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Let T be a terrain and P be a set of points (locations) on its surface. An important problem in Geographic

Information Science (GIS) is computing the visibility index of a point p on P , that is, the number of points in P
that are visible from p. �e total visibility-index problem asks for the visibility index of every point in P . Many

applications of this problem involve 2-dimensional terrains represented by a grid of n × n square cells, where

each cell is associated with an elevation value, and P consists of the center-points of these cells. Current

approaches for computing the total visibility-index on such a terrain take at least quadratic time with respect

to the number of the terrain cells. Finding a subquadratic solution to this 2D total visibility-index problem

remains an open problem. Furthermore, no subquadratic solution to the 1D version of this problem has been

proposed; in the 1D problem, the terrain is an x-monotone polyline, and P is the set of the polyline vertices.

We present anO (n log
2 n) algorithm that solves the 1D total visibility-index problem. Our algorithm is based

on a geometric dualization technique, which reduces the problem into a set of instances of the red-blue line

segment intersection counting problem. We also present a parallel version of this algorithm, which requires

O (log
2 n) time and O (n log

2 n) work in the CREW PRAM model. We implement a naive O (n2) approach

and four variations of our algorithm: one that uses an existing red-blue line segment intersection counting

algorithm and three new approaches that perform the intersection counting by leveraging features speci�c to

our problem. We present experimental results for both serial and parallel implementations on large synthetic

and real-world datasets, using two hardware platforms. Results show that all variants of our algorithm

outperform the naive approach by several orders of magnitude on large datasets. Furthermore, we show that

the fastest of our new intersection counting implementations reduces runtime by over 10 times, compared

with an existing red-blue line segment intersection counting algorithm. Our fastest parallel implementation is

able to process a terrain of more than 100 million vertices in under 3 minutes, achieving up to 85% parallel

e�ciency over serial execution.

CCS Concepts: •�eory of computation→ Computational geometry; Data structures design and analysis;
Parallel algorithms; Divide and conquer;
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1:2 P. Afshani et al.

1 INTRODUCTION
Analyzing terrains to determine locations with special properties is a common objective in Geo-

graphic Information Science (GIS). One such property is visibility. In particular, one o�en wants to

�nd points on a terrain that are highly visible or, conversely, points that are hardly visible. Example

applications include the placement of telecommunication towers, placement of �re guard towers,

surveying archaeological sites, military logistics, or surveying building sites. �us, in recent years

there has been a fair amount of work in the GIS literature dedicated to visibility analysis and

the computations it entails (see the survey by Floriani and Magillo [12]), with many proposed

algorithms [10, 11, 13, 17, 23, 24] as well as publicly available implementations [1, 2].

To automate terrain analysis, real-world terrains are approximated by digital models, with one

of the most popular models being the digital elevation model (DEM). A DEM is a grid of square

cells, where each cell is assigned an elevation (which typically corresponds to the elevation of the

point on the terrain that appears at the center of the cell).

Let terrain T be a grid with N = n2
total cells. Two cells c and c ′ are visible from each other

if the line segment cc ′ that connects their center-points does not cross on the xy-domain any

other cell д such that cд is steeper than cc ′. We de�ne the visibility index of cell c ∈ T to be

the number of cells in T that are visible from c . �e total visibility-index problem (also known

as cumulative viewshed [25]) consists of �nding the visibility index for every c ∈ T . One way

to solve the total visibility-index problem on T is to compute the viewshed of each cell c of T ,

that is, to explicitly compute for each cell c which other cells of T are visible from c . With the

algorithm of Van Kreveld [24] this takes O (N logN ) time per cell, leading to a total running time

of O (N 2
logN ). Even for moderately-sized DEMs this is infeasible in practice, let alone for modern

DEM datasets, which can consist of hundreds of millions of cells. One solution is to use a heuristic

that approximates the visibility [11, 23]. Another is to observe that computing the viewsheds

of di�erent cells can be done independently, and to solve a large number of single-viewshed

computations in parallel [5, 9, 19, 20, 26]. Still, such approaches are not suitable for large DEMs.

�e fundamental problem is that one cannot a�ord to explicitly compute all visible cells for each

cell c ofT , as this may produce an output of size Ω(N 2). Note that the total visibility index problem

does not require to explicitly compute the viewshed of each cell in T; it only requires to compute

the number of cells that are visible from each cell, therefore the output size for this problem is

Θ(N ).
So far �nding a subquadratic algorithm to solve the 1D total visibility-index problem remains an

open problem. Surprisingly, no e�cient algorithm has been proposed even for the 1D version of the

problem. In the 1D problem, the terrain T is an x-monotone polyline with n vertices. Similar to the

2D problem, the goal in the one-dimensional version is to compute for each vertex v in the polyline

the number of vertices visible from v . We call this problem the 1D total visibility-index problem.

Note that on a 1D terrainT with n vertices, the visibility-index of a single vertexv can be computed

in Θ(n) time; this could be done by moving away from v one vertex at a time, and maintaining

two rays that de�ne the horizon to the le� and right of v . Using this method to compute the

visibility-index for each vertex independently, we can compute the total visibility-index of T in

O (n2) time. We refer to this simple algorithm as Naive. Despite its simplicity and disappointing

quadratic performance, to the best of our knowledge, this is the best known solution for this

problem to date.

Previous research have examined a problem highly related to the 1D total visibility-index problem,

known as the 1.5D terrain-guarding problem (TGP). �e terrain-guarding problem involves �nding

the minimum number of points needed to view an entire 1-dimensional set of vertices. While

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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An E�icient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:3

1 2 3 n− 1 ni

pi

hi

cleft(pi, P[l : r])

cright(pi, P[l : r])

h = 0

current recursion interval

νvert

l rk

α(−−→pi pj)
α(−−→pi pr)

pj

pr

Fig. 1. Illustration of an 1-dimensional terrain, together with the critical rays from vertex pi .

similar to the total visibility-index, solving TGP is known to be NP-hard and thus all previous

results provide approximate solutions [14, 15, 21].

Our contributions. In this paper, we present an algorithm that solves the 1D total visibility-index

problem for a terrain of n vertices in O (n log
2 n) time. Our algorithm uses a geometric dualization

technique, which transforms the visibility problem into a set of instances of the 2D red-blue line
segment intersection-counting problem. In fact, we show that the instances of red-blue line segments

that we have to process have characteristics that allow us to develop a simpler algorithm for

counting intersections. �is new intersection counting algorithm performs faster in practice than

existing algorithms that solve the general red-blue line segment intersecting problem [22]. We also

show how to parallelize our algorithm while keeping the overall work (time-processor product)

the same. In particular, we present an adaptation of our algorithm in the CREW PRAM model [18],

which requires O (log
2 n) time and O (n log

2 n) work. We implement the Naive O (n2) algorithm, as

well as four variations of our algorithm: RedBlue employs an existing red-blue segment intersection

counting algorithm [22], while Sweep, ParAoT, and LinPar implement three versions of our new

intersection counting technique. Both ParAoT and LinPar allow for parallel execution of an

arbitrary number of compute threads to improve performance. LinPar employs a space-e�cient

data structure to reduce the O (n logn) memory required by the simpler ParAoT.

We evaluate the performance of our implementations on large synthetic and real-world datasets,

showing that all four implementations of our algorithm outperform the naive solution by several

orders of magnitude. Additionally, we show that implementations employing our new intersection

counting algorithm are able to reduce execution time by up to 18.69x over the existing general-case

solution. We provide a detailed analysis of the performance of our two parallel implementations

on two hardware platforms. Results indicate that our space-e�cient solution, LinPar, provides the

highest peak performance and is capable of processing over 100 million vertices in under 3 minutes,

achieving up to 85% parallel e�ciency.

