Resource Allocation Strategies for
Constructive In-Network Stream Processing

2

Anne Benoit! Henri Casanova

Veronika Rehn-Sonigo*

Yves Robert!

! Ecole Normale Supérieure de Lyon, France
2 University of Hawai‘i at Manoa, Honolulu, USA
{Anne.Benoit|Veronika.Rehn|Yves.Robert}@ens-1lyon.fr,henric@hawaii.edu

Abstract

We consider the operator mapping problem for
in-network stream processing, i.e., the application of
a tree of operators in steady-state to multiple data
objects that are continuously updated at various lo-
cations in a network. Examples of in-network stream
processing include the processing of data in a sensor
network, or of continuous queries on distributed re-
lational databases. Our aim is to provide the user a
set of processors that should be bought or rented in
order to ensure that the application achieves a mini-
mum steady-state throughput, and with the objective
of minimizing platform cost. We prove that even the
simplest variant of the problem is NP-hard, and we
design several polynomial time heuristics, which are
evaluated via extensive simulations and compared to
theoretical bounds.

Keywords: in-network stream processing, cloud
computing, operator mapping, complexity, polyno-
maal heuristics.

1. Introduction

We consider the execution of applications struc-
tured as trees of operators. The leaves of the tree
correspond to basic data objects that are spread
over different servers in a distributed network. Each
internal node in the tree denotes the aggregation
and combination of the data from its children using
some operator, which in turn generates new data
that is used by the node’s parent. Basic data ob-
jects are continuously being updated, so that the
tree of operators must be applied continuously. The
goal is to produce final results (at the root node) at
some desired rate.

The above problem, which is called stream pro-
cessing [3], arises in several domains. An impor-
tant domain of application is the acquisition and

refinement of data from a set of sensors [16]. For in-
stance, [16] outlines a video surveillance application
in which the sensors are cameras located at differ-
ent locations over a geographical area. The goal of
the application could be to identify monitored areas
in which there is significant motion between frames,
particular lighting conditions, and correlations be-
tween the monitored areas. This can be achieved
by applying several operators (e.g., filtering, pat-
tern recognition) to the raw images, which are pro-
duced/updated periodically. Another example arises
in the area of network monitoring [17, 7]. In this
case routers produce streams of data pertaining to
forwarded packets. One can often view stream pro-
cessing as the execution of one or more “continuous
queries” in the relational database sense of the term
(e.g., a tree of join and select operators). A contin-
uous query is applied continuously, i.e., at a reason-
ably fast rate, and returns results based on recent
data generated by the data streams. Many authors
have studied the execution of continuous queries on
data streams [11].

In practice, the execution of the operators on the
data streams must be distributed over the network.
In some cases, for instance in the aforementioned
video surveillance application, the servers that pro-
duce the basic objects do not have the computa-
tional capabilities to apply all operators. Besides,
objects must be combined across devices, thus re-
quiring network communication. Although a simple
solution is to send all basic objects to a central com-
pute server, it proves unscalable for many applica-
tions due to network bottlenecks. Also, this central
server may not be able to meet the desired target
rate for producing results due to the sheer amount of
computation involved. The alternative is then to dis-
tribute the execution by mapping each node in the
operator tree to one or more compute servers in the

{Anne.Benoit|Veronika.Rehn|Yves.Robert}@ens-lyon.fr, henric@hawaii.edu

.
o1 0y 0y 03 o 03

(a) Standard tree. (b) Left-deep tree.

Figure 1. Examples of applications struc-
tured as a binary tree of operators.

network. One then talks of in-network stream pro-
cessing. In-network stream processing systems have
been developed [6, 17, 12]. and face the following
question: where should operators be mapped in the
network?

