round; computation:

N

chunk;q;
Z(T,JH’ +05) = t;.
i=1 v

After replacingchunk;,,,; andt; in the above equation by their expressions in termsoafd;,
one obtains:

round; = 6’ x (roundy —n) + 1,

wheren andd are constants depending on platform parameters;, S;, B; (1 <i < N). As for

the homogeneous case, we have a constrained optimizatiblepr:

minimize  Ex(M,roundy) = Zj]vial ti+1 SN (C”“gfo’i + ﬁi> ;

subjectto G(M,roundy) = Mn + "= 5 (1 — M) — Wipp = 0,

which can be solved with the Lagrange multiplier methodc8ithe derivation is purely technical
but rather cumbersome, all details are provided in a teahreport [42].

On an heterogeneous platform, resource selection is negded the full platform cannot
be utilized effectively (in the homogeneous case one canr@ggiice the value oN). For the
heterogeneous case UMR implements a simple resourceiseledterion, which is inspired by
the work in [30]: processors with faster network connectiare selected first. We evaluate how

UMR perform on heterogeneous platforms in Section 6.3.

6 Evaluation of UMR

To evaluate UMR we developed a simulator with th& GRID [49] toolkit, which provides the

necessary tools and abstractions for studying schedutnategies for parallel applications on
distributed platforms. We used our simulator for three sétsxperiments. First, we compared
UMR to the XMI algorithm developed in Section 4.1. Second, siiedy the impact of system

parameters{, B, «, and ) on UMR'’s choice for the optimal number of rounds. Third, we
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Table 2: Parameter values for the experiments presenteetiing 6.1.

| Parameter | Values |
Number of processors N =5,10,15,...,50
Workload (unit) Wiotar = 2000
Compute rate (unit/s) S=1
Comp./comm. ratio R=N,N+2 N+4,...,80
Computation latency (s) | @ =0.0,0.5,...,10
Communication latency (s) 3 = 0.0,0.5,...,10

evaluate how robust UMR is to platform heterogeneity.

6.1 Comparison with Previous Algorithms

In [50] we had compared an early version of UMR with the MI aygwh [13] in scenarios with
both computation and communication latencies. This cormpamas in some sense unfair as Ml
ignores latencies while UMR takes them explicitly into aceb Now that we have developed XMI,
which is strictly superior to Ml, we revisit our earlier coamson. The goal of our simulations is to
answer the following question: does UMR’s ability to compatnear-optimal number of rounds
outweigh the penalty due to the restriction it imposes omé&lgizes, when compared with the
XMl algorithm? Note that, to the best of our knowledge, UMRYFie first multi-round algorithm
to support heterogeneous platforms, and is in this sengeantly superior to XMI. Nevertheless,
we present simulation results on homogeneous platforme &bke to answer the question above.
Since XMI does not compute a number of rounds, we use XMI wiih 8 rounds, denoted as

XMI-z forx =1,...,8. Note that XMI- is identical to the one-round algorithm proposed in [24].

6.1.1 Experimental Scenario

We evaluate UMR and XMl for the range of parameter values in Table 2, which corregpon
the spectrum of real-world application data shown in Tabénd to the range at and§ values
observed in practice (see Section 3.2). The compute spest to 1 load unit/second, and the

total load is set to 2000 units, so that the total executimie ttorresponds to 2000 seconds, roughly
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Table 3: Comparison between UMR and XMjJ-averaged over 9,529,110 experiments.
| [ UMR [ XMI-1 [ XMI-2 [ XMI-3 [ XMI-4 [ XMI-5 [ XMI-6 [ XMI-7 [ XMI-8 |
Normalized 1.00 | 1.03 1.10 1.49 1.68 1.82 1.94 2.06 2.16
Makespan
% Degradation|| 0.88 | 2.85 9.37 40.43 | 59.11 | 74.09 | 86.90 | 99.21 | 110.00
from Best

falling in the middle of the range of execution times in TableWe vary N and R to explore a
range of scenarios withh <= R, ensuring that all workers can be utilized (see the disoussi
the end of Section 5.1). For each instantiation of thesenpatiers we simulated UMR and XMi;

and computed the makespans they achieved.

6.1.2 Aggregate Results

Table 3 shows the comparison between UMR and XM&veraged over all parameter configura-
tions. The first row shows the ratio of makespan achieved by-XKb that achieved by UMR;
the second row shows the percentage degradation from bé&.nletric is commonly used in
the scheduling literature: at each parameter instantiatiompute for each algorithm how far the
makespan achieved by that algorithm is from the best alyaritonsidered for that parameter
instantiation, in percentage; take the average over adpater instantiations.