2 PRELIMINARIES
Let T [1..n] be a one-dimensional terrain, that is an array of cells in R1

. Element T [i] stores the

elevation hi of the i-th cell of the terrain. �e array T de�nes an x-monotone polyline obtained

by connecting the vertices pi := (i,hi ) for i = 1, . . . ,n in order. Let P = (p1,p2, . . . ,pn ) denote

the sequence of these vertices ordered by their x-coordinates, and let P[l : r ] denote the subset of

vertices (pl , . . . ,pr ). We say that a vertex pj is visible from pi (pi sees pj ), if all vertices pk between

pi and pj lie strictly below the segment pipj . Based on this de�nition, we conclude that a vertex is

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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1:4 P. Afshani et al.

pj

pi pipj

cleft(pj)
cright(pi)

pipjpi

pj

cright(pi)

cleft(pj)

Fig. 2. Illustration of the intuition behind Lemma 2.1. Le�: example where both points are above critical

rays. Right: example where a point is below a critical ray.

visible from itself, and if vertex pj is visible from vertex pi , then pi is also visible from pj . We de�ne

the visibility ray from pi to pj , denoted
−−→pipj , as the ray that starts at pi and passes through pj . We

de�ne the visibility ray
−−→pipi as the vertical ray that crosses pi and points downwards. Let νvert (pi )

denote the ray that starts at pi and points vertically up. We de�ne the angle of the visibility ray

−−→pipj as the smallest angle between
−−→pipj and νvert (pi ). We use α (−−→pipj ) to denote this angle.

One of the key concepts that we use in our analysis is that of the critical ray. Let l , i , and r
be three positive integers such that l ≤ i ≤ r ≤ n. �e le� critical ray of point pi with respect

to P[l : r ], is the visibility ray
−−−→pips with the smallest α (−−−→pips ) among all rays

−−−→pipk with l ≤ k ≤ i .
We denote this ray by cle� (pi , P[l : r ]). If i = l then cle� (pi , P[l : r ]) is de�ned as the ray pointing

vertically down from pi . �e right critical ray, denoted cright (pi , P[l : r ]), of pi is the visibility ray

−−→pipt (i ≤ t ≤ r ) with the smallest α (−−→pipt ) (or pointing vertically down from pi if i = r ). See Figure 1

for an illustration of these rays. We can use critical rays to determine visibility between two points,

as the following lemma shows.

Lemma 2.1. Two points pi ∈ P[l : k] and pj ∈ P[k + 1 : r ] are visible from each other if and only if
pi is above cle� (pj , P[k + 1 : r ]) and pj is above cright (pi , P[l : k]).

Proof. Let cright := cright (pi , P[l : k]) be the right critical ray of pi and let cle� := cle� (pj , P[k + 1 :

r ]) be the le� critical ray of pj . Consider the line segment pipj . Assume that pi is above cle� and

that pj is above cright. �en all points P[i : k] are below pipj , since by de�nition they lie below or

on cright.

Symmetrically, all points P[k + 1 : j] are below pipj , due to cle�. Hence pi and pj are visible

from each other. Now assume that pi and pj are visible from each other. �at means that all points

P[i + 1 : j − 1] are below pipj . All points that can possibly determine cright and cle� are therefore

also below pipj . Hence pi is above cle� and pj is above cright. �

Figure 2 illustrates the intuition behind the previous lemma. Note that, while we use the

restriction that visibility requires points to be above critical rays, this is just a ma�er of de�nition.

Changing our visibility de�nition to include equality would not change the overall algorithm design

or performance.

3 DESCRIPTION OF THE ALGORITHM
Let T be a one-dimensional terrain and let P be the set of its vertices. To compute the total

visibility-index on T , we consider the following divide-and-conquer approach: �rst, we split the

input polyline P into two subsets of equal size, and we recursively continue this process. A�er

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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An E�icient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:5

computing the total visibility-index for each trivial base case, we move up in the hierarchy of

recursive calls. At each step, we combine the results that we computed for two consecutive subsets

P[l : k] and P[k + 1 : r ] to produce the total visibility-index for subset P[l : r ]. For each subset that

we process, together with computing the visibility-index for each vertex p in the subset, we also

construct the le� and right critical ray of p with respect to this subset. At any point during this

recursive execution, we use an array VisIndex such that VisIndex[i] stores the total visibility-index

of pi computed in all previous levels of recursion. Suppose that, at some point during this recursion,

we have already calculated the total visibility-index for two subsets P[l : k] and P[k + 1 : r ], and

we need to produce the result for their union P[l : r ]. To do this, we need to compute for each

pi ∈ P[l : k] the number of vertices of P[k + 1 : r ] that are visible to pi and add this number

to VisIndex[i]; similarly, for each pj ∈ P[k + 1 : r ] we need to compute the number of points of

P[l : k] that are visible from pj and add this to VisIndex[j]. We de�ne Bipartite Visibility as this

problem of �nding the number of visibile vertices only between elements of two distinct subsets. In

order to reduce each recursive step of our divide-and-conquer algorithm to an instance of Bipartite

Visibility, we de�ne the following invariants that must be satis�ed for each pi ∈ P[l : k], resp.

pj ∈ P[k + 1 : r ]:

• VisIndex[i], resp. VisIndx[j], has been computed within P[l : k], resp. P[k + 1, r ],

• cright (pi , P[l : k]) and cle� (pi , P[l : k]) correspond to the maximum and minimum slope

rays, respectively, between pi and any pk ∈ P[l : k],

• symmetrically, cright (pj , P[k + 1 : r ]) and cle� (pj , P[k + 1 : r ]) correspond to the maximum

and minimum slope rays, respectively, between pj and any pm ∈ P[k + 1 : r ].

Additionally, we consider that the upper convex hulls of P[l : k] and P[k+1] have been computed

in the previous recursive step. �ese are needed to update the critical rays for the next recursive

step (this process is detailed in Section 3.3). With the above invariants satis�ed, we solve an instance

of Bipartite Visibility to compute the number of visible vertices between the two distinct subsets

P[l : k] and P[k + 1 : r ]. We denote the entire divide-and-conquer algorithm that computes the

total visibility-index of P as 1DVisibilityIndex. �e runtime of 1DVisibilityIndex on P is given

by the recurrence τ (n) = 2τ (n/2) + f (n), where f (n) is the time it takes to solve Bipartite Visibility

for P[1 : n/2] and P[n/2+ 1 : n]. �erefore, the algorithmic performance of this divide-and-conquer

approach depends on an e�cient solution for Bipartite Visibility. �is section focuses on describing

an algorithm that solves Bipartite Visibility in O (n logn) time, leading to:

Theorem 3.1. LetT be an 1D terrain that consists of n vertices. We can compute the total visibility-
index of T in O (n log

2 n) time, using O (n) space.

Let P[l : k] and P[k + 1 : r ] be two parts of the terrain for which we want to solve Bipartite

Visibility. Recall that for all vertices in P[l : k] we have already computed the right critical rays

with respect to P[l : k], and for all vertices in P[k + 1 : r ] we have computed the le� critical rays

with respect to P[k + 1 : r ]. Let pi be a vertex in P[l : k], and let pj be a vertex in P[k + 1 : r ].

