An Efficient Algorithm for the 1D Total Visibility-Index
Problem and its Parallelization

PEYMAN AFSHANI, MADALGO, Aarhus University

MARK DE BERG, TU Eindhoven

HENRI CASANOVA, University of Hawaii at Manoa

BENJAMIN KARSIN, University of Hawaii at Manoa

COLIN LAMBRECHTS, TU Eindhoven

NODARI SITCHINAVA, University of Hawaii at Manoa
CONSTANTINOS TSIROGIANNIS, MADALGO, Aarhus University

Let T be a terrain and P be a set of points (locations) on its surface. An important problem in Geographic
Information Science (GIS) is computing the visibility index of a point p on P, that is, the number of points in P
that are visible from p. The total visibility-index problem asks for the visibility index of every point in P. Many
applications of this problem involve 2-dimensional terrains represented by a grid of n X n square cells, where
each cell is associated with an elevation value, and P consists of the center-points of these cells. Current
approaches for computing the total visibility-index on such a terrain take at least quadratic time with respect
to the number of the terrain cells. Finding a subquadratic solution to this 2D total visibility-index problem
remains an open problem. Furthermore, no subquadratic solution to the 1D version of this problem has been
proposed; in the 1D problem, the terrain is an x-monotone polyline, and P is the set of the polyline vertices.

We present an O(n log? n) algorithm that solves the 1D total visibility-index problem. Our algorithm is based
on a geometric dualization technique, which reduces the problem into a set of instances of the red-blue line
segment intersection counting problem. We also present a parallel version of this algorithm, which requires
O(log2 n) time and O(n 1og2 n) work in the CREW PRAM model. We implement a naive O(n?) approach
and four variations of our algorithm: one that uses an existing red-blue line segment intersection counting
algorithm and three new approaches that perform the intersection counting by leveraging features specific to
our problem. We present experimental results for both serial and parallel implementations on large synthetic
and real-world datasets, using two hardware platforms. Results show that all variants of our algorithm
outperform the naive approach by several orders of magnitude on large datasets. Furthermore, we show that
the fastest of our new intersection counting implementations reduces runtime by over 10 times, compared
with an existing red-blue line segment intersection counting algorithm. Our fastest parallel implementation is
able to process a terrain of more than 100 million vertices in under 3 minutes, achieving up to 85% parallel
efficiency over serial execution.

CCS Concepts: «Theory of computation — Computational geometry; Data structures design and analysis;
Parallel algorithms; Divide and conquer;

ACM Reference format:

Peyman Afshani, Mark de Berg, Henri Casanova, Benjamin Karsin, Colin Lambrechts, Nodari Sitchinava,
and Constantinos Tsirogiannis. 2017. An Efficient Algorithm for the 1D Total Visibility-Index Problem and its
Parallelization. ACM 3. Exp. Algor. 1, 1, Article 1 (January 2017), 22 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1084-6654/2017/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

16

15
16
AT
48
49

1:2 P. Afshani et al.

1 INTRODUCTION

Analyzing terrains to determine locations with special properties is a common objective in Geo-
graphic Information Science (GIS). One such property is visibility. In particular, one often wants to
find points on a terrain that are highly visible or, conversely, points that are hardly visible. Example
applications include the placement of telecommunication towers, placement of fire guard towers,
surveying archaeological sites, military logistics, or surveying building sites. Thus, in recent years
there has been a fair amount of work in the GIS literature dedicated to visibility analysis and
the computations it entails (see the survey by Floriani and Magillo [12]), with many proposed
algorithms [10, 11, 13, 17, 23, 24] as well as publicly available implementations [1, 2].

To automate terrain analysis, real-world terrains are approximated by digital models, with one
of the most popular models being the digital elevation model (DEM). A DEM is a grid of square
cells, where each cell is assigned an elevation (which typically corresponds to the elevation of the
point on the terrain that appears at the center of the cell).

Let terrain T be a grid with N = n? total cells. Two cells ¢ and ¢’ are visible from each other
if the line segment cc’ that connects their center-points does not cross on the xy-domain any
other cell g such that ¢g is steeper than cc’. We define the visibility index of cell ¢ € T to be
the number of cells in T that are visible from c. The total visibility-index problem (also known
as cumulative viewshed [25]) consists of finding the visibility index for every ¢ € T. One way
to solve the total visibility-index problem on T is to compute the viewshed of each cell ¢ of T,
that is, to explicitly compute for each cell ¢ which other cells of T are visible from c. With the
algorithm of Van Kreveld [24] this takes O(N log N) time per cell, leading to a total running time
of O(N?1log N). Even for moderately-sized DEMs this is infeasible in practice, let alone for modern
DEM datasets, which can consist of hundreds of millions of cells. One solution is to use a heuristic
that approximates the visibility [11, 23]. Another is to observe that computing the viewsheds
of different cells can be done independently, and to solve a large number of single-viewshed
computations in parallel [5, 9, 19, 20, 26]. Still, such approaches are not suitable for large DEMs.
The fundamental problem is that one cannot afford to explicitly compute all visible cells for each
cell ¢ of T, as this may produce an output of size Q(N?). Note that the total visibility index problem
does not require to explicitly compute the viewshed of each cell in T; it only requires to compute
the number of cells that are visible from each cell, therefore the output size for this problem is
O(N).

So far finding a subquadratic algorithm to solve the 1D total visibility-index problem remains an
open problem. Surprisingly, no efficient algorithm has been proposed even for the 1D version of the
problem. In the 1D problem, the terrain T is an x-monotone polyline with n vertices. Similar to the
2D problem, the goal in the one-dimensional version is to compute for each vertex v in the polyline
the number of vertices visible from v. We call this problem the 1D total visibility-index problem.
Note that on a 1D terrain T with n vertices, the visibility-index of a single vertex v can be computed
in ©(n) time; this could be done by moving away from v one vertex at a time, and maintaining
two rays that define the horizon to the left and right of v. Using this method to compute the
visibility-index for each vertex independently, we can compute the total visibility-index of T in
O(n?) time. We refer to this simple algorithm as Na1vEe. Despite its simplicity and disappointing
quadratic performance, to the best of our knowledge, this is the best known solution for this
problem to date.

Previous research have examined a problem highly related to the 1D total visibility-index problem,
known as the 1.5D terrain-guarding problem (TGP). The terrain-guarding problem involves finding
the minimum number of points needed to view an entire 1-dimensional set of vertices. While

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:3

123

T
current recursion interval

Fig. 1. lllustration of an 1-dimensional terrain, together with the critical rays from vertex p;.

similar to the total visibility-index, solving TGP is known to be NP-hard and thus all previous
results provide approximate solutions [14, 15, 21].

Our contributions. In this paper, we present an algorithm that solves the 1D total visibility-index
problem for a terrain of n vertices in O(nlog? n) time. Our algorithm uses a geometric dualization
technique, which transforms the visibility problem into a set of instances of the 2D red-blue line
segment intersection-counting problem. In fact, we show that the instances of red-blue line segments
that we have to process have characteristics that allow us to develop a simpler algorithm for
counting intersections. This new intersection counting algorithm performs faster in practice than
existing algorithms that solve the general red-blue line segment intersecting problem [22]. We also
show how to parallelize our algorithm while keeping the overall work (time-processor product)
the same. In particular, we present an adaptation of our algorithm in the CREW PRAM model [18],
which requires O(log? n) time and O(n log? n) work. We implement the Na1ve O(n?) algorithm, as
well as four variations of our algorithm: REDBLUE employs an existing red-blue segment intersection
counting algorithm [22], while SWEEP, PARAOT, and LINPAR implement three versions of our new
intersection counting technique. Both PARAOT and LINPAR allow for parallel execution of an
arbitrary number of compute threads to improve performance. LINPAR employs a space-efficient
data structure to reduce the O(nlogn) memory required by the simpler PARAOT.

We evaluate the performance of our implementations on large synthetic and real-world datasets,
showing that all four implementations of our algorithm outperform the naive solution by several
orders of magnitude. Additionally, we show that implementations employing our new intersection
counting algorithm are able to reduce execution time by up to 18.69x over the existing general-case
solution. We provide a detailed analysis of the performance of our two parallel implementations
on two hardware platforms. Results indicate that our space-efficient solution, LINPAR, provides the
highest peak performance and is capable of processing over 100 million vertices in under 3 minutes,
achieving up to 85% parallel efficiency.