The main observation is that UMR outperforms XMbn average: all XMl have an average
makespan higher than that of UMR, and UMR has the lowest gealagradation from best (by
~ 2%). Over all the experiments, UMR is the best algorithm in5886 of the cases. In the
cases where UMR is not the best, it is on average within 2.64i% competitors, with a standard
deviation of 4.52%. On average the best XM#&lgorithm is XMI-1, but we will see that this is

not true in all regions of our parameter space.

6.1.3 Impact of Computation/Communication Ratio on Makesgn

For each value o we compute the makespan of XMlInormalized to that achieved by UMR,

averaged over all other parameters. We only discuss XMisults forr = 1,...,4 as trends are
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Figure 4: XMl« makespan normalized to UMR makespan &is.

identical forx > 4. Results are shown in Fig. 4.

Results fora > 0 and 5 > 0 — At lower values ofR, communication is relatively expensive,
and it is wise to use more rounds to start up quickly, as is shavwthe figure; atR ~ 10, XMI-

3,4 are better than XMI, 2. They are even better than UMR as they do not have the uniform
round restriction and thus overlap communication and cdatfmn better. But ask increases,
communication becomes less critical, and latencies playiacreasingly important part in the
overhead of communication. As a result, XBll4 degrade wheli increases, while the makespan
of XMI- 1 gradually drops, and that of XM2-nitially drops and then increases after> 12. Over

the entire range oR, we see that UMR achieves the lowest makespan or one clolse tovest.

Resultsfora = 0and 5 = 0— We just mentioned that XMI overlaps communication and com-
putation better than UMR. To give a perspective of how muderint they are in this respect, we
compared their makespans when there are no latencies. thsleondition the optimal number
of rounds isco. To enable a fair comparison we limit XMi-to z < 8 in our experiments and
force UMR to use the same number of roundas XMl-z. We found that XMl« indeed outper-

forms UMR because it is not restricted to using uniform raiadd can therefore achieve better
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overlap between computation and communication. HoweVdiRUs only within 1.6% of XMl

on average. This quantifies the net performance penaltyadusing uniform rounds.

6.2 Impact of System Parameters o/*

UMR is able to improve over previously proposed algorithmspite of the uniform round re-
striction, and precisely because this restriction makpestible to compute an optimal number of

rounds. In this section we study how the optimal number ohdswaries with system parameters.

6.2.1 Impact of Latencies on\/*

Fig. 5 plots thel/* value chosen by UMR versus bathand 5 when they vary betweetmand 10.
The other parameters are fixed and seMae= 5, W, = 2000, andR = 5. These parameter
values correspond to cases in which it may be beneficial tonustple rounds. For smalleR val-
ues, for instance, UMR may always usg& = 1. Fig. 5 demonstrates that UMR chooses different
values of M* for different scenarios, in this case between 4 and 10 raufffsdecreases when

either the communication or computation latency increasdsch is expected as fewer rounds
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lead to less overhead.

One may wonder why UMR reduced* at all wheng increases since the communication
latency is hidden after the first round. Asincreases, larger chunks need to be sent during the
first round so that the first worker finishes computing afterdcbommunication to the last worker
has been completed. Thereforéunk, has to be larger and since the series of chunk sizes is

increasing, fewer rounds are necessary to dispatch the évdid. Hence the decreasellifi.

6.2.2 Impact of the Computation/Communication Ratio onM*

Fig. 6 plotsM* versusR ratio for three differenta, 3) values. Two different mechanisms are at

play here:

#1. o = 5, 8 = 0: Wheng is insignificant, the only overhead is the one incurred by potation
at each round, which is minimized by using as few rounds asiples But whenR is low,
that is when communication is relatively expensive, it indfecial to use more rounds for
better overlapping of communication with computation. sTisiseen on the black solid line

in Fig. 6, with M/*decreasingrom 6 to 2 ask increases.

#2. a = 0,5 = 5: Whena is insignificant, the only overhead is the one due to workler tiche
while waiting for round 0 data, which is minimized by a smalkink, value and a large
number of rounds. However, UMR must send out sufficient loagdrkers in the first round
so that they are kept busy computing while data transfess péce. More specifically, we
see in Eq. 8 thathunk, must be greater thah = R(NS — «)/(R — N), which decreases
with R and increases witl#. Therefore, wherg is significant, UMR is forced to use a
relatively large value forhunk, at low R, which prevents the use of many rounds. More
rounds can be used dsincreases. This is seen on the black dashed line in Fig. &, wit

M*increasingfrom 2 to 14 asR increases.