Recall that, according to Lemma 2.1, vertices pi and pj are visible to each other if both pj lies above

the right critical ray of pi , and pi lies above the le� critical ray of pj . �erefore, to compute the

number of vertices in P[k + 1 : r ] that are visible from pi , we could explicitly check if this condition

holds for each pj in P[k + 1 : r ]. �is method, however, is ine�cient as it requires that we check all

possible pairs of vertices pi , pj s.t. pi ∈ P[l : k] and pj ∈ P[k + 1 : r ].

We improve on this naive solution by using geometric duality [7]. Instead of handling the actual

critical rays of the input points, we dualize these rays: we construct exactly one dual half-line for

the right critical ray of each vertex in P[l : k], and one dual half-line for the le� critical ray of

each vertex in P[k + 1 : r ]. We refer to the duals of the right critical rays as the red half-lines, and

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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1:6 P. Afshani et al.

the duals of the le� critical rays as the blue half-lines. We detail the construction of these dual

half-lines in Section 3.1. As we will show with Lemma 3.2, we can construct the dual half-lines in

such a way that the following property holds; a vertex pi in P[l : k] and a vertex pj in P[k + 1 : r ]

are visible if and only if the duals of their critical rays intersect. Hence, to compute the number of

vertices in P[k + 1 : r ] that are visible from pi , it su�ces to count the number of blue half-lines that

intersect with the dual of cright (pi , P[l : r ]) (which is a red half-line). �us, to solve this instance

of Bipartite Visibility, we need to count, for each red and each blue dual half-line, the number of

intersections that it induces with half-lines of the opposite color. In Section 3.1 we describe how

we can do this e�ciently in O (n logn) time.

In addition to computing Bipartite Visibility, at each recursive step of 1DVisibilityIndex, the

critical rays of each vertex must be updated with respect to the subset containing it (e.g., P[l : k]).

�erefore, a�er computing Bipartite Visibility between P[l : k] and P[k + 1 : r ], we must update

the critical rays of each vertex with respect to P[l : k] ∪ P[k + 1 : r ]. We detail the process of

updating critical rays in Section 3.3. �e remainder of the current section details the steps of

1DVisibilityIndex, with the pseudocode of the overall algorithm presented in Algorithm 1. In

Section 3.1 we explain how we solve Bipartite Visibility by adapting an existing red-blue line

segment intersection counting algorithm. We improve on this in Section 3.2, presenting our new,

simpler algorithm to solve Bipartite Visibility. In Section 3.3 we describe a fast method of updating

critical rays of each vertex at each recursive step.

�e approach that we describe for Bipartite Visibility is similar to the method used by Ben-Moshe

et al. [4] for computing the visibility graph between a set of points inside a polygon. However, since

their goal is to construct the actual visibility graph (which can have quadratic size with respect to

the input), they use an output-sensitive approach which is much slower than the methods that we

describe for counting red-blue line segment intersections.

Algorithm 1 1DVisibilityIndex (P, l, r, VisIndex, CriticalRays)

Input: array P of n points pi with elevations and two indices l and r .

Input: VisIndex[1..n], where VisIndex[i] denotes the visibility index of vertex pi before the call.

Output: VisIndex[i] = number of visible vertices in P[l : r ] for vertex pi with l ≤ i ≤ r .

Output: CriticalRays[i].le f t = cle� (pi , P[l : r ]) for l ≤ i ≤ r .

Output: CriticalRays[i].riдht = cright (pi , P[l : r ]) for l ≤ i ≤ r .

1 if l = r then
2 Set VisIndex[l] = 1

3 Set CriticalRays[l].le f t and CriticalRays[l].riдht to be rays pointing downward4

end
5 k ← b r−l

2
c + l

6 1DVisibilityIndex (T , l ,k,VisIndex ,CriticalRays)

7 1DVisibilityIndex (T ,k + 1, r ,VisIndex ,CriticalRays)

8 R ← {ρ (pi , P[l : k]) : l ≤ i ≤ k }, B ← {β (pi , P[k + 1 : r ]) : k + 1 ≤ i ≤ r }

9 Count (for each half-line) the intersections between R and B using RedBlueIntersectionCount

(R,B,VisIndex )

10 Update VisIndex with intersection counts

11 Update CriticalRays[i].riдht for every l ≤ i ≤ k

12 Update CriticalRays[i].le f t for every k + 1 ≤ i ≤ r

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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i

pi

0

current recursion interval

l rk

primal plane dual plane

cright

12

0 11

h

νvert

-20

0

-5 6

p∗i

c∗right

ρi

cleft

c∗left

0
βi

x

Fig. 3. An example of a terrain, its critical rays and their corresponding dual half-lines.

3.1 Constructing Dual Rays and Counting Red-Blue Intersections
In this section we describe how we utilize duality to reduce the Bipartite Visibility problem to

the red-blue line segment intersection counting problem. We can thereby solve it using existing

methods.

We de�ne the dual of a point pi : (i,hi ) as the line p∗i : y = ix − hi , and the dual of a line

l : y = ax + b as the point l∗ : (a,−b). Let P[l : r ] be a subset of consecutive vertices in the input

terrain. Consider vertex pi ∈ P[l : r ] with the critical rays cright (pi , P[l : r ]) and cle� (pi , P[l : r ])
lying along the lines y = arx +br and y = alx +bl , respectively. Let ρ (pi , P[l : r ]) be the dual of the

set of lines which pass through pi and have slopes strictly larger than ar and let β (pi , P[l : r ]) be

the dual of the set of lines which pass through pi and with slopes strictly smaller than al . Note that

for pi = (i,hi ), the dual objects ρ (pi , P[l : r ]) and β (pi , P[l : r ]) are collinear half-lines supported

by the line y = ix − hi (of positive slope, because 1 ≤ i ≤ n). However, ρ (pi , P[l : r ]) is de�ned

over x ∈ (ar ,+∞), thus its endpoint is c∗
right
= (ar ,−br ) and it extends to +∞, while β (pi , P[l : r ])

is de�ned over x ∈ (−∞,al ), thus its endpoint is c∗
le�
= (al ,−bl ) and it extends to −∞. Also note

that the half-lines are de�ned over open intervals (ar ,+∞) and (−∞,al ). �erefore, the endpoints

c∗
right

and c∗
le�

do not belong to the half-lines ρ (pi , P[l : r ]) and β (pi , P[l : r ]), respectively. Refer to

Figure 3 for an example.

Lemma 3.2. Consider two points pi ∈ P[l : k] and pj ∈ P[k + 1 : r ] and the critical rays
cright (pi , P[l : k]) and cle� (pj , P[k + 1 : r ]), then pi and pj are visible from each other if and only if
there is an intersection between dual half-lines ρ (pi , P[l : k]) and β (pj , P[k + 1 : r ]).

Proof. Suppose pi and pj are visible from each other. Consider the line l that passes through

pi and pj . �e dual of l is a point l∗. By Lemma 2.1, pi must be above cle� (pj , P[k + 1 : r ]).
�erefore, the slope of l must be smaller than the slope of cle� (pj , P[k + 1 : r ]) and, consequently,

l∗ ∈ β (pj , P[k + 1 : r ]). Similarly, by Lemma 2.1, pj must be above cright (pi , P[l : k]). �erefore, the

slope of l must be larger than the slope of cright (pi , P[l : k]) and, consequently, l∗ ∈ ρ (pi , P[l : k]).
Since dual point l∗ belongs to both dual half-lines, they must be intersecting at l∗.