The operator-mapping problem for in-network
stream processing was studied in [16, 15]. Most rele-
vant to our work is the recent work in [15], in which
the problem is studied for an ad-hoc objective func-
tion that trades off application delay and network
bandwidth consumption. In this paper we study a
more general objective function. We enforce the con-
straint that the rate at which final results are pro-
duced, or throughput, is above a given threshold.
This corresponds to a Quality of Service (QoS) re-
quirement, which is almost always desirable in prac-
tice (e.g., up-to-date results of continuous queries
must be available at a given frequency). Basic ob-
jects may be replicated at multiple locations, i.e.,
available and updated at these locations. In terms
of the computing platform we consider a “construc-
tive” scenario: either the user can build the plat-
form from scratch using off-the-shelf components,
or computing and network units are rented by a
cloud provider (e.g. [1]). Our goal is to construct a
distributed network dedicated to the given applica-
tion, which minimizes the monetary cost while en-
suring that the desired throughput is achieved.

Our contributions are as follows: (i) we formal-
ize the operator-placement problem; (ii) we estab-
lish complexity results (all problems turn out to be
NP-complete); (iii) we propose several polynomial
heuristics; (iv) we compare heuristics through ex-
tended simulations, and assess their absolute per-
formance.

2. Models

Application Model — We consider an applica-
tion that can be represented as a set of opera-
tors N' = {ni,ns,...} arranged as a binary tree,
as shown in Figure 1. Operations are initially per-
formed on basic objects, which are made available
and continuously updated at given locations in a dis-
tributed network. We denote the set of basic objects,
which are leaves of the tree, by O = {01,09,...}.
Several leaves may correspond to the same object,
as illustrated in the figure. Internal nodes represent
operator computations. For an operator n; we define
Leaf (7) as the index set of the basic objects needed
for the computation of n;, if any, Ch(i) as the index
set of the node’s children in N, if any, and Par(i)
as the index of the node’s parent in N, if it exists.
We have the constraint that |Leaf (¢)| + | Ch(i)] < 2
because the tree is binary. All functions above are
extended to sets of nodes: f(I) = U;erf(i), where
I is an index set and f is Leaf, Ch or Par. If
|Leaf (i)| > 1, then operator n; needs at least one
basic object for its computation. We call such an
operator an al-operator (for “almost leaf”).

The application must be executed so that it pro-
duces final results, where each result is generated by
executing the whole operator tree once, at a target
rate. We call this rate the application throughput.
Each operator n; € N must compute (intermediate)
results at a rate at least as high as the target appli-
cation throughput. Conceptually, a server executing
an operator consists of two concurrent threads that
run in steady-state. One thread periodically down-
loads the most recent copies of the basic objects cor-
responding to the operator’s leaf children, if any. For
our example tree in Figure 1(a), n1 needs to down-
load 01 and o while ny downloads only o; and ns
does not download any basic object. Note that these
downloads may simply amount to constant stream-
ing of data from sources that generate data streams.
Each download has a prescribed cost in terms of
bandwidth based on application QoS requirements
(e.g., so that computations are performed using suf-
ficiently up-to-date data). A basic object o has a
size 0y (in bytes) and needs to be downloaded by the
processors that use it with frequency fi. Therefore,
these basic object downloads consume an amount
of bandwidth equal to rater, = §, X fr on each net-
work link and network card through which the ob-
ject is communicated. Another thread receives data
from the operator’s non-leaf children, if any, and

performs some computation using downloaded ba-
sic objects and/or data received from other opera-
tors. The operator produces some output that needs
to be passed to its parent operator. The computa-
tion of operator n; (to evaluate the operator once)
requires w; operations, and produces an output of
size 6;.

Platform Model — The target distributed net-
work is a fully connected graph interconnecting a
set of resources R = P U S, where P denotes com-
pute servers, or processors for short, and S denotes
data servers, or servers for short. Servers hold and
update basic objects, while processors apply oper-
ators of the application tree. Each server S; € S
(resp. processor P, € P) is interconnected to the
network via a network card with maximum band-
width Bs; (resp. Bp,). We assume that the same
interconnect technology is used to connect all pro-
cessors, and thus the link between two distinct pro-
cessors P, and P, is bidirectional and has band-
width bp, while the network link from a server S
to a processor P, has bandwidth bs;; on such links
the server sends data and the processor receives it.
In addition, each processor P, € P is character-
ized by a compute speed s,. We denote the case in
which all processors are homogeneous because only
one type of CPUs and network cards can be ac-
quired (Bp,, = Bp and s,, = s) CoNsTR-HoMm. Cor-
respondingly, we term the case in which the proces-
sors are heterogeneous with various compute speeds
and network card bandwidth CONSTR-LAN.