The grey line in Fig 6 ¢ = 5 = 5) shows a combination of these two effects with first an

increase and then a decrease of the number of rounds. AR)dine overhead due to the network
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Figure 6: Effect of the computation/communication ratioldn. W, = 2000, N = 5.

communications in round 0 is dominant, and UMR increasesithmber of round withR as in
item #2 above. In this experiment, whé&w 10 the overhead due to computation latencies is how

dominant, and UMR starts using fewer and fewer rounds td lisiimpact as in item #1 above.

6.3 UMR on Heterogeneous Platform

To show that UMR works well on heterogeneous platforms, weutated UMR on a platform

consisting of 10 processors with,,;,; = 2000 and randon®;, «;, 5; and B; values sampled from

het—1
1+het

het—1

a uniform distribution on the interva(1 — e

ymean, (1 — ymean, wheremean is 1, 1, 1,
and20 for S;, «;, (;, and B;, respectively. In other words, processor and link charesties can
differ by as much as a factor @kt between processors.

Fig. 7 plots the normalized makespan achieved by UMR veérstésolid curve). The normal-
ized makespan is computed as the ratio of the makespan \thestideal” makespan which could
only be achieved if all communication costs were zero, thélj,,/ > _ S;. Every data pointin
the figure is obtained as an average over 100 samples. Thdiselshow results with the resource
selection scheme described in Section 5.2. One can seeMRtisJrobust and handles heteroge-
neous platforms well. For extreme cases in which procesdorkoperformances differ by a factor

up to 1,000, UMR still managed to achieve a makespan whichitlsm30% of the ideal. For

comparison, the dotted lines shows the normalized makespan no resource selection scheme

23



N
©
,

— with resource selection
+ without resource selection

N
o
‘

NN
NS
‘ ‘

Normalized Makespan
I w
N N [*2] [ee] N

I I ]
1 0 1 2 3

10 10 10 10
Heterogeneity

Figure 7: Heterogeneous platform, normalized makespasusért, with and without resource
selection.

is used, showing that our resource selection scheme igigéec

7 Conclusion

In this paper we have presented multi-round algorithmsdbeduling divisible loads on star net-
works. We set out to answer three open questions: (i) giveed fiumber of rounds, is it possible
to obtain a closed-form optimal schedule analogous to tles g@riven in [13] for homogeneous
platforms, but with computation and communication lates@i (ii) is it possible to design an
effective multi-round algorithm applicable to heterogeun platforms; and (ii) is it possible to
compute an optimal number of rounds? Our contributions ar®liows. First, building on the

work in [13], we have developed the XMI algorithm, which pides a new closed-form solution
for multi-installment scheduling on homogeneous starftats with affine cost models, i.e. with
communication and computation latencies. Second, we mar@duced a new multi-round algo-
rithm, UMR (Uniform Multi-Round), which sends a fixed amouwrftwork to each worker within

each round. This restriction makes it possible to computesaa-aptimal number of rounds, which
was not possible for previously proposed algorithms. Faurtiore, to the best of our knowledge,

UMR is the first proposed multi-round algorithm that is am#ado heterogeneous platforms. Our
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simulation results demonstrate that UMR'’s ability to cotepa near-optimal number of rounds
outweighs on average the penalty due the restriction it sap@n chunk sizes, when compared
with the XMI algorithm. We also showed that UMR utilizes hetgeneous platforms effectively.
The above contributions make it possible to achieve our gbaiplementing multi-round
divisible load scheduling algorithms in practice. In theppr we have assumed that the times
required for chunk transfers and computations are peyfpotidictable. This common assumption
often breaks down in real-world situations and we have iedgt in our most recent work to
design a more robust version of UMR [28]. We have implemetitexirobust UMR as part of a
grid application execution environment [44] that leveragar research on scheduling algorithms
to deploy divisible load applications in practice. One fatdirection is to allow the master to
perform simultaneous communications to workers. This @abdneficial on wide area networks
due to bandwidth-sharing properties [51] that make it gm@egb achieve higher throughput with

parallel TCP streams. This will require the developmenevf multi-round scheduling algorithms.
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