Suppose β (pj , P[k + 1 : r ]) and ρ (pi , P[l : k]) intersect at the dual point q∗. �e dual point q∗

corresponds to a line q that goes through both pi and pj . Since q∗ ∈ ρ (pi , P[l : k]), the slope of q
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1:8 P. Afshani et al.

must be larger than the slope of cright (pi , P[l : k]), i.e. pj must be above cright (pi , P[l : k]). Similarly,

since q∗ ∈ β (pj , P[k + 1 : r ]), the slope of q must be smaller than the slope of cle� (pj , P[k + 1 : r ]),
i.e., pi must be above cle� (pj , P[k + 1 : r ]). �erefore, by Lemma 2.1 pi and pj are visible from each

other. �

Lemma 3.2 allows us to solve the Bipartite Visibility problem by computing for each dual half-line

β (pj , P[k + 1 : r ]), how many half-lines ρ (pi , P[l : k]) it intersects, and vice versa. �e next lemma

is important for �nding an e�cient intersection counting algorithm.

Lemma 3.3. Let pi and pj , i , j, be two points in P[l : k]. �en the dual half-lines ρ (pi , P[l : k])
and ρ (pj , P[l : k]) do not intersect. Similarly, β (pi , P[l : k]) and β (pj , P[l : k]) do not intersect.

Proof. Suppose for the sake of contradiction that ρ (pi , P[l : k]) and ρ (pj , P[l : k]) do in-

tersect, which means that there is a visibility line pipj between the pi and pj (in the primal

plane). It also means that both cright (pi , P[l : k]) and cright (pj , P[l : k]) fall below pipj (i.e.,

α (−−→pipj ) < α (cright (pi , P[l : k])) and α (−−→pipj ) < α (cright (pj , P[l : k]))). By the de�nition of the critical

ray, no visibility ray between two points in P[l : k] can have a smaller angle α than the critical

ray. Hence the angle must be equal to that of the critical ray and therefore the visibility line is the

critical ray. �is means that the intersection is at the starting point of the dual half-line. �e starting

point of a dual half-line is not considered part of the dual half-line and therefore ρ (pi , P[l : k]) and

ρ (pj , P[l : k]) do not intersect. �e proof for β (pi , P[l : k]) and β (pj , P[l : k]) is symmetric. �

Palazzi and Snoeyink [22] present an algorithm that computes, in O (n logn) time, the total

number of intersections between a set of non-self-intersecting (red) line segments and another

set of non-self-intersecting (blue) segments. Half-lines are a special case of line segments, where

one endpoint is at∞ (or −∞). We note that the algorithm by Palazzi and Snoeyink produces only

the total number of red-blue intersections (i.e., a single number), while we require intersection

counts for each half-line. However, it is easy to modify their algorithm to produce the desired result

without impacting asymptotic performance.

3.2 A Practical Algorithm for Red-blue Intersection Counting
While using the (modi�ed) red-blue segment intersection algorithm of Palazzi and Snoeyink [22]

provides an O (n logn) solution to Bipartite Visibility, it works for any red-blue line segments. As a

result it is more complex than it has to be for our problem. Instead, in this subsection we present a

simple plane sweep algorithm to count the intersections between duals of right and le� critical

rays. �is plane sweep algorithm exploits some features of the dual half-lines of critical rays.

Let R = {ρ (pi , P[l : k])} and B = {β (pj , P[k + 1 : r ])}, be the set of red and blue self-non-

intersecting half-lines (i.e., no half-lines intersect others of the same color). To describe our

algorithm, we need to introduce some more notation. We denote the x- and y-coordinate of a vertex

p by px and py , respectively. Given any half-line λ, we denote its endpoint by λx,y and the x- and

y-coordinates of the endpoint by λx and λy , respectively, i.e., λx,y = (λx , λy ). �e y-coordinate of λ
evaluated at x is denoted by λ(x ). �at is, if λ is de�ned at x then vertex px,λ (x ) = (x , λ(x )) ∈ λ. If

λ is not de�ned at x , then we say λ(x ) is unde�ned. Finally, we say a vertex q is above (resp. below)

a half-line λ, if λ(qx ) is de�ned and qy > λ(qx ) (resp. qy < λ(qx )). If λ(qx ) is unde�ned, then the

above-below relationship between q and λ is unde�ned.

�e following lemma is the key for developing a simple plane sweep algorithm for our red-blue

half-line intersection counting problem.

Lemma 3.4. Any two half-lines ρ ∈ R and β ∈ B intersect if and only if the endpoint ρx,y is above
β and the endpoint βx,y is above ρ.
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β1

β2

β3

β4

ρ

B(ρ) = {β2, β3}

B(ρ) = {β3, β4}

Fig. 4. An illustration of B (ρ) and B (ρ).

β1

β2

ρ1

ρ2

ρ3

π′(ρ1) = β1

π(β1) = ρ1

π′(ρ3) = ∅

π′(ρ2) = β2

π(β2) = ρ1

Fig. 5. Illustration of π ′(ρ) and π (β ) for several half-
lines.

Proof. Suppose ρx,y is above β and βx,y is above ρ. �ere must be a point q with ρx < qx < βx
s.t. ρ (qx ) = β (qx ). Since ρ is continuous for all x ≥ ρx and β is continuous for all x ≤ βx , ρ and β
intersect at qx .

In the primal space, all points from the le� merge set have smaller x-coordinates than any point

from the right set. �erefore, all ρ ∈ R have a smaller slope than all β ∈ B. It follows that, if ρ
and β intersect at q, then ρ (a) > β (a) and β (b) > ρ (b) for all a < qx < b. Since ρx has the smallest

x-coordinate for which ρ is de�ned, then ρx < qx . �erefore, ρx,y is above β . Conversely, βx is the

largest x-coordinate of β , so βx > qx . �us, βx,y is also above ρ. �

To compute the number of blue half-lines in B that each ρ ∈ R intersects, consider the following

subsets of blue half-lines (see Figure 4):

• B (ρ): blue half-lines β ∈ B with endpoints that are above ρ (i.e., βy > ρ (βx ))
• B (ρ): blue half-lines β ∈ B that are below ρx,y (i.e., β (ρx ) < ρy )

By Lemma 3.4, the set of blue half-lines which intersect ρ is B (ρ) ∩ B (ρ) and by the inclusion-

exclusion principle, its cardinality is |B (ρ) | + |B (ρ) | − |B (ρ) ∪B (ρ) |. Note that B (ρ) ∪B (ρ) is the

set of all blue half-lines with x-ranges that overlap with ρ, i.e. B (ρ) ∪ B (ρ) = {β ∈ B : βx > ρx }.
Figure 4 shows an example for a single red half-line and four blue half-lines.

Similarly, we de�ne R (β ) and R (β ) and the number of red half-lines that intersect β is equal to

|R (β ) | + |R (β ) | − |R (β ) ∪ R (β ) |. �us, it remains to compute each of these quantities.

3.2.1 Computing |B (ρ) | and |R (β ) |. To compute |B (ρ) | we sweep the dual plane from right

to le� with a sweep line ` which is perpendicular to the x-axis. During the sweep, we maintain

a balanced binary search tree (BST) T which stores all blue half-lines β that intersect `, ordered

by their slopes. Since blue half-lines do not intersect each other and continue to −∞, this is the

same order as the order of the blue half-lines by decreasing slopes. �us, every time the sweep line

encounters a blue half-line end point βx,y , we insert β to T . Whenever the sweep line encounters

the endpoint ρx,y of a red half-line, the number of blue half-lines below ρ is equal to the number

of blue half-lines β with y-coordinate β (ρx ) smaller than ρy . And since all blue half-lines in T

are de�ned at the time of the sweep, the above-below relationship between the endpoint ρx,y and

all blue half-lines in T is well-de�ned. �us, we can compute |B (ρ) | by performing a search in
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1:10 P. Afshani et al.