2 PRELIMINARIES

Let T[1..n] be a one-dimensional terrain, that is an array of cells in R!. Element T[i] stores the
elevation h; of the i-th cell of the terrain. The array T defines an x-monotone polyline obtained
by connecting the vertices p; := (i, h;) for i = 1,...,n in order. Let P = (py,pz, .. .,pn) denote
the sequence of these vertices ordered by their x-coordinates, and let P[I : r] denote the subset of
vertices (py, .. ., pr). We say that a vertex p; is visible from p; (p; sees p;), if all vertices p; between
pi and p; lie strictly below the segment p;p;. Based on this definition, we conclude that a vertex is

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

16

45

1:4 P. Afshani et al.

|
: Cright (Pz)
|

c’right (pz)

Cleft(pj) cleft(pj)

Fig. 2. Illustration of the intuition behind Lemma 2.1. Left: example where both points are above critical
rays. Right: example where a point is below a critical ray.

visible from itself, and if vertex p; is visible from vertex p;, then p; is also visible from p;. We define
the visibility ray from p; to pj, denoted p—iﬁ}, as the ray that starts at p; and passes through p;. We
define the visibility ray m as the vertical ray that crosses p; and points downwards. Let vyert(p;)
denote the ray that starts at p; and points vertically up. We define the angle of the visibility ray
}Tp} as the smallest angle between ITP; and yert (p;). We use a(p,-_p;) to denote this angle.

One of the key concepts that we use in our analysis is that of the critical ray. Let [, i, and r
be three positive integers such that [< i < r < n. The left critical ray of point p; with respect
to P[l : r], is the visibility ray ITP; with the smallest a(jrps)) among all rays p—,ﬁz withl < k < i.
We denote this ray by ciesi(pi, P[I : r]). If i = [then cje (p;, P[I : r]) is defined as the ray pointing
vertically down from p;. The right critical ray, denoted cign:(p;, P[I : r]), of p; is the visibility ray
m (i £t < r) with the smallest a(ﬁ) (or pointing vertically down from p; if i = r). See Figure 1
for an illustration of these rays. We can use critical rays to determine visibility between two points,
as the following lemma shows.

LEMMA 2.1. Two points p; € P[l : k] and p; € P[k + 1 : r] are visible from each other if and only if
pi is above cen(pj, P[k + 1 :]) and p; is above cyign:(pi, P : k]).

PROOF. Let Cright := Cright(pi» P[I : k]) be the right critical ray of p; and let cje; := cleg(pj, P[k + 1 :
r]) be the left critical ray of p;. Consider the line segment p;p;. Assume that p; is above cje; and
that p; is above cyjgh. Then all points P[i : k] are below p;p;, since by definition they lie below or
on Cright-

Symmetrically, all points P[k + 1 : j] are below p;p;, due to cietr. Hence p; and p; are visible
from each other. Now assume that p; and p; are visible from each other. That means that all points
P[i+1:j— 1] are below p;p;. All points that can possibly determine cijgh; and cief; are therefore
also below p;p;. Hence p; is above cief; and p; is above crighs.]

Figure 2 illustrates the intuition behind the previous lemma. Note that, while we use the
restriction that visibility requires points to be above critical rays, this is just a matter of definition.
Changing our visibility definition to include equality would not change the overall algorithm design
or performance.

3 DESCRIPTION OF THE ALGORITHM

Let T be a one-dimensional terrain and let P be the set of its vertices. To compute the total
visibility-index on T, we consider the following divide-and-conquer approach: first, we split the
input polyline P into two subsets of equal size, and we recursively continue this process. After

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

16

15
16
AT
48
49

An Efficient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:5

computing the total visibility-index for each trivial base case, we move up in the hierarchy of
recursive calls. At each step, we combine the results that we computed for two consecutive subsets
P[l : k] and P[k + 1 : r] to produce the total visibility-index for subset P[I : r]. For each subset that
we process, together with computing the visibility-index for each vertex p in the subset, we also
construct the left and right critical ray of p with respect to this subset. At any point during this
recursive execution, we use an array VisIndex such that VisIndex[i] stores the total visibility-index
of p; computed in all previous levels of recursion. Suppose that, at some point during this recursion,
we have already calculated the total visibility-index for two subsets P[I : k] and P[k + 1 : r], and
we need to produce the result for their union P[I : r]. To do this, we need to compute for each
pi € P[l : k] the number of vertices of P[k + 1 : r] that are visible to p; and add this number
to VisIndex[i]; similarly, for each p; € P[k + 1 : r] we need to compute the number of points of
P[I : k] that are visible from p; and add this to VisIndex[j]. We define Bipartite Visibility as this
problem of finding the number of visibile vertices only between elements of two distinct subsets. In
order to reduce each recursive step of our divide-and-conquer algorithm to an instance of Bipartite
Visibility, we define the following invariants that must be satisfied for each p; € P[l : k], resp.
pj €Pk+1:r]:

o VisIndex[i], resp. VisIndx[j], has been computed within P[I : k], resp. P[k + 1, r],

® Cright(pi, P[I : k]) and ciet(pi, P[I : k]) correspond to the maximum and minimum slope

rays, respectively, between p; and any py € P[l : k],
o symmetrically, ciight (pj, P[k + 1 : r]) and cieq (pj, P[k + 1 : r]) correspond to the maximum
and minimum slope rays, respectively, between p; and any p,, € P[k +1: r].

Additionally, we consider that the upper convex hulls of P[! : k] and P[k + 1] have been computed
in the previous recursive step. These are needed to update the critical rays for the next recursive
step (this process is detailed in Section 3.3). With the above invariants satisfied, we solve an instance
of Bipartite Visibility to compute the number of visible vertices between the two distinct subsets
P[l : k] and P[k + 1 : r]. We denote the entire divide-and-conquer algorithm that computes the
total visibility-index of P as 1DVIsIBILITYINDEX. The runtime of 1DVISIBILITYINDEX on P is given
by the recurrence 7(n) = 27(n/2) + f(n), where f(n) is the time it takes to solve Bipartite Visibility
for P[1: n/2] and P[n/2 + 1 : n]. Therefore, the algorithmic performance of this divide-and-conquer
approach depends on an efficient solution for Bipartite Visibility. This section focuses on describing
an algorithm that solves Bipartite Visibility in O(nlog n) time, leading to:

THEOREM 3.1. Let T be an 1D terrain that consists of n vertices. We can compute the total visibility-
index of T in O(nlog® n) time, using O(n) space.

Let P[I : k] and P[k + 1 : r] be two parts of the terrain for which we want to solve Bipartite
Visibility. Recall that for all vertices in P[I : k] we have already computed the right critical rays
with respect to P[l : k], and for all vertices in P[k + 1 : r] we have computed the left critical rays
with respect to P[k + 1 : r]. Let p; be a vertex in P[l : k], and let p; be a vertex in P[k + 1 : r].
Recall that, according to Lemma 2.1, vertices p; and p; are visible to each other if both p; lies above
the right critical ray of p;, and p; lies above the left critical ray of p;. Therefore, to compute the
number of vertices in P[k + 1 : r] that are visible from p;, we could explicitly check if this condition
holds for each p; in P[k + 1 : r]. This method, however, is inefficient as it requires that we check all
possible pairs of vertices p;, p; s.t. p; € P[l : k] and p; € P[k +1:r].

We improve on this naive solution by using geometric duality [7]. Instead of handling the actual
critical rays of the input points, we dualize these rays: we construct exactly one dual half-line for
the right critical ray of each vertex in P[I : k], and one dual half-line for the left critical ray of
each vertex in P[k + 1 : r]. We refer to the duals of the right critical rays as the red half-lines, and

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

16

15
16
AT
48
49

o . N W

10
11
12

1:6 P. Afshani et al.

the duals of the left critical rays as the blue half-lines. We detail the construction of these dual
half-lines in Section 3.1. As we will show with Lemma 3.2, we can construct the dual half-lines in
such a way that the following property holds; a vertex p; in P[I : k] and a vertex p; in P[k + 1 : r]
are visible if and only if the duals of their critical rays intersect. Hence, to compute the number of
vertices in P[k + 1 : r] that are visible from p;, it suffices to count the number of blue half-lines that
intersect with the dual of cyigni(pi, P[I : r]) (which is a red half-line). Thus, to solve this instance
of Bipartite Visibility, we need to count, for each red and each blue dual half-line, the number of
intersections that it induces with half-lines of the opposite color. In Section 3.1 we describe how
we can do this efficiently in O(nlog n) time.