Resources operate under the full-overlap,
bounded multi-port model [9], where a resource can
be involved in computing, sending data, and re-
ceiving data simultaneously. The “multi-port” as-
sumption states that resource R can send/receive
data simultaneously on multiple network links. The
“bounded” assumption states that the total trans-
fer rate of data sent/received by resource R is
bounded by its network card bandwidth.

Mapping Model and Constraints — Our ob-
jective is to purchase/rent a set of processors, and
then to map operators, i.e., internal nodes of the
application tree, onto these processors. Addition-
ally, if a tree node has at least one leaf child, then
it must continuously download up-to-date basic ob-
jects from the fixed set of servers, which consumes
bandwidth on its processor’s network card. Each
processor is in charge of one or several operators.
For each operator on processor P,, while P, com-

putes for the ¢-th final result, it sends to its parent (if
any) the data corresponding to intermediate results
for the (¢ — 1)-th final result. It also receives data
from its non-leaf children (if any) for computing the
(t + 1)-th final result. Recall that all three activi-
ties are concurrent. We assume that a basic object
can be replicated, in some out-of-band manner spe-
cific to the target application (e.g., via a distributed
database infrastructure). In this case, a processor
can choose among multiple data sources when down-
loading a basic object. Conversely, if two operators
require the same basic object and are mapped to
different processors, they must both continuously
download that object (and incur the corresponding
network overheads).

We denote the mapping of the operators in N
onto the processors in P using an allocation func-
tion a: a(i) = u if operator n; is assigned to proces-
sor P,. Conversely, a(u) is the index set of operators
mapped on P,: a(u) = {i | a(i) = u}. We also intro-
duce new notations to describe the location of basic
objects. Processor P, may need to download some
basic objects from some servers. We use DL(u) to
denote the set of (k,l) couples where processor P,
downloads object o from server S;. Each proces-
sor has to communicate and compute fast enough
to achieve the application throughput p. A commu-
nication occurs only when a child or the parent of a
given tree node and this node are mapped on differ-
ent processors. We have the following constraints:

e Bach processor P, cannot exceed its computa-
tion capability:

VP, EP, > p

i€a(u)

Pt (1)

u

e P, must have enough bandwidth capacity to
perform all its basic object downloads and all com-
munication with other processors. The first term
corresponds to basic object downloads, the sec-
ond term corresponds to inter-node communications
when a tree node is assigned to P, and some of its
children nodes are assigned to another processor,
and the third term corresponds to inter-node com-
munications when a tree node is assigned to P, and
its parent node is assigned to another processor:

VP, € P, Z ratey, + Z

(k,))eDL(u) JECh(a(u))\a(u)

2 2

j€Par(a(u))\a(u) i€ Ch(j)Na(u)

p.0;+

p-(si < Bpu (2)

e Server S; must have enough bandwidth capacity
to support all basic object downloads:

> D

P,EP (k,))eDL(u)

VS, €S, rater, < Bs; (3)

e The link between server S; and processor P,
must have enough bandwidth capacity to support
all possible object downloads from S; to Py:

VP, ePVS €S,),
(k,l)EDL(u)

rater, < bs;,, (4)

e The link between P, and P, must have enough
bandwidth capacity to support all possible commu-
nications between the nodes mapped on both pro-
cessors. This constraint can be written similarly to
constraint (2) above, but without the cost of basic
object downloads, and specifying that P, commu-
nicates with P,:

VP,,P, € P

j€Ch(a(u)) j€Par(a(u)) i€ Ch(j)
na(v) Na(v) Nna(u)

3. Complexity

Unsurprisingly, most operator mapping problems
are NP-hard, because downloading objects with dif-
ferent rates on two identical servers is the same
problem as 2-Partition [8]. Let us consider the sim-
plest problem class, i.e., mapping a fully homoge-
neous left-deep tree application [10] (see Fig. 1(b))
without communication costs (9; = 0), with objects
placed on a fully homogeneous set of servers, onto
a fully homogeneous set of processors. The objec-
tive function consists now in minimizing the num-
ber of used processors. It turns out that even this
problem is NP-hard, due to the combinatorial space
induced by the mapping of basic objects that are
shared by several operators. Due to lack of space we
refer the interested reader to [4] for the proof. It uses
a reduction from 3-Partition, which is NP-complete
in the strong sense [8]. Note that this problem be-
comes polynomial if one adds the additional restric-
tion that no basic object is used by more than one
operator in the tree. In this case, one can simply as-
sign operators to [|N| x w/s] arbitrary processors
in a round-robin fashion.