β1

β2ρ1

ρ2

ρ3

β3

β5

β4

sweep line

π(β4) π(β3) π(β2) π(β5)
ρ3 ρ2 ρ2 ρ1

query: ρ2

|B(ρ2)| = 3

T

Fig. 6. Example of the plane sweep algorithm used to find |B (ρ) |. The vertical sweep line moves from right

to le� and, when a blue endpoint βx,y is encountered, π (β ) is added to the search tree T . When the sweep

line encounters a red endpoint ρx,y , the tree is queried by the slope of ρ. The number of leaves in the search

tree that have slopes greater than or equal to the slope of ρ is equal to |B (ρ) |.

T , comparing ρy to β (ρx ). �e rank of ρy in the set of blue half-lines in T gives us |B (ρ) | – the

number of blue half-lines below ρ.

To implement this plane sweep, we need to sort B and R by the x-coordinates of their endpoints.

Each insertion of a blue half-line in T takes O (logn) time. We can compute the rank of ρy in T in

O (logn) time by augmenting each node v of T with the size of the subtree rooted at v . �us, the

total computation of |B (ρ) | for all ρ ∈ R takes O (n logn) time.

Note that the size of T when the sweep line encounters ρx,y is |B (ρ) ∪ B (ρ) | – the number of

blue half-lines whose x-ranges overlap with ρ. During the computation we also record for each red

half-line ρ the blue half-line π ′(ρ) that is immediately below ρ (the predecessor of ρy in the T ).

Refer to Figure 5 for an illustration.

Computation of |R (β ) | is symmetric, with the sweep being performed from le� to right. During

the computation, we also record |R (β ) ∪ R (β ) | and π (β ) — the red half-line that is immediately

below the endpoint of β . �e concepts of π (β ) and π ′(ρ) will be used for computing |B (ρ) | and

|R (β ) |, respectively.

3.2.2 Computing |B (ρ) | and |R (β ) |. �e following description focuses on the computation of

values |B (ρ) |; the computation of |R (β ) | is symmetric. Since computing |B (ρ) | and |R (β ) | entails

counting half-lines below each given endpoint, the above-below relationship is well-de�ned at the

time the sweep line hits the endpoint in question. Here, instead, we are counting the number of

points above a half-line, which must be counted for every half-line. To accomplish this e�ciently,

we assume that we have already computed π (β ) for each blue half-line β as described in Section 3.2.

To compute |B (ρ) | we sweep a vertical line from right to le� (refer to Figure 6 for an illustration).

During the sweep we maintain a balanced binary search tree (BST) T on the slopes of π (β ). �at is,

when the sweep line encounters an endpoint of a blue half-line β and π (β ) is de�ned, we insert the

slope of π (β ) into T . If π (β ) is unde�ned, there is no red half-line below the end point of β and

since each red half-line ρ is de�ned for all x ≥ ρx , the endpoint of β does not lie above any red

half-line and can be safely ignored.
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An E�icient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:11

At time ρx of the sweep, that is when the sweep line encounters a red half-line end point ρx,y ,

the number of entries in T that are greater than or equal to the slope of ρ is equal to the number of

blue half-line endpoints above ρ. To see this, observe that when ρx is encountered, tree T contains

all blue half-line endpoints that have a well-de�ned above-below relationship with ρ. Since the

red half-lines do not intersect other red half-lines, the ordering of the slopes of the red half-lines

is equivalent to the above-below relationship among the red half-lines which are de�ned at ρx .

�e above-below relationship between red half-lines and blue half-line endpoints de�nes a partial

order, which means that if βx,y is above ρ1, both ρ1 and ρ2 are de�ned at βx and ρ1 (βx ) > ρ2 (βx ),
then βx,y is also above ρ2. Consequently, the set of endpoints of blue half-lines above ρ is equal

to the set of blue half-lines β with slopes of π (β ) greater than the slope of ρ. See Figure 6 for an

illustration of this plane sweep.

Given the above, whenever the sweep line encounters an endpoint of a red half-line ρ, we

perform predecessor/successor query on T using the slope of ρ to �nd the number of points above

ρ. Maintaining and querying T take O (logn) time per blue half-line endpoint (insertion) or red

half-line endpoint (query), resulting in O (n logn) time overall to compute |B (ρ) | for each half-line

ρ.

3.3 Maintaining Critical Rays
Our overall divide-and-conquer algorithm relies on the knowledge of the critical rays at the

beginning of each recursive call. At the base case, subset P[l : r ] contains only one point. �erefore,

both le� and right critical rays of that point are directed vertically downward. �erea�er, at the

end of each recursive call, we update these rays by recomputing only the right critical ray for each

point in P[l : k] and the le� critical ray for each point in P[k + 1 : r ]. To do this, we need the next

lemma.

Lemma 3.5. �e tangent from pi ∈ P[l : k] to the upper convex hull of all vertices in P[k + 1 : r ] is
the critical ray cright (pi , P[l : r ]) if and only if the vertex pt on the hull that the tangent goes through
is visible to pi . Symmetrically, the tangent pj ∈ P[k + 1 : r ] to the upper hull of vertices in P[l : k] is
the critical ray cle� (pj , P[l : r ]) if and only if the tangent point pt ′ on the hull is visible to pj .

Proof. We �rst prove that only points on the upper hull of P[k + 1 : r ] can be candidates for

de�ning cr iдht (pi , P[l : r ]). Suppose that pt is the point in P[k +1 : r ] that de�nes cr iдht (pi , P[l : r ])
and thatpt does not fall on the upper convex hull of P[k+1 : r ]. By de�nition, no point in P[k+1 : r ]

can fall outside the upper hull of the same point set, therefore pt must fall inside the hull. In that

case, the ray that starts from pi and goes through pt intersects the upper hull of P[k + 1 : r ]. Let p ′

be this intersection point, and let p ′′ be the vertex of the upper hull which is exactly to the right of

p ′. �en p ′′ is visible from pi , which contradicts the assumption that pj de�nes cr iдht (pi , P[l : r ]).
Let pt be the point on the upper hull, such that the tangent goes through pt . If pt is not visible

to pi , then there is a point pk s.t. t < k < i that is above the visibility ray
−−→pipt . Since the tangent

from pi to the upper hull goes through pt , pk must not be in the set encompassed by the upper hull.

�erefore pk is in the set included with pi and the previous critical ray of pi is steeper than the

tangent, so the tangent is not cright (pi , P[l : r ]).
If, however, pt is visible to pi , then cright (pi , P[l : k]) falls below pt . Furthermore, the visibility

ray from pi to other points on the upper hull are below the tangent (by property of tangents) and

therefore the tangent is the only visibility line that is not below any other point of the upper hull.

Hence the tangent is cright (pi , P[l : r ]). �e proof involving cle� (pj , P[l : r ]) is symmetric. �

�us, to update cle� (pi , P[l : r ]) and cright (pi , P[l : r ]) we utilize the upper convex hulls of P[l : k]

and P[k + 1 : r ] (computed in the previous recursive step), and for every point in these two subsets
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1:12 P. Afshani et al.

we construct the tangent to the hull of the opposite subset. To construct the P[l : r ] for the

next recursive step, we simply merge our two upper hulls in O (n) time. Computing tangents is

equivalent to binary searches, which takes O (logn) time per tangent for a total of O (n logn) time.

Combining this with the rest of the analysis presented in Section 3, we conclude that we can solve

each recursive level of 1DVisibilityIndex in O (n logn) time. Hence, the total running time of

algorithm 1DVisibilityIndex is O (n log
2 n).