In addition to computing Bipartite Visibility, at each recursive step of 1DVISIBILITYINDEX, the
critical rays of each vertex must be updated with respect to the subset containing it (e.g., P[I : k]).
Therefore, after computing Bipartite Visibility between P[! : k] and P[k + 1 : r], we must update
the critical rays of each vertex with respect to P[l : k] U P[k + 1 : r]. We detail the process of
updating critical rays in Section 3.3. The remainder of the current section details the steps of
1DVisIBILITYINDEX, with the pseudocode of the overall algorithm presented in Algorithm 1. In
Section 3.1 we explain how we solve Bipartite Visibility by adapting an existing red-blue line
segment intersection counting algorithm. We improve on this in Section 3.2, presenting our new,
simpler algorithm to solve Bipartite Visibility. In Section 3.3 we describe a fast method of updating
critical rays of each vertex at each recursive step.

The approach that we describe for Bipartite Visibility is similar to the method used by Ben-Moshe
et al. [4] for computing the visibility graph between a set of points inside a polygon. However, since
their goal is to construct the actual visibility graph (which can have quadratic size with respect to
the input), they use an output-sensitive approach which is much slower than the methods that we
describe for counting red-blue line segment intersections.

Algorithm 1 1DVisiBILITYINDEX (P, 1, r, VisIndex, CriticalRays)

Input: array P of n points p; with elevations and two indices [and r.
Input: VisIndex[1..n], where VisIndex[i] denotes the visibility index of vertex p; before the call.
Output: VisIndex[i] = number of visible vertices in P[l : r] for vertex p; with < i <r.
Output: CriticalRays[i].left = ciept(p;, P[L : r]) for I <i <r.
Output: CriticalRays[i].right = crigne(pi, P[L : r]) for [< i <r.
if [= r then
Set VisIndex[l] = 1
Set CriticalRays[l].le ft and CriticalRays[l].right to be rays pointing downavard
end
k « LrT_lJ +1
1DVisiBiLITYINDEX (T, [, k, VisIndex, CriticalRays)
1DVisiBILITYINDEX (T, k + 1,7, VisIndex, CriticalRays)
R —{ppi,P[L:k]):1<i<k},B«—{B@p,Plk+1:r]):k+1<i<r}
Count (for each half-line) the intersections between R and B using REDBLUEINTERSECTIONCOUNT
(R, B, VisIndex)
Update VisIndex with intersection counts
Update CriticalRays[i].right for every | < i < k
Update CriticalRays[i].left foreveryk+1<i<r

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

16

45

An Efficient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:7

primal plane

dual plane

| Cleft -

|
| |
| |
I I
| i |
i I
o O Y B
i ik 11 -5
I i I
. 1 i
I

current recursion interval

Fig. 3. An example of a terrain, its critical rays and their corresponding dual half-lines.

3.1 Constructing Dual Rays and Counting Red-Blue Intersections

In this section we describe how we utilize duality to reduce the Bipartite Visibility problem to
the red-blue line segment intersection counting problem. We can thereby solve it using existing
methods.

We define the dual of a point p; : (i, h;) as the line p; : y = ix — h;, and the dual of a line
I:y = ax + b as the point [* : (a, —D). Let P[l : r] be a subset of consecutive vertices in the input
terrain. Consider vertex p; € P[l : r] with the critical rays cright(p;, P[I :]) and cieq(ps, P[I : 7])
lying along the lines y = a,x + b, and y = a;x + by, respectively. Let p(pl, P[l : r]) be the dual of the
set of lines which pass through p; and have slopes strictly larger than a, and let S(p;, P[I : r]) be
the dual of the set of lines which pass through p; and with slopes strictly smaller than a;. Note that
for p; = (i, h;), the dual objects p(p;, P[! : r]) and B(p;, P[I : r]) are collinear half lines supported
by the line y = ix — h; (of positive slope, because 1 < i < n). However, p(p;, P[] : r]) is defined
over x € (a,, +), thus its endpoint is cnght (a,,—b,) and it extends to +oo, whlle B(pi, P[1:r])
is defined over x € (-0, g;), thus its endpoint is ¢, = (a;, —b;) and it extends to —co. Also note
that the half-lines are defined over open intervals (a,, +o0) and (—co, a;). Therefore, the endpoints
c;‘ight and ¢y, do not belong to the half-lines p(p;, P[I : r]) and (p;, P[I : r]), respectively. Refer to
Figure 3 for an example.

LEMMA 3.2. Consider two points p; € P[l :

Cright(Pi, P[1 : k1) and cien(pj, P[k + 1 :
there is an intersection between dual half-lines p(p;, P[

k] and p; € P[k + 1 : r] and the critical rays
r]), then p; andpj are visible from each other if and only if

k1) and B(p;, Pk +1:r]).

Proor. Suppose p; and p; are visible from each other. Consider the line [that passes through
pi and p;. The dual of [is a point [*. By Lemma 2.1, p; must be above cies(pj, P[k + 1 : r]).
Therefore, the slope of [must be smaller than the slope of cief(p;, P[k + 1 : r]) and, consequently,
I* € B(p;, P[k + 1 : r]). Similarly, by Lemma 2.1, p; must be above c;ign¢(pi, P[I : k]). Therefore, the
slope of I must be larger than the slope of ciight (p;, P[I : k]) and, consequently, I* € p(p;, P[] : k]).
Since dual point [* belongs to both dual half-lines, they must be intersecting at [*.

Suppose f(p;, P[k + 1 : r]) and p(p;, P[I : k]) intersect at the dual point g*. The dual point g*
corresponds to a line g that goes through both p; and p;. Since ¢* € p(p;, P[I : k]), the slope of ¢

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

16

15

1:8 P. Afshani et al.

must be larger than the slope of crigh(pi, P[I : k]), i.e. p; must be above crigh (p;, P : k]). Similarly,
since ¢* € B(p;, P[k + 1 : r]), the slope of ¢ must be smaller than the slope of cie (p;, P[k + 1 :]),
i.e., p; must be above ciet(p;, P[k + 1 : r]). Therefore, by Lemma 2.1 p; and p; are visible from each
other. O

Lemma 3.2 allows us to solve the Bipartite Visibility problem by computing for each dual half-line
B(pj, P[k + 1 : r]), how many half-lines p(p;, P[] : k]) it intersects, and vice versa. The next lemma
is important for finding an efficient intersection counting algorithm.

LEmMMA 3.3. Let p; and pj, i # j, be two points in P[I : k]. Then the dual half-lines p(p;, P[1 : k])
and p(pj, P[l : k]) do not intersect. Similarly, f(p;, P[I : k]) and B(p;, P[l : k]) do not intersect.

Proor. Suppose for the sake of contradiction that p(p;, P[l : k]) and p(p;, P[! : k]) do in-
tersect, which means that there is a Visibility line p;p; between the p; and p; (in the primal
plane). It also means that both cnght(pl, [l : k]) and Cnght(Pjs [l : k]) fall below p;p; (ie.,
a(pi_p;) < a(cright (pi, P : k])) and a(plpj) < a(cnght(pj, k]))). By the definition of the critical
ray, no visibility ray between two points in P[] : k] can have a smaller angle « than the critical
ray. Hence the angle must be equal to that of the critical ray and therefore the visibility line is the
critical ray. This means that the intersection is at the starting point of the dual half-line. The starting
point of a dual half-line is not considered part of the dual half-line and therefore p(p;, P[I : k]) and
p(pj, P[I : k]) do not intersect. The proof for S(p;, P[I : k]) and B(p;, P[I : k]) is symmetric. O

Palazzi and Snoeyink [22] present an algorithm that computes, in O(nlogn) time, the total
number of intersections between a set of non-self-intersecting (red) line segments and another
set of non-self-intersecting (blue) segments. Half-lines are a special case of line segments, where
one endpoint is at oo (or —co). We note that the algorithm by Palazzi and Snoeyink produces only
the total number of red-blue intersections (i.e., a single number), while we require intersection
counts for each half-line. However, it is easy to modify their algorithm to produce the desired result
without impacting asymptotic performance.

3.2 A Practical Algorithm for Red-blue Intersection Counting

While using the (modified) red-blue segment intersection algorithm of Palazzi and Snoeyink [22]
provides an O(nlog n) solution to Bipartite Visibility, it works for any red-blue line segments. As a
result it is more complex than it has to be for our problem. Instead, in this subsection we present a
simple plane sweep algorithm to count the intersections between duals of right and left critical
rays. This plane sweep algorithm exploits some features of the dual half-lines of critical rays.