Linear Programming Formulation: We also pro-
vide a formulation of the optimization problem as

an integer linear program (ILP), but due to lack of
space we refer the interested reader to [4].

4. Heuristics

In this section we propose several polynomial
heuristics to solve the operator-placement problem.
The code for all of them is available on the web [2].
Each heuristic works in two steps: (i) an operator
placement heuristic determines the number of pro-
cessors that should be acquired, and decides which
operators are assigned to which processors; (ii) a
server selection heuristic decides from which server
each processor downloads all needed basic objects.

Operator Placement Heuristics — Note that in
most of these heuristics, only the most powerful pro-
cessors and network cards are acquired. However,
these are later replaced by the cheapest ones that
still fulfill throughput requirements. This is done
just after the server selection step, as a third “down-
grade” step, in a view to minimizing cost.

Random — While there are some unassigned op-
erators, the Random heuristic picks one of these
unassigned operators randomly, say op. It then ac-
quires the cheapest possible processor that is able
to handle op while achieving the required applica-
tion throughput. If there is no such processor, then
the heuristic considers op along with one of its chil-
dren operators or with its parent operator. This sec-
ond operator is chosen so that it has the most de-
manding communication requirements with op (in
an attempt to reduce communication overhead). If
no processor can be acquired that can handle both
operators together, then the heuristic fails. If the ad-
ditional operator had already been assigned to an-
other processor, this last processor is sold back.

Comp-Greedy — The Comp-Greedy heuristic first
sorts operators in non-increasing order of w;, i.e.,
most computationally demanding operators first.
While there are unassigned operators, the heuris-
tic acquires the most expensive processor available
and assigns the most computationally demanding
unassigned operator to it. If this operator cannot
be processed on this processor so that the required
throughput is achieved, then the heuristic uses a
grouping technique similar to that used by the Ran-
dom heuristic (i.e., grouping the operator with its
child or parent operator with which it has the most
demanding communication requirement). If after
this step some capacity is left on the processor, then

the heuristic tries to assign other operators to it.
These operators are picked in non-increasing order
of w;, i.e., trying to first assign to this processor the
most computationally demanding operator.

Comm-Greedy — The Comm-Greedy heuristic at-
tempts to group operators to reduce communica-
tion costs. It picks the two operators that have the
largest communication requirements. These two op-
erators are grouped and assigned to the same pro-
cessor, thus saving costly communication between
both processors. There are three cases to consider:
(i) both operators were unassigned, in which case
the heuristic simply acquires the cheapest proces-
sor that can handle both operators; if no such pro-
cessor is available then the heuristic acquires the
most expensive processor for each operator; (ii) one
of the operators was already assigned to a proces-
sor, in which case the heuristic attempts to accom-
modate the other operator as well; if this is not pos-
sible then the heuristic acquires the most expensive
processor for the other operator; (iii) both opera-
tors were already assigned on two different proces-
sors, in which case the heuristic attempts to accom-
modate both operators on one processor and sell the
other processor; if this is not possible then the cur-
rent operator assignment is not changed.

Subtree-Bottom-Up — This heuristic first acquires
as many most expensive processors as there are al-
operators and assigns each al-operator to a distinct
processor. The heuristic then tries to merge the op-
erators with their father on a single machine, in a
bottom-up fashion (possibly returning some proces-
sors). Consider a processor on which one or more op-
erators have been assigned. The heuristic first tries
to allocate as many parent operators of the currently
assigned operators to this processor. If some par-
ent operators cannot be assigned to this processor,
then one or more new processors are acquired. This
mechanism is used until all operators have been as-
signed to processors.