4 PARALLEL EXTENSION
Persistence [8] is a technique for e�ciently maintaining all past versions of a dynamic structure

for future queries. An o�ine persistent binary search tree supports all standard update operations

given up-front. Since all updates and queries are known before construction, all the updates can be

built into the data structure during construction, allowing queries to be performed on any of its past

versions. Each of these queries can be performed independently of each other. �us, if a balanced

o�ine persistent tree can be built e�ciently in parallel, n queries can be answered in parallel

in O (logn) time using n processors, i.e., in O (n logn) work, in the CREW PRAM model. O�ine

persistent BSTs can be used to solve some problems that are typically solved using a plane sweep

algorithm. �erefore, in this section we detail the two o�ine persistent BST structures that we use

to solve our red-blue line segment intersection problem (and thus solve Bipartite Visibility). Note

that all other operations performed by our divide-and-conquer algorithm (described in Section 3)

can be easily parallelized: all n critical rays can be updated concurrently inO (logn) time and, using

these critical rays, we can merge upper convex hulls in O (1) time and O (n) work.

If we can implement the search tree used in the plane sweep of Section 3 as an o�ine persistent

BST, we can perform the sweep in O (logn) time and O (n logn) work. �us, the parallel runtime

and work of the overall algorithm can be de�ned by the recurrences Φ(n) = Φ(n/2) +O (logn) =
O (log

2 n) andW (n) = 2W (n/2) +O (n logn) = O (n log
2 n), respectively. �is yields the following

theorem.

Theorem 4.1. �e 1D total visibility-index problem can be solved inO (log
2 n) time andO (n log

2 n)
work in the CREW PRAM model.

�e work complexity of the parallel algorithm matches our sequential algorithm runtime, which

is the best we can hope for from a parallel algorithm.

We identify two o�ine persistent BST structures that we can use to solve Bipartite Visibility in

parallel. In Section 4.1 we present an overview of these structures and in Section 4.2 we describe

some relevant details of our implementations that leverage these structures.

4.1 Overview of persistent BST structures
In this subsection we provide overviews of two o�ine parallel BST structures that we employ: the

array-of-trees [3] and the linear-space persistent BST [6]. We refer interested readers to [3] and [6],

where the structures and techniques are presented in detail.

Array-of-trees. Atallah et al. [3] describe a data structure that they call array-of-trees, which

implements a persistent search tree and can be built in the CREW PRAM model inO (logn) time and

O (n logn) work. Hence, we can implement the tree structure used in the plane sweep of Section 3.2

as an array-of-trees, and thus perform the sweep in O (logn) parallel time and O (n logn) work.

Our �rst parallel implementation replaces each plane sweep operation described in Section 3.1

with the construction and querying of an array-of-trees (AoT). AoTs are constructed by starting

with the input data as a set of pairs (key k , time t ), sorted by k . �is initial dataset becomes the

leaf level of the AoT, on top of which the structure can be constructed bo�om-up by a variation of
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1 3 4 5 7 9 12 14

4 7 5 2 8 1 3 6Time (t)

Values (v)

0 1 1 01 0 0 1

0 0 0 11 1 1 0

0 01 1 1 10 0

2 41 3 6 85 7Sorted time (t)

Fig. 7. Illustration of how a LPBST is constructed.

merge sort on t . At each level, pairs of sets are merged to form parent nodes, consisting of all of

the t values of its children in sorted order. Each t value also maintains pointers to the elements in

each child node with largest tchild , s.t. tchild ≤ t . �e top level of the AoT contains a single list

sorted by t , with each element corresponding to a root node of a BST, searchable by key k .

�erying the AoT involves two steps: 1) �nding the correct root and 2) querying the corre-

sponding BST. Since the top level of the AoT is a list sorted by t , the correct BST can be found by

performing a binary search using the query time. �e associated BST can then be searched with

the query key. Each of these two steps requires O (logn) work per query and replacing a plane

sweep operation requires O (n) such queries. �us, an AoT can be used in place of a plane sweep

and requires O (logn) time and O (n logn) work in the CREW PRAM model.

While the AoT structure can be constructed simply and allows for easy parallelization, its primary

drawback is the space requirement. At each level of the structure, O (n) elements are stored, so the

total structure requires O (n logn) space. When using an AoT to replace plane sweep operations on

a large dataset, the memory requirement may become detrimental to overall performance.

Linear Space Persistent BST. To avoid the O (n logn) space requirement of the AoT data struc-

ture, we consider a more complex data structure. Chazelle and Edelsbrunner [6] present a technique

to solve some types of range queries using onlyO (n) additional space in the word-RAM model [16].

Recall that the AoT data structure, described above, allows querying at any time t by storing O (n)
key values (and pointers) at each level. �e linear-space persistent BST (LPBST) presented in [6],

however, stores only O (n) bits at each level, resulting in a total space requirement of O (
n logn
w ),

wherew is the number of bits stored in a word. If we assume a constant number of duplicate values,

w = Θ(logn). �us, a LPBST structure requires only O (n) space.

�e process of constructing a LPBST is similar to that of an array-of-trees. An input of pairs

(key k , time t ), sorted by key (k) is provided as input. As with an AoT, the LPBST structure can be

built bo�om-up by merging pairs of elements, resulting in sublists sorted by t . However, unlike

AoTs, “nodes” of a LPBST store only a single bit per merged element to identify which child list the

element came from. A 0, resp. 1, bit is stored if the element was merged from the le�, resp. right list.

�is merging process is repeated until all logn levels are merged, resulting in a list sorted by t (and

n logn bits are stored). Figure 7 illustrates an example of the construction of a LPBST. Note that,

since each bit within a node represents which subtree (le� or right) a particular value came from,

the total number of 0 or 1 bits represents the sizes of a nodes’ le� and right subtrees, respectively.
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1 3 4 5 7 9 12 14

4 7 5 2 8 1 3 6Time (t)

Keys (k)

0 1 1 01 0 0 1

0 0 0 11 1 1 0

0 01 1 1 10 0

2 41 3 6 85 7Sorted time (t)

Query: (t ≤ 5,k ≤ 9)

result = 4

subL = 3
subR = 2

subL = 1
subR = 1

Fig. 8. Example of a query being performed on a LPBST.

A given query (Qt ,Qk ) asks to �nd the number of elements that have time t ≤ Qt and key

k ≤ Qk . �erefore, querying involves �rst �nding the rank of Qt in the sorted list of time values

(rank (Qt )). Since any entry in the root node with index i > rank (Qt ) cannot match the query, the

query we continues down the BST, concerned only with bits of index i ≤ rank (Qt ). �e query

process then obtains the le� and right subtree sizes, subL and subR , by counting the number of

bits with 0s and 1s, respectively (with index i ≤ rank (Qt )). Since the LPBST is a BST on keys, the

query process simply traverses the tree while counting bits to determine subL and subR at each

node. �ese subtree sizes are used count the total number of query matches. Figure 8 provides an

example illustrating how a query is performed on a linear space persistent BST.

Computing subL and subR for a given node is accomplished by performing a pre�x sum operation

on the bits contained in the node. While scanning a node may take O (n) time, Chazelle and

Edelsbrunner [6] reduce the time to compute the pre�x sum of a node by storing partial pre�x sums

every logn bits within a node. �is only requires an additional O (n) space and, using a lookup

table to count bits within a word of logn bits, allows queries to be performed in O (logn) time.

�us, the LPBST can be used in place of some plane sweep operations and requires O (logn) time,

O (n logn) work, and O (n) additional space.