Let R = {p(p;,P[l : k])} and B = {B(p;, P[k + 1 : r])}, be the set of red and blue self-non-
intersecting half-lines (i.e., no half-lines intersect others of the same color). To describe our
algorithm, we need to introduce some more notation. We denote the x- and y-coordinate of a vertex
p by px and p,, respectively. Given any half-line A, we denote its endpoint by A, and the x- and
y-coordinates of the endpoint by A, and A, respectively, i.e., A,y = (A4, 4). The y-coordinate of A
evaluated at x is denoted by A(x). That is, if A is defined at x then vertex py 1(x) = (x, A(x)) € A. If
A is not defined at x, then we say A(x) is undefined. Finally, we say a vertex q is above (resp. below)
a half-line A, if A(qy) is defined and g, > A(gx) (resp. g, < A(gx)). If A(gx) is undefined, then the
above-below relationship between ¢ and A is undefined.

The following lemma is the key for developing a simple plane sweep algorithm for our red-blue
half-line intersection counting problem.

LEMMA 3.4. Any two half-lines p € R and B € B intersect if and only if the endpoint p, , is above
B and the endpoint B , is above p.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

16

45
16
47
48
49

An Efficient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:9

B(p) = {82, Bs}

L Ba

[

B(p) = {83, Ba}
e

Fig. 5. Illustration of z’(p) and 7 (p) for several half-

Fig. 4. An illustration of 8(p) and ?(p). lines

PrOOF. Suppose py, 4 is above and Sy , is above p. There must be a point g with p, < g < B
s.t. p(qx) = P(gx)- Since p is continuous for all x > p, and f is continuous for all x < S, p and
intersect at gx.

In the primal space, all points from the left merge set have smaller x-coordinates than any point
from the right set. Therefore, all p € R have a smaller slope than all § € B. It follows that, if p
and f intersect at g, then p(a) > f(a) and S(b) > p(b) for all a < g, < b. Since p, has the smallest
x-coordinate for which p is defined, then p, < g. Therefore, p, , is above . Conversely, f, is the
largest x-coordinate of 8, so ffx > gx. Thus, By is also above p. O

To compute the number of blue half-lines in B that each p € R intersects, consider the following
subsets of blue half-lines (see Figure 4):

e B(p): blue half-lines § € B with endpoints that are above p (i.e., By > p(Bx))
e B(p): blue half-lines § € B that are below py 4 (i.e., f(px) < py)

By Lemma 3.4, the set of blue half-lines which intersect p is B(p) N B(p) and by the inclusion-
exclusion principle, its cardinality is |B(p)| + |B(p)| - |B(p) U B(p)|. Note that B(p)U B(p) is the
set of all blue half-lines with x-ranges that overlap with p, i.e. B(p) U Bp) ={f € B: fx > px}.
Figure 4 shows an example for a single red half-line and four blue half-lines.

Similarly, we define R(f) and R () and the number of red half-lines that intersect f is equal to
Iﬁ(ﬁ)l +|R(B)| - Iﬁ(ﬁ) U R(p)I. Thus, it remains to compute each of these quantities.

3.2.1 Computing |B(p)| and |R(B)|. To compute |B(p)| we sweep the dual plane from right
to left with a sweep line ¢ which is perpendicular to the x-axis. During the sweep, we maintain
a balanced binary search tree (BST) 7~ which stores all blue half-lines f that intersect ¢, ordered
by their slopes. Since blue half-lines do not intersect each other and continue to —oo, this is the
same order as the order of the blue half-lines by decreasing slopes. Thus, every time the sweep line
encounters a blue half-line end point By, ,, we insert § to 7. Whenever the sweep line encounters
the endpoint p,,, of a red half-line, the number of blue half-lines below p is equal to the number
of blue half-lines # with y-coordinate f(p,) smaller than p,. And since all blue half-lines in 7~
are defined at the time of the sweep, the above-below relationship between the endpoint p,, , and
all blue half-lines in 7~ is well-defined. Thus, we can compute |8(p)| by performing a search in

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

16

45
16
47
48
49

1:10 P. Afshani et al.

sweep line Bs

T

query: po

7(Ba) m(Bs) m(B2) 7(Bs)
P3 P2 P2 P1

1B(p2)| =3

Fig. 6. Example of the plane sweep algorithm used to find [B(p)|. The vertical sweep line moves from right
to left and, when a blue endpoint By, y is encountered, 7(f) is added to the search tree 7. When the sweep
line encounters a red endpoint py, 4, the tree is queried by the slope of p. The number of leaves in the search

tree that have slopes greater than or equal to the slope of p is equal to 1B(p)|.

7, comparing p, to f(px). The rank of p, in the set of blue half-lines in 7~ gives us |8(p)| - the
number of blue half-lines below p.

To implement this plane sweep, we need to sort 8 and R by the x-coordinates of their endpoints.
Each insertion of a blue half-line in 7~ takes O(log n) time. We can compute the rank of p, in 7~ in
O(log n) time by augmenting each node v of 7~ with the size of the subtree rooted at v. Thus, the
total computation of |B(p)| for all p € R takes O(nlogn) time.

Note that the size of 7~ when the sweep line encounters p,. , is 1B(p) U B(p)| - the number of
blue half-lines whose x-ranges overlap with p. During the computation we also record for each red
half-line p the blue half-line 7’(p) that is immediately below p (the predecessor of p, in the 7°).
Refer to Figure 5 for an illustration.

Computation of |R(f)| is symmetric, with the sweep being performed from left to right. During
the computation, we also record Iﬁ(ﬂ) U R(f)| and 7(f) — the red half-line that is immediately
below the endpoint of B. The concepts of 7(f) and 7’(p) will be used for computing |B(p)| and
IR (B)|, respectively.

322 Computing |B(p)| and |R(B)|. The following description focuses on the computation of
values |B(p)|; the computation of |R(f)| is symmetric. Since computing |B(p)| and |R(S)] entails
counting half-lines below each given endpoint, the above-below relationship is well-defined at the
time the sweep line hits the endpoint in question. Here, instead, we are counting the number of
points above a half-line, which must be counted for every half-line. To accomplish this efficiently,
we assume that we have already computed 7 (f) for each blue half-line § as described in Section 3.2.

To compute | B(p)| we sweep a vertical line from right to left (refer to Figure 6 for an illustration).
During the sweep we maintain a balanced binary search tree (BST) 7~ on the slopes of (). That is,
when the sweep line encounters an endpoint of a blue half-line f and 7 (f) is defined, we insert the
slope of z(f) into 7. If z(p) is undefined, there is no red half-line below the end point of and
since each red half-line p is defined for all x > p, the endpoint of does not lie above any red
half-line and can be safely ignored.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

16

15

An Efficient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:11

At time p, of the sweep, that is when the sweep line encounters a red half-line end point py 4,
the number of entries in 7~ that are greater than or equal to the slope of p is equal to the number of
blue half-line endpoints above p. To see this, observe that when p, is encountered, tree 7~ contains
all blue half-line endpoints that have a well-defined above-below relationship with p. Since the
red half-lines do not intersect other red half-lines, the ordering of the slopes of the red half-lines
is equivalent to the above-below relationship among the red half-lines which are defined at p,.
The above-below relationship between red half-lines and blue half-line endpoints defines a partial
order, which means that if B , is above py, both p; and p; are defined at B, and p1(Bx) > p2(Bx),
then S, , is also above p,. Consequently, the set of endpoints of blue half-lines above p is equal
to the set of blue half-lines f with slopes of 7 (f) greater than the slope of p. See Figure 6 for an
illustration of this plane sweep.

Given the above, whenever the sweep line encounters an endpoint of a red half-line p, we
perform predecessor/successor query on 7~ using the slope of p to find the number of points above
p. Maintaining and querying 7 take O(log n) time per blue half-line endpoint (insertion) or red
half-line endpoint (query), resulting in O(nlog n) time overall to compute 1B(p)| for each half-line

p.

3.3 Maintaining Critical Rays

Our overall divide-and-conquer algorithm relies on the knowledge of the critical rays at the
beginning of each recursive call. At the base case, subset P[I :] contains only one point. Therefore,
both left and right critical rays of that point are directed vertically downward. Thereafter, at the
end of each recursive call, we update these rays by recomputing only the right critical ray for each
point in P[] : k] and the left critical ray for each point in P[k + 1 : r]. To do this, we need the next
lemma.

LEMMA 3.5. The tangent from p; € P[l : k] to the upper convex hull of all vertices in Pk + 1 : r] is
the critical ray cyigh:(pi, P[1 : r]) if and only if the vertex p; on the hull that the tangent goes through
is visible to p;. Symmetrically, the tangent p; € P[k + 1 : r] to the upper hull of vertices in P[l : k] is
the critical ray cio(p;, P[1 : v]) if and only if the tangent point p; on the hull is visible to p;.