4.2 Implementation Details
Aside from our implementation of the Naive algorithm, all of our implementations employ the

divide-and-conquer approach described in Section 3. At each recursive level, we perform a total

of O (n logn) work. However, the size of each independent task depends on the recursive level

(e.g., at the lowest level, we determine visibility between pairs of vertices). �erefore, at low levels

of recursion, our parallel implementations are able to concurrently perform each task without

requiring parallelization. At the top level of recursion, however, we have a single task that must be

executed in parallel. �us, our parallel implementations a�empt to avoid parallelization overhead

by dynamically parallelizing tasks only when necessary at the top levels of recursion.

Both the construction and querying of AoTs and linear space persistent BSTs are similar in many

ways. �erefore, our implementations of these structures use many of the same methods. We

construct both structures bo�om-up by merging pairs of sublists while storing resulting values

(or bits). To perform this merging in parallel, we employ the techniques outlined in [18] to merge

two lists in O (logn) time and O (n) work. However, when constructing LPBSTs, e�ciently storing
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Fig. 9. Average runtime to construct a LPBST and perform 2
20

queries. The dark shaded portion of each bar

indicates construction time, while the remaining time is spent querying.

bits requires careful consideration. On modern CPUs, the smallest addressable unit of memory is a

byte (8 bits). �us, if we de�ne each bit independently (e.g., as a boolean datatype), each bit will

require 8 bits of storage space. To avoid wasting bits, we use bitwise operations to manually pack

bits of data into words of w bits each. We leave w as a parameter and empirically measure the ideal

con�guration for our hardware platforms.

While the querying process of these two structures is also similar, querying a LPBST requires

computing the pre�x sum of bits at each node. For our implementation, we store partial pre�x

sums every w elements. However, while Chazelle and Edelsbrunner [6] use lookup tables to count

bits within words of logn bits, we employ the popcount hardware operation. popcount is available

on our hardware platforms (described in Section 5.1) and returns the number of 1 bits in a word.

Since variations of popcount are available for words of 8, 16, 32, and 64-bits, our choice of w is

limited to these options.

Since our implementation stores a total of
n
w partial pre�x sum values, our choice of w a�ects

our space requirement. Furthermore, depending on the details of the popcount operation,w may

impact query performance. To determine the idealw value for our hardware platforms, we measure

the relative query and construction performance while varying w on a range of synthetic, random

datasets (see Section 5.2 for details on dataset construction). Figure 9 contains the average runtime

to build a LPBST and perform 2
20

queries on it on the Algoparc platform (detailed in Section 5.1).

Results indicate thatw = 64 provides the best performance for our hardware. �is is not surprising,

since smaller w values require that we store more partial pre�x sums. We use w = 64 for all

experiments herea�er unless otherwise noted. We note that larger w values may further improve

performance, but popcount is not available for larger word sizes and lookup tables would be far too

large to be practical.

5 EXPERIMENTAL RESULTS
In this section we present an empirical evaluation of the performance of our algorithms on synthetic

and real-world datasets. We develop �ve implementations: Naive, RedBlue, Sweep, ParAoT, and

LinPar. Naive employs theO (n2) algorithm described in Section 3 and is used as baseline. RedBlue,

Sweep, ParAoT, and LinPar all use the divide-and-conquer approach presented in Section 3 but

they di�er in the implementation of the half-line intersection counting step: RedBlue implements
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(a) Example elevation profile from Europe. (b) Example elevation profile from North America.

Fig. 10. Examples of elevation profiles from 2
16
-point slices of the Earth dataset (note the di�erent scales).

the Palazzi and Snoeyink [22] algorithm for red-blue line segment intersection counting, Sweep

implements the algorithm presented in Section 3 using plane sweep, ParAoT employs the array-of-

trees data structure described in Section 4, and LinPar uses the linear space structure, which is also

described in Section 4. Asymptotically, all four algorithms achieve O (n log
2 n) sequential running

time. However, RedBlue is more complex than our other implementations and has the poorest

performance in practice among our non-naive implementations. While all �ve implementations

run sequentially, ParAoT and LinPar can also run in parallel mode, using multiple threads to

improve performance. �ough they are both amenable to parallelization, ParAoT requires more

memory, while LinPar is more complex and relies on the hardware-speci�c popcount operation.

5.1 Methodology
All algorithms are implemented in C++ and compiled with gcc 4.8.5 using the -Ofast optimization

�ag. Parallel execution is performed using the openMP library that is included with the gcc

compiler. All geometric structures, predicates, and primitives used by all of our algorithms are

custom implementations. We use two hardware platforms for our evaluation. �e 4-core Algoparc

platform is comprised of an Intel Xeon E5-1620 processor (4-core, 3.6 GHz) and 16 GiB of RAM,

running the Ubuntu 16.04 operating system. Algoparc has hyperthreading enabled, providing

8 virtual cores. �e 20-core Uhhpc platform is comprised of two Intel Xeon E5-2680 processors

(10-core, 2.80 GHz), 128 GiB of RAM, and runs the Red Hat Server 6.5 operating system. Note that

Uhhpc has 2 CPU sockets, each with 4 memory channels to RAM and an independent L3 cache.

All experimental results are averaged over 10 iterations with error bars shown when signi�cant.

5.2 Datasets
We evaluate our algorithm implementations on three synthetic datasets. We consider a �at dataset

in which all points’ elevations are set to hi = 1, so that each point can only see its (at most two)

neighboring points. For this dataset, RedBlue, Sweep, ParAoT, and LinPar compute few intersec-

tions at each level of recursion, and thus provides a simple correctness case and a performance

baseline. We consider a parabolic dataset in which each point’s elevation is set to hi = i
2
, so that

every point can see every other point. For this dataset our four recursive implementations compute

many intersections at each level of recursion. Finally, we consider Random datasets in which point

elevations are uniformly sampled from the range [1,10
6
].

We also perform evaluations on datasets generated from real-world terrain maps. �e CGIAR-CSI

Global-Aridity and Global-PET Database [27, 28] consists of elevation data for the entire earth with

90-meter resolution. We extract 1-dimensional slices from 4 di�erent regions: Europe, Asia, Africa,
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Fig. 11. Results with all five implementations for the Random dataset.
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16
).

Fig. 12. Sequential Performance of our five implementations.

and North America. Each slice consists of 2
16

points (spanning ∼5000 km). For each of the four

regions, we extract ten East-West slices at 1 km North-South intervals. �ese slices lead to diverse

elevation maps, as seen in Figure 10.

5.3 Sequential Performance Results
We evaluate our sequential implementations on the Algoparc platform. Figure 11 shows average

runtime vs. dataset size (n) for synthetic random datasets. As expected, the quadratic complexity of

Naive results in much sharper runtime growth compared to theO (n log
2 n) algorithms. Additionally,

we see that the simpli�ed half-line intersection counting algorithm described in Section 3.1 gives

Sweep, ParAoT, and LinPar a signi�cant practical performance advantage over RedBlue.

Figure 12a shows average runtimes of our four sub-quadratic implementations for our three

classes of synthetic datasets ofn = 2
20

vertices (we omitNaive results since its runtime is prohibitive

for such a large n). �ese results con�rm that Sweep, ParAoT, and LinPar are consistently faster

than RedBlue, with an average decrease in runtime (across all synthetic inputs) of 5.56x, 6.51x, and
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(a) Algoparc platform. (b) Uhhpc platform.

Fig. 13. Parallel performance of the ParAoT implementation on real-world datasets for varying number of

compute threads, on each of our two hardware platforms.