Proor. We first prove that only points on the upper hull of P[k + 1 : r] can be candidates for
defining cign (pi, P[I : r]). Suppose that p; is the point in P[k +1 : r] that defines c,;gn: (pi, P[L : 7])
and that p; does not fall on the upper convex hull of P[k+1 : r]. By definition, no point in P[k + 1 r]
can fall outside the upper hull of the same point set, therefore p, must fall inside the hull. In that
case, the ray that starts from p; and goes through p, intersects the upper hull of P[k + 1 : r]. Let p’
be this intersection point, and let p”’ be the vertex of the upper hull which is exactly to the right of
p’. Then p” is visible from p;, which contradicts the assumption that p; defines c,;gn: (pi, P[L : 1]).

Let p; be the point on the upper hull, such that the tangent goes through p;. If p; is not visible
to p;, then there is a point pi s.t. t < k < i that is above the visibility ray ;Tp; . Since the tangent
from p; to the upper hull goes through p;, px must not be in the set encompassed by the upper hull.
Therefore py is in the set included with p; and the previous critical ray of p; is steeper than the
tangent, so the tangent is not crigh¢(ps, P[I : r]).

If, however, p; is visible to p;, then cright (p;, P[I : k]) falls below p;. Furthermore, the visibility
ray from p; to other points on the upper hull are below the tangent (by property of tangents) and
therefore the tangent is the only visibility line that is not below any other point of the upper hull.
Hence the tangent is cyigni(pi, P[I : 7]). The proof involving ciet (p;, P[L : r]) is symmetric.]

Thus, to update ciet (p;, P[I : r]) and crigne(pi, P[I : 7]) we utilize the upper convex hulls of P[] : k]
and P[k + 1 : r] (computed in the previous recursive step), and for every point in these two subsets

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

16

15
16
AT
48
49

1:12 P. Afshani et al.

we construct the tangent to the hull of the opposite subset. To construct the P[I : r] for the
next recursive step, we simply merge our two upper hulls in O(n) time. Computing tangents is
equivalent to binary searches, which takes O(log n) time per tangent for a total of O(nlogn) time.
Combining this with the rest of the analysis presented in Section 3, we conclude that we can solve
each recursive level of 1DViIsIBILITYINDEX in O(nlogn) time. Hence, the total running time of
algorithm 1DVISIBILITYINDEX is O(nlog® n).

4 PARALLEL EXTENSION

Persistence [8] is a technique for efficiently maintaining all past versions of a dynamic structure
for future queries. An offline persistent binary search tree supports all standard update operations
given up-front. Since all updates and queries are known before construction, all the updates can be
built into the data structure during construction, allowing queries to be performed on any of its past
versions. Each of these queries can be performed independently of each other. Thus, if a balanced
offline persistent tree can be built efficiently in parallel, n queries can be answered in parallel
in O(log n) time using n processors, i.e., in O(nlogn) work, in the CREW PRAM model. Offline
persistent BSTs can be used to solve some problems that are typically solved using a plane sweep
algorithm. Therefore, in this section we detail the two offline persistent BST structures that we use
to solve our red-blue line segment intersection problem (and thus solve Bipartite Visibility). Note
that all other operations performed by our divide-and-conquer algorithm (described in Section 3)
can be easily parallelized: all n critical rays can be updated concurrently in O(log n) time and, using
these critical rays, we can merge upper convex hulls in O(1) time and O(n) work.

If we can implement the search tree used in the plane sweep of Section 3 as an offline persistent
BST, we can perform the sweep in O(log n) time and O(nlog n) work. Thus, the parallel runtime
and work of the overall algorithm can be defined by the recurrences ®(n) = ®(n/2) + O(logn) =
O(log? n) and W (n) = 2W (n/2) + O(nlogn) = O(nlog? n), respectively. This yields the following
theorem.

THEOREM 4.1. The 1D total visibility-index problem can be solved in O(log® n) time and O(nlog® n)
work in the CREW PRAM model.

The work complexity of the parallel algorithm matches our sequential algorithm runtime, which
is the best we can hope for from a parallel algorithm.

We identify two offline persistent BST structures that we can use to solve Bipartite Visibility in
parallel. In Section 4.1 we present an overview of these structures and in Section 4.2 we describe
some relevant details of our implementations that leverage these structures.

4.1 Overview of persistent BST structures

In this subsection we provide overviews of two offline parallel BST structures that we employ: the
array-of-trees [3] and the linear-space persistent BST [6]. We refer interested readers to [3] and [6],
where the structures and techniques are presented in detail.

Array-of-trees. Atallah et al. [3] describe a data structure that they call array-of-trees, which
implements a persistent search tree and can be built in the CREW PRAM model in O(log n) time and
O(nlogn) work. Hence, we can implement the tree structure used in the plane sweep of Section 3.2
as an array-of-trees, and thus perform the sweep in O(log n) parallel time and O(nlog n) work.

Our first parallel implementation replaces each plane sweep operation described in Section 3.1
with the construction and querying of an array-of-trees (AoT). AoTs are constructed by starting
with the input data as a set of pairs (key k, time t), sorted by k. This initial dataset becomes the
leaf level of the AoT, on top of which the structure can be constructed bottom-up by a variation of

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

16

15
16
AT
48
49

An Efficient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:13

Sorted time (t) ‘ 1 ‘ 2 ‘ 3 ‘ 415

6[7]s]

L fof1folof1]o]1]
=
o1]o] Lofr]1]o]
= PSS
olt] [fe] [afo] [o]4]
[N N /N
Time(t) n
Values(v)

Fig. 7. lllustration of how a LPBST is constructed.

merge sort on ¢. At each level, pairs of sets are merged to form parent nodes, consisting of all of
the t values of its children in sorted order. Each t value also maintains pointers to the elements in
each child node with largest t.pj14, s.t. tcpitg < t. The top level of the AoT contains a single list
sorted by ¢, with each element corresponding to a root node of a BST, searchable by key k.

Querying the AoT involves two steps: 1) finding the correct root and 2) querying the corre-
sponding BST. Since the top level of the AoT is a list sorted by ¢, the correct BST can be found by
performing a binary search using the query time. The associated BST can then be searched with
the query key. Each of these two steps requires O(log n) work per query and replacing a plane
sweep operation requires O(n) such queries. Thus, an AoT can be used in place of a plane sweep
and requires O(log n) time and O(nlog n) work in the CREW PRAM model.

While the AoT structure can be constructed simply and allows for easy parallelization, its primary
drawback is the space requirement. At each level of the structure, O(n) elements are stored, so the
total structure requires O(nlog n) space. When using an AoT to replace plane sweep operations on
a large dataset, the memory requirement may become detrimental to overall performance.

Linear Space Persistent BST. To avoid the O(nlogn) space requirement of the AoT data struc-
ture, we consider a more complex data structure. Chazelle and Edelsbrunner [6] present a technique
to solve some types of range queries using only O(n) additional space in the word-RAM model [16].
Recall that the AoT data structure, described above, allows querying at any time ¢ by storing O(n)
key values (and pointers) at each level. The linear-space persistent BST (LPBST) presented in [6],
)

)

however, stores only O(n) bits at each level, resulting in a total space requirement of O
where w is the number of bits stored in a word. If we assume a constant number of duplicate values,
w = O(log n). Thus, a LPBST structure requires only O(n) space.

The process of constructing a LPBST is similar to that of an array-of-trees. An input of pairs
(key k, time t), sorted by key (k) is provided as input. As with an AoT, the LPBST structure can be
built bottom-up by merging pairs of elements, resulting in sublists sorted by t. However, unlike
A0Ts, “nodes” of a LPBST store only a single bit per merged element to identify which child list the
element came from. A 0, resp. 1, bit is stored if the element was merged from the left, resp. right list.
This merging process is repeated until all log n levels are merged, resulting in a list sorted by ¢ (and
nlog n bits are stored). Figure 7 illustrates an example of the construction of a LPBST. Note that,
since each bit within a node represents which subtree (left or right) a particular value came from,
the total number of 0 or 1 bits represents the sizes of a nodes’ left and right subtrees, respectively.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 P. Afshani et al.

Query: (t <5,k <9)
v

Sorted time (t) | 1 ‘ 2 ‘ 3

zxé’ziéll\o\l\o\oil\o\l\
[1]of1]o] ;32;;}
[oft] [1]o]

s EEE

Kequ)
\//

result = 4

—_
(=)

H\
]
-]

—
EHE

6]
12 |14

Fig. 8. Example of a query being performed on a LPBST.

A given query (Qy, Qk) asks to find the number of elements that have time t < Q, and key
k < Q. Therefore, querying involves first finding the rank of Q, in the sorted list of time values
(rank(Q;)). Since any entry in the root node with index i > rank(Q;) cannot match the query, the
query we continues down the BST, concerned only with bits of index i < rank(Q;). The query
process then obtains the left and right subtree sizes, sub; and subg, by counting the number of
bits with 0s and 1s, respectively (with index i < rank(Q;)). Since the LPBST is a BST on keys, the
query process simply traverses the tree while counting bits to determine sub; and subg at each
node. These subtree sizes are used count the total number of query matches. Figure 8 provides an
example illustrating how a query is performed on a linear space persistent BST.

Computing suby, and subg for a given node is accomplished by performing a prefix sum operation
on the bits contained in the node. While scanning a node may take O(n) time, Chazelle and
Edelsbrunner [6] reduce the time to compute the prefix sum of a node by storing partial prefix sums
every log n bits within a node. This only requires an additional O(n) space and, using a lookup
table to count bits within a word of log n bits, allows queries to be performed in O(log n) time.
Thus, the LPBST can be used in place of some plane sweep operations and requires O(log n) time,
O(nlog n) work, and O(n) additional space.

4.2 Implementation Details

Aside from our implementation of the NAIvE algorithm, all of our implementations employ the
divide-and-conquer approach described in Section 3. At each recursive level, we perform a total
of O(nlogn) work. However, the size of each independent task depends on the recursive level
(e.g., at the lowest level, we determine visibility between pairs of vertices). Therefore, at low levels
of recursion, our parallel implementations are able to concurrently perform each task without
requiring parallelization. At the top level of recursion, however, we have a single task that must be
executed in parallel. Thus, our parallel implementations attempt to avoid parallelization overhead
by dynamically parallelizing tasks only when necessary at the top levels of recursion.

Both the construction and querying of AoTs and linear space persistent BSTs are similar in many
ways. Therefore, our implementations of these structures use many of the same methods. We
construct both structures bottom-up by merging pairs of sublists while storing resulting values
(or bits). To perform this merging in parallel, we employ the techniques outlined in [18] to merge
two lists in O(log n) time and O(n) work. However, when constructing LPBSTs, efficiently storing

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:15

Word size performance comparison, ALGOPARC platform
9 Build LPBST and run 2% queries

W=8

W=16

W=32

W=64

Build time

8

I

w

Average runtime (sec)
w S

N

[

23
Tree levels

Fig. 9. Average runtime to construct a LPBST and perform 22 queries. The dark shaded portion of each bar

indicates construction time, while the remaining time is spent querying.

bits requires careful consideration. On modern CPUs, the smallest addressable unit of memory is a
byte (8 bits). Thus, if we define each bit independently (e.g., as a boolean datatype), each bit will
require 8 bits of storage space. To avoid wasting bits, we use bitwise operations to manually pack
bits of data into words of w bits each. We leave w as a parameter and empirically measure the ideal
configuration for our hardware platforms.

While the querying process of these two structures is also similar, querying a LPBST requires
computing the prefix sum of bits at each node. For our implementation, we store partial prefix
sums every w elements. However, while Chazelle and Edelsbrunner [6] use lookup tables to count
bits within words of log n bits, we employ the popcount hardware operation. popcount is available
on our hardware platforms (described in Section 5.1) and returns the number of 1 bits in a word.
Since variations of popcount are available for words of 8, 16, 32, and 64-bits, our choice of w is
limited to these options.

Since our implementation stores a total of . partial prefix sum values, our choice of w affects
our space requirement. Furthermore, depending on the details of the popcount operation,w may
impact query performance. To determine the ideal w value for our hardware platforms, we measure
the relative query and construction performance while varying w on a range of synthetic, random
datasets (see Section 5.2 for details on dataset construction). Figure 9 contains the average runtime
to build a LPBST and perform 2%° queries on it on the ALGoPARc platform (detailed in Section 5.1).
Results indicate that w = 64 provides the best performance for our hardware. This is not surprising,
since smaller w values require that we store more partial prefix sums. We use w = 64 for all
experiments hereafter unless otherwise noted. We note that larger w values may further improve
performance, but popcount is not available for larger word sizes and lookup tables would be far too
large to be practical.

5 EXPERIMENTAL RESULTS

In this section we present an empirical evaluation of the performance of our algorithms on synthetic
and real-world datasets. We develop five implementations: NAIVE, REDBLUE, SWEEP, PARAOT, and
LiNPAR. NavE employs the O(n?) algorithm described in Section 3 and is used as baseline. REDBLUE,
SwWEEP, PARAOT, and LINPAR all use the divide-and-conquer approach presented in Section 3 but
they differ in the implementation of the half-line intersection counting step: REDBLUE implements

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 P. Afshani et al.

Example elevation profie Example elevation profie
coast of France to the Caspian sea west coast to east coast of North America
0 w
5 6000 g 6000
g g
= 4000 = 4000
c c
o]
< 2000 S 2000
2 @
w w
% 10000 20000 30000 40000 50000 60000 % 10000 20000 30000 40000 50000 60000
Position (90 meters per point) Position (90 meters per point)
(a) Example elevation profile from Europe. (b) Example elevation profile from North America.

Fig. 10. Examples of elevation profiles from 216-point slices of the Earth dataset (note the different scales).

the Palazzi and Snoeyink [22] algorithm for red-blue line segment intersection counting, SWEEP
implements the algorithm presented in Section 3 using plane sweep, PARAOT employs the array-of-
trees data structure described in Section 4, and LINPAR uses the linear space structure, which is also
described in Section 4. Asymptotically, all four algorithms achieve O(nlog® n) sequential running
time. However, REDBLUE is more complex than our other implementations and has the poorest
performance in practice among our non-naive implementations. While all five implementations
run sequentially, PARAOT and LINPAR can also run in parallel mode, using multiple threads to
improve performance. Though they are both amenable to parallelization, PARAOT requires more
memory, while LINPAR is more complex and relies on the hardware-specific popcount operation.

5.1 Methodology

All algorithms are implemented in C++ and compiled with gcc 4.8.5 using the -Ofast optimization
flag. Parallel execution is performed using the openMP library that is included with the gcc
compiler. All geometric structures, predicates, and primitives used by all of our algorithms are
custom implementations. We use two hardware platforms for our evaluation. The 4-core ALGOPARC
platform is comprised of an Intel Xeon E5-1620 processor (4-core, 3.6 GHz) and 16 GiB of RAM,
running the Ubuntu 16.04 operating system. ALGOPARC has hyperthreading enabled, providing
8 virtual cores. The 20-core UnHPC platform is comprised of two Intel Xeon E5-2680 processors
(10-core, 2.80 GHz), 128 GiB of RAM, and runs the Red Hat Server 6.5 operating system. Note that
UnnPc has 2 CPU sockets, each with 4 memory channels to RAM and an independent L3 cache.
All experimental results are averaged over 10 iterations with error bars shown when significant.

5.2 Datasets

We evaluate our algorithm implementations on three synthetic datasets. We consider a flat dataset
in which all points’ elevations are set to h; = 1, so that each point can only see its (at most two)
neighboring points. For this dataset, REDBLUE, SWEEP, PARAOT, and LINPAR compute few intersec-
tions at each level of recursion, and thus provides a simple correctness case and a performance
baseline. We consider a parabolic dataset in which each point’s elevation is set to k; = i%, so that
every point can see every other point. For this dataset our four recursive implementations compute
many intersections at each level of recursion. Finally, we consider Random datasets in which point
elevations are uniformly sampled from the range [1,10°].

We also perform evaluations on datasets generated from real-world terrain maps. The CGIAR-CSI
Global-Aridity and Global-PET Database [27, 28] consists of elevation data for the entire earth with
90-meter resolution. We extract 1-dimensional slices from 4 different regions: Europe, Asia, Africa,

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:17

Runtime on terrain of random elevations
ALGOPARC platform

100
— Naive
RedBlue
80 |
F Sweep
¢ --- ParAoT
g R .
£ o0 LinPar
€ =
c
2
g 40
i
()
>
<
20
0 a " e m === = = -
0 200 400 600 800 1000

of vertices (thousands)

Fig. 11. Results with all five implementations for the Random dataset.

Performance results for large synthetic datasets Performance results for large CGIAR datasets
70 ALGOPARC platform, N=2% 70 ALGOPARC platform, N=2'6
60 o ke oo/ [. t |
fy'i 50 | § L — _ — =
° RedBlue o
E 40 - E4
= E— Sweep 2 .
=] S & o +
S 30 i ParAoT o3 Naive
g | LinPar 2 RedBlue
9] - 9] Sweep
220 = z? ParAoT
LinPar
10 1l
i) \ .
L e O D e O
Flat Parabola Random Europe Asia Africa North America
Dataset Dataset
(a) Performance on synthetic datasets (n = 220). (b) Performance on real-world datasets (n = 21°).