12.70x, respectively. Figure 12a further reveals that Sweep has a signi�cant variance in execution

time across di�erent synthetic datasets, indicating that the overhead of maintaining and balancing a

large BST during the plane sweep has a major impact on algorithm performance. �e performance of

ParAoT and LinPar, however, are not as dependent on the dataset, and they therefore outperform

Sweep on all but the �at synthetic datasets. LinPar is our fastest implementation on all synthetic

datasets, decreasing runtime over ParAoT by 1.79x, 1.99x, and 2.11x on �at, parabolic, and random

inputs, respectively.

Figure 12b shows runtimes for each algorithm when applied to data from each region of our

real-world dataset, averaged over all 10 slices. As with synthetic datasets, Sweep, ParAoT, and

LinPar greatly outperform RedBlue with an average decrease in runtime of 5.72x, 8.25x, and

18.69x, respectively. We conclude that our simpli�ed half-line intersection algorithm provides a

signi�cant performance improvement over the general red-blue line segment intersection counting

algorithm [22] used by RedBlue. Furthermore, even sequentially, ParAoT and LinPar are faster and

more consistent that Sweep, indicating that the AoT and LPBST data structures provide an e�ective

alternative to plane sweep for this problem. Additionally, LinPar has a signi�cant performance

advantage over all of our other implementations, indicating that the reduced memory usage of

LinPar provides practical performance gains.

5.4 Parallel Performance Results
In addition to providing the performance bene�ts seen in the results above, the AoT and LPBST

structures are amenable to parallelization. In this section, we evaluate the performance of our

parallel implementations of ParAoT and LinPar.

To assess parallel performance from a practical standpoint, we present results obtained using

our real-world datasets. Figure 13 and Figure 14 show the average runtime of ParAoT and LinPar,

respectively, using our real-world datasets for various numbers of threads on our two hardware

platforms. While parallelization provides some performance improvement, the speedup is far from

the peak, especially as the number of threads increases. On the 4-core (8 virtual cores due to

hyperthreading) Algoparc platform, ParAoT and LinPar achieve a maximum speedup of 2.92 and

4.24, respectively, with 8 threads. On the Uhhpc platform, however, ParAoT and LinPar achieve
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(a) Algoparc platform (b) Uhhpc platform

Fig. 14. Parallel performance of the LinPar implementation on real-world datasets for varying number of

compute threads, on each of our two hardware platforms.
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Fig. 15. Average parallel speedup obtained on random inputs of varying size. Note that axis scales di�er.

a maximum parallel speedup of 3.86 and 7.39, respectively. Furthermore, while LinPar achieves

its maximum speedup with 16 threads, ParAoT achieves its maximum parallel speedup with only

8 threads and slows down when using 16 threads. We note that our real-world datasets contain

only 2
16

data points. On such small datasets, the a�ect of the cache system may signi�cantly

impact parallel performance. Both of our hardware platforms have L3 caches that can store more

than 2
16

elements (Algoparc and Uhhpc have L3 caches of 10MB and 25MB, respectively). �is

results in very fast sequential execution, limiting the achievable parallel speedup and increasing the

relative cost of parallel overhead (e.g., spawning new threads). We speculate that the large memory

requirement of the AoT data structure further increases the impact of the cache systems on parallel

speedup, resulting in the decrease in performance when using 16 threads on the Uhhpc platform.

To be�er understand the cause of the limited parallel performance on real-world datasets, we

perform a series of experiments on synthetic random datasets (for which we can vary the size)

using the (empirically) best number of threads for each hardware platform. Figure 15 shows the
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average parallel speedup vs. data set size on each hardware platform for ParAoT and LinPar. For

n = 2
16

vertices, parallel performance results are similar to our real-world results. As the dataset

size increases, however, parallel speedup increases for both implementations, on both hardware

platforms. At the largest input size ParAoT can process (due to memory requirements), we see

a maximum speedup of 3.51 and 7.25 on Algoparc and Uhhpc, respectively. ParAoT’s parallel

speedup remains well below expected parallel performance, especially for Uhhpc, where we would

expect a speedup nearing 16 for 16 threads. LinPar, however, achieves signi�cantly higher parallel

speedup, with a maximum of 5.46 and 13.60 on Algoparc and Uhhpc, respectively. We note that

the performance drop seen in Figure 15b when n = 2
27

on Algoparc is due to limited memory,

causing the system to begin swapping to disk. On Uhhpc, however, we have much more available

memory, and we see that LinPar continues to gain additional parallel speedup as we increase the

input size.

As discussed in Section 4, the array-of-trees data structure requires O (n logn) memory, while

LPBST requires only O (n) additional space. �e results in Figure 15 suggest that this memory

requirement may be causing ParAoT to be memory bound, resulting in a memory bandwidth

bo�leneck that limits parallel speedup. �is is supported by the fact that the parallel speedup

obtained by ParAoT on each hardware platform corresponds to the number of available memory

channels. Algoparc, while running 8 hardware threads, is limited by 4 memory channels and

achieves a maximum speedup of 3.51. Uhhpc has 8 memory channels (4 per socket) and achieves a

maximum speedup of 7.25, despite using 16 hardware threads. We speculate that LinPar, requiring

only linear additional space, does not su�er from this memory bo�leneck and is therefore able to

achieve much higher parallel speedup. We conclude that LinPar is our fastest implementation,

both sequentially and in parallel.

6 CONCLUSIONS
In this work, we presented an O (n log

2 n) algorithm to solve the 1D total visibility-index problem.

Our divide-and-conquer approach uses dualization to reduce the problem to logn instances of the

red-blue line segment intersection counting problem, each of which can be solved inO (n logn) time.

To the best of our knowledge, this is the �rst subquadratic-time algorithm to solve this problem.

We implemented and four versions of this algorithm and evaluated their performance on two

distinct hardware platforms. Each of our implementations solves the red-blue line segment inter-

section counting problem di�erently: RedBlue relies on an existing general-case solution, Sweep

uses a plane sweep algorithm, and ParAoT and LinPar employ persistent search tree data struc-

tures. While all four implementations have O (n log
2 n) asymptotic runtime and are at least an

order of magnitude faster than the naive O (n2) solution, their relative performance di�ers greatly.

Empirical results show that RedBlue is, on average, at least 5 times slower than our other three

implementations, indicating that our special-case red-blue line segment intersection counting

technique provides signi�cant performance gains. Furthermore, our two implementations that rely

on persistent data structures out-perform our plane sweep implementation on most synthetic and

all real-world datasets.

In addition to sequential performance gains over other implementations, ParAoT and LinPar

can leverage multiple threads to further improve performance. While both implementations achieve

parallel speedup on both of our hardware platforms, ParAoT’s performance gains are limited due

to its large memory requirement. LinPar, however, requires only O (n) extra space and, therefore,

achieves up to 85% parallel e�ciency on large synthetic datasets. Our fastest implementation �nds

the 1D total visibility-index of over 100 million vertices in under 3 minutes using 16 threads.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

An E�icient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:21

An interesting open problem is to determine whether the dualization used in our solution can

be applied to the 2D total visibility-index computation to achieve a subquadratic solution on two-

dimensional terrains. Another interesting avenue for future research is to see if our solution can

be applied for faster approximate solutions to the 2D total visibility-index problem by computing

total visibility-index on a number of 1D slices of the 2D terrain and then using interpolation to

approximate visibility indices to all points in the 2D terrain. Finally, this work indicates that

persistent data structures can be leveraged to improve the performance of algorithms that use plane

sweep approaches. A practical direction for future research is to apply these persistent structures

to improve the many existing algorithms that use plane sweep approaches.
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