Fig. 12. Sequential Performance of our five implementations.

and North America. Each slice consists of 2!° points (spanning ~5000 km). For each of the four
regions, we extract ten East-West slices at 1 km North-South intervals. These slices lead to diverse
elevation maps, as seen in Figure 10.

5.3 Sequential Performance Results

We evaluate our sequential implementations on the ALcorarc platform. Figure 11 shows average
runtime vs. dataset size (n) for synthetic random datasets. As expected, the quadratic complexity of
NAIVE results in much sharper runtime growth compared to the O(n log? n) algorithms. Additionally,
we see that the simplified half-line intersection counting algorithm described in Section 3.1 gives
SWEEP, PARAOT, and LINPAR a significant practical performance advantage over REDBLUE.

Figure 12a shows average runtimes of our four sub-quadratic implementations for our three
classes of synthetic datasets of n = 22° vertices (we omit NAIVE results since its runtime is prohibitive
for such a large n). These results confirm that SWEEp, PARAOT, and LINPAR are consistently faster
than REDBLUE, with an average decrease in runtime (across all synthetic inputs) of 5.56x, 6.51x, and

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 P. Afshani et al.

AoT Parallel performance on ALGOPARC AoT Parallel performance on UHHPC
0.45 real-world datasets real-world datasets
. 0.6
0.40 5 - =
I L I i 0.5 |
0.35 I 1 thread
S) EEE 2 threads
$0.30 S04 g ERFgggg
o & i o
-E 0.25 . J g [16 threads
5 § 0.3
o 0-20 o
€015 f | | | €02 =
2 z l | s E - -
0.10 1 thread j %
2 threads 0.1
0.05 4 threads
8 threads : |
0.00 - ; ; 0.0 - - - -
Europe Asia Africa North America Europe Asia Africa North America
Dataset Dataset
(a) ALcopParc platform. (b) Unnpc platform.

Fig. 13. Parallel performance of the PARAOT implementation on real-world datasets for varying number of
compute threads, on each of our two hardware platforms.

12.70%, respectively. Figure 12a further reveals that SWEEP has a significant variance in execution
time across different synthetic datasets, indicating that the overhead of maintaining and balancing a
large BST during the plane sweep has a major impact on algorithm performance. The performance of
PARAOT and LINPAR, however, are not as dependent on the dataset, and they therefore outperform
SWEEP on all but the flat synthetic datasets. LINPAR is our fastest implementation on all synthetic
datasets, decreasing runtime over PARAOT by 1.79x, 1.99x, and 2.11x on flat, parabolic, and random
inputs, respectively.

Figure 12b shows runtimes for each algorithm when applied to data from each region of our
real-world dataset, averaged over all 10 slices. As with synthetic datasets, SWEEP, PARAOT, and
LiNPAR greatly outperform REDBLUE with an average decrease in runtime of 5.72x, 8.25x, and
18.69x, respectively. We conclude that our simplified half-line intersection algorithm provides a
significant performance improvement over the general red-blue line segment intersection counting
algorithm [22] used by REDBLUE. Furthermore, even sequentially, PARAOT and LINPAR are faster and
more consistent that SWEEP, indicating that the AoT and LPBST data structures provide an effective
alternative to plane sweep for this problem. Additionally, LINPAR has a significant performance
advantage over all of our other implementations, indicating that the reduced memory usage of
LINPAR provides practical performance gains.

5.4 Parallel Performance Results

In addition to providing the performance benefits seen in the results above, the AoT and LPBST
structures are amenable to parallelization. In this section, we evaluate the performance of our
parallel implementations of PARAOT and LINPAR.

To assess parallel performance from a practical standpoint, we present results obtained using
our real-world datasets. Figure 13 and Figure 14 show the average runtime of PARAOT and LINPAR,
respectively, using our real-world datasets for various numbers of threads on our two hardware
platforms. While parallelization provides some performance improvement, the speedup is far from
the peak, especially as the number of threads increases. On the 4-core (8 virtual cores due to
hyperthreading) Arcoparc platform, PARAOT and LINPAR achieve a maximum speedup of 2.92 and
4.24, respectively, with 8 threads. On the Unnrc platform, however, PARAOT and LINPAR achieve

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

PO O

ot

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

An Efficient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:19

LinPar Parallel performance on ALGOPARC LinPar Parallel performance on UHHPC
0.20 real-world datasets 0.30 real-world datasets
w1 thread 0.25
[0 2 threads '
< 0.15 4 threads S 1 thread
3 [8threads 8 0.20 [0 2 threads
° o L1 4threads
£ E ' B RlEZ 8 threads
‘g 0.10 g 0.15 77 16 threads
& | &
5 5 0.10
> >
< 0.05 . <
0.05
0.00 Europe Asia Africa North America 0.00 Europe Asia Africa North America
Dataset Dataset
(a) ALcoPARc platform (b) Unnpc platform

Fig. 14. Parallel performance of the LINPAR implementation on real-world datasets for varying number of
compute threads, on each of our two hardware platforms.

AoT parallel speedup LinPar parallel speedup
8 random synthetic datasets random synthetic datasets
14

7
=% o 12
>6 3
3 T ALGOPARC
g 010 8 Threads
n 5 w
] T g __ UHHPC1
s4 = 16 Threads
g g
g3 g © R .
© © e mmmmmm s S --7 N
g, __ ALGOPARC P e
< 8 Threads < ‘

1 __ UHHPC1 2

16 Threads
9617 18 19 20 21 22 23 24 9% 18 20 22 24 26
of vertices (27) # of vertices (27)
(a) PARAOT parallel speedup. (b) LINPAR parallel speedup.

Fig. 15. Average parallel speedup obtained on random inputs of varying size. Note that axis scales differ.

a maximum parallel speedup of 3.86 and 7.39, respectively. Furthermore, while LINPAR achieves
its maximum speedup with 16 threads, PARAOT achieves its maximum parallel speedup with only
8 threads and slows down when using 16 threads. We note that our real-world datasets contain
only 2! data points. On such small datasets, the affect of the cache system may significantly
impact parallel performance. Both of our hardware platforms have L3 caches that can store more
than 2'° elements (ALcopPaRc and Unnpc have L3 caches of 10MB and 25MB, respectively). This
results in very fast sequential execution, limiting the achievable parallel speedup and increasing the
relative cost of paralle]l overhead (e.g., spawning new threads). We speculate that the large memory
requirement of the AoT data structure further increases the impact of the cache systems on parallel
speedup, resulting in the decrease in performance when using 16 threads on the Unnrc platform.

To better understand the cause of the limited parallel performance on real-world datasets, we
perform a series of experiments on synthetic random datasets (for which we can vary the size)
using the (empirically) best number of threads for each hardware platform. Figure 15 shows the

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 P. Afshani et al.

average parallel speedup vs. data set size on each hardware platform for PARAOT and LiNPAR. For
n = 216 vertices, parallel performance results are similar to our real-world results. As the dataset
size increases, however, parallel speedup increases for both implementations, on both hardware
platforms. At the largest input size PARAOT can process (due to memory requirements), we see
a maximum speedup of 3.51 and 7.25 on ALGoPARC and UHHPC, respectively. PARAOT s parallel
speedup remains well below expected parallel performance, especially for Unnpc, where we would
expect a speedup nearing 16 for 16 threads. LINPAR, however, achieves significantly higher parallel
speedup, with a maximum of 5.46 and 13.60 on ALGopaRc and UHHPC, respectively. We note that
the performance drop seen in Figure 15b when n = 227 on ALGoPARC is due to limited memory,
causing the system to begin swapping to disk. On Unnpc, however, we have much more available
memory, and we see that LINPAR continues to gain additional parallel speedup as we increase the
input size.

As discussed in Section 4, the array-of-trees data structure requires O(nlogn) memory, while
LPBST requires only O(n) additional space. The results in Figure 15 suggest that this memory
requirement may be causing PARAOT to be memory bound, resulting in a memory bandwidth
bottleneck that limits parallel speedup. This is supported by the fact that the parallel speedup
obtained by PARAOT on each hardware platform corresponds to the number of available memory
channels. ALGoPARc, while running 8 hardware threads, is limited by 4 memory channels and
achieves a maximum speedup of 3.51. UnHPC has 8 memory channels (4 per socket) and achieves a
maximum speedup of 7.25, despite using 16 hardware threads. We speculate that LINPAR, requiring
only linear additional space, does not suffer from this memory bottleneck and is therefore able to
achieve much higher parallel speedup. We conclude that LINPAR is our fastest implementation,
both sequentially and in parallel.

6 CONCLUSIONS

In this work, we presented an O(nlog? n) algorithm to solve the 1D total visibility-index problem.
Our divide-and-conquer approach uses dualization to reduce the problem to log n instances of the
red-blue line segment intersection counting problem, each of which can be solved in O(n log n) time.
To the best of our knowledge, this is the first subquadratic-time algorithm to solve this problem.

We implemented and four versions of this algorithm and evaluated their performance on two
distinct hardware platforms. Each of our implementations solves the red-blue line segment inter-
section counting problem differently: REDBLUE relies on an existing general-case solution, SWEEP
uses a plane sweep algorithm, and PARAOT and LINPAR employ persistent search tree data struc-
tures. While all four implementations have O(nlog? n) asymptotic runtime and are at least an
order of magnitude faster than the naive O(n?) solution, their relative performance differs greatly.
Empirical results show that REDBLUE is, on average, at least 5 times slower than our other three
implementations, indicating that our special-case red-blue line segment intersection counting
technique provides significant performance gains. Furthermore, our two implementations that rely
on persistent data structures out-perform our plane sweep implementation on most synthetic and
all real-world datasets.

In addition to sequential performance gains over other implementations, PARAOT and LINPAR
can leverage multiple threads to further improve performance. While both implementations achieve
parallel speedup on both of our hardware platforms, PARAOT’s performance gains are limited due
to its large memory requirement. LINPAR, however, requires only O(n) extra space and, therefore,
achieves up to 85% parallel efficiency on large synthetic datasets. Our fastest implementation finds
the 1D total visibility-index of over 100 million vertices in under 3 minutes using 16 threads.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

An Efficient Algorithm for the 1D Total Visibility-Index Problem and its Parallelization 1:21

An interesting open problem is to determine whether the dualization used in our solution can
be applied to the 2D total visibility-index computation to achieve a subquadratic solution on two-
dimensional terrains. Another interesting avenue for future research is to see if our solution can
be applied for faster approximate solutions to the 2D total visibility-index problem by computing
total visibility-index on a number of 1D slices of the 2D terrain and then using interpolation to
approximate visibility indices to all points in the 2D terrain. Finally, this work indicates that
persistent data structures can be leveraged to improve the performance of algorithms that use plane
sweep approaches. A practical direction for future research is to apply these persistent structures
to improve the many existing algorithms that use plane sweep approaches.

REFERENCES

[1] ArcGIS. http://www.esri.com/software/arcgis, 2016.

[2] GRASS (Geographic Resources Analysis Support System). https://grass.osgeo.org, 2016.

[3] MJ. Atallah, M.T. Goodrich, and S.R. Kosaraju. Parallel algorithms for evaluating sequences of set-manipulation
operations. J. ACM, 41(6):1049-1088, 1994.

[4] B.Ben-Moshe, O. Hall-Holt, M.J. Katz, and J.S.B. Mitchell. Computing the visibility graph of points within a polygon.
In Proceedings of the Twentieth Annual Symposium on Computational Geometry, SCG ’04, pages 27-35, 2004.

[5] F.Chao, Y. Chongjun, C. Zhuo, Y. Xiaojing, and G Hantao. Parallel algorithm for viewshed analysis on a modern GPU.
International Journal of Digital Earth, 4(6):471-486, 2011.

[6] B.Chazelle and H. Edelsbrunner. Linear space data structures for two types of range search. Discrete Comput. Geom.,
2(2):113-126, June 1987.

[7] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and Applications.
Springer-Verlag, 3rd edition, 2008.

[8] JR.Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures persistent. In Proceedings of the Eighteenth
Annual ACM Symposium on Theory of Computing, STOC ’86, pages 109-121, 1986.

[9] C.Ferreira, M. V. Andrade, S. V. Magalhaes, W. R. Franklin, and G. C. Pena. A parallel sweep line algorithm for visibility
computation. In Proc. of Geolnfo, pages 85-96, 2013.

[10] CR.Ferreira, SV.G. Magalhaes, MV.A. Andrade, W.R Franklin, and A.M. Pompermayer. More efficient terrain viewshed
computation on massive datasets using external memory. In Proc. of the 20th International Conference on Advances in
Geographic Information System, pages 494-497, 2012.

[11] J. Fishman, H. Haverkort, and L. Toma. Improved visibility computation on massive grid terrains. In Proc. of the 17th
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 121-130, 2009.

[12] L. De Floriani and P. Magillo. Algorithms for visibility computation on terrains: a survey. Environment and Planning
B: Planning and Design, 30(5):709-728, 2003.

[13] W.R. Franklin and C. K. Ray. Higher isnfit necessarily better: Visibility algorithms and experiments. In Proc. of
Advances in GIS Research: 6th International Symposium on Spatial Data Handling, pages 751-770, 1994.

[14] S. Friedrichs, M. Hemmer, J. King, and C. Schmidt. The continuous 1.5D terrain guarding problem: descretization,
optimal solutions, and PTAS. Journal of Computational Geometry, 7(1):256-284, 2016.

[15] A.Haas and M. Hemmer. Efficient algorithms and implementations for visibility in 1.5D terrains. In 31st European
Workshop on Computational Geometry, pages 216-219, 2015.

[16] T.Hagerup. Sorting and searching on the word RAM. In Proc. 15th Symposium on Theoretical Aspects of Computer
Science, pages 366—-398, 1998.

[17] H. Haverkort, L. Toma, and Y. Zhuang. Computing visibility on terrains in external memory. Journal of Experimental
Algorithmics, 13:5:1.5-5:1.23, 2009.

[18] J.JaJa. An Introduction to Parallel Algorithms. Addison Wesley, 1st edition, 1992.

[19] D.B. Kidner, P. J. Rallings, and J. A. Ware. Parallel processing for terrain analysis in GIS: visibility as a case study.
Geolnformatica, 1(2):183-207, 1996.

[20] M. Llobera, D. Wheatley, J. Steele, S. Cox, and O. Parchment. Calculating the inherent visual structure of a landscape
(inherent viewshed) using high-throughput computing. In Proc. of Beyond the Artifact: Digital Interpretation of the
Past: the 32nd Computer Applications and Quantitative Methods in Archaeology conference (CAA), pages 146-151, 2004.

[21] M. Loffler, M. Saumell, and R.L Silveira. A faster algorithm to compute the visibility map of a 1.5 d terrain. In Proc.
30th European Workshop on Computational Geometry, 2014.

[22] L.Palazzi and J. Snoeyink. Counting and reporting red/blue segment intersections. CVGIP, 56(4):304-310, 1994.

[23] S.Tabik, A. Cervilla, E. Zapata, and L. Romero. Efficient data structure and highly scalable algorithm for total-viewshed
computation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1):1-7, 2014.

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://www.esri.com/software/arcgis
https://grass.osgeo.org

1:22 P. Afshani et al.

[24] M. van Kreveld. Variations on sweep algorithms: Efficient computation of extended viewsheds and class intervals. In
Proc. of the 7th International Symposium on Spatial Data Handling, pages 13-15, 1996.

[25] D. Wheatley. Cumulative Viewshed Analysis: a GIS-based method for investigating intervisibility and its archaeological
application. Routlege, London, 1995.

[26] Y. Zhao, A. Padmanabhan, and S Wang. A parallel computing approach to viewshed analysis of large terrain data
using graphics processing units. International Journal of Geographical Information Science, 27(2):363-384, 2013.

[27] RJ.Zomer, D.A. Bossio, A. Trabucco, L. Yuanjie, D.C. Gupta, and V.P. Singh. Trees and water: Smallholder agroforestry
on irrigated lands in northern india. Technical Report 122, International Water Management Institute, Colombo, Sri
Lanka, 2007.

[28] R.J. Zomer, A. Trabucco, D.A. Bossio, O. van Straaten, and L.V. Verchot. Climate change mitigation: A spatial analysis
of global land sustainability for clean development mechanism afforestation and reforestation. Agric. Ecosystems and
Envir.,, 126:67-80, 2008.

Received May 2017

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2017.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Description of the Algorithm
	3.1 Constructing Dual Rays and Counting Red-Blue Intersections
	3.2 A Practical Algorithm for Red-blue Intersection Counting
	3.3 Maintaining Critical Rays

	4 Parallel Extension
	4.1 Overview of persistent BST structures
	4.2 Implementation Details

	5 Experimental Results
	5.1 Methodology
	5.2 Datasets
	5.3 Sequential Performance Results
	5.4 Parallel Performance Results

	6 Conclusions
	References