Object-Grouping — For each basic object, this
heuristic counts how many operators need this ba-
sic object. This count is called the “popularity” of
the basic object. The al-operators are then sorted
by non-increasing sum of the popularities of the ba-
sic objects they need. The heuristic starts by ac-
quiring the most expensive processor and assigns
to it the first al-operator. The heuristic then at-
tempts to assign to it as many other al-operators
that require the same basic objects as the first

al-operator, taken in order of non-increasing pop-
ularity, and then as many non al-operators as
possible. This process is repeated until all opera-
tors have been assigned.

Object-Availability — This heuristic takes into ac-
count the distribution of basic objects on the
servers. For each object k the number avy of servers
handling object o is calculated. Al-operators in
turn are treated in increasing order of avy of the ba-
sic objects they need to download. The heuristic
tries to assign as many al-operators download-
ing object k as possible on a most expensive proces-
sor. The remaining internal operators are assigned
similarly to Comp-Greedy, i.e., in decreasing or-
der of w; of the operators.

Server Selection Heuristics — Once an opera-
tor placement heuristic has been applied, each al-
operator is mapped on a processor, which needs
to download basic objects required by the opera-
tor. Thus, we need to specify from which server this
download should occur. For the Random heuristic,
once the mapping of operators onto processors is
fixed, we associate randomly a server to each ba-
sic object a processor has to download.

For all other heuristics, we use a more sophisti-
cated heuristic, using three loops. The first loop as-
signs objects that are held exclusively by a single
server. If not all downloads can be guaranteed, the
heuristic fails. The second loop associates as many
downloads as possible to servers that provide only
one basic object type. The last loop finally tries
to assign the remaining basic objects that must be
downloaded. For this purpose, objects are treated in
decreasing order of nbP/nbS, where nbP is the re-
maining number of processors that need to down-
load the object, and nbS is the number of servers
where the object still can be downloaded. In the de-
cision process, servers are considered in decreasing
order of the minimum between the remaining band-
width capacity of the servers network card, and the
bandwidth of the communication link.

Once servers have been selected, processors are
downgraded if possible: each processor is replaced
by a less expensive model that fulfills the CPU and
network card requirements of the allocation.

5. Simulation Results

Simulation Methodology — All our simulations
use randomly generated binary operator trees with

at most IV operators, which we vary. All leaves cor-
respond to basic objects, and each basic object is
chosen randomly among 15 different types. For each
of these 15 basic object types, we randomly choose
a fixed size. In simulations with small object sizes,
in the 0, € [5,30] MB range, whereas large ob-
ject sizes are in the 0 € [450,530] MB range. The
download frequency for basic objects is either low
(fx = 1/50s) or high (fr = 1/2s). Recall that the
download rate for object op is then computed as
ratey = 5k X fk~

The computation amount w; for an operator n;
(a non-leaf node in the tree) depends on its children
[and r (basic object or operator): w; = (&; + d,)%,
where « is a constant fixed for each simulation run,
and 0 is either the size of the basic object, or the
amount of data sent by the child operator. The same
principle is used for the output size of each operator,
setting for all simulations §; = §; + d,.. The applica-
tion throughput p is fixed to 1 for all simulations.
Throughout the whole set of simulations we use the
same server architecture: we dispose of 6 servers,
each of them equipped with a 10 GB network card.
The 15 different types of objects are randomly dis-
tributed over the 6 servers. We assume that servers
and processors are all interconnected by a 1 GB link.
The rest of the platform can be purchased at the
costs from Table 1 (configurations of Intel’s high-
end, rack-mountable server, PowerEdge R900).

Processor
Performance (GHz) Cost (3) Ratio (GHz/$)
11.72 7,548 + 0 1.55 x10~—3
19.20 7,548 + 1,550 1.93 x10—3
25.60 7,548 + 2,399 2.38 x1073
38.40 7,548 + 3,949 3.12 x10~3
46.88 7,548 + 5,299 3.43 x10~3

Network Card

Bandwidth (Gbps) Cost (%) Ratio (Gbps/$)
1 7,548 + 0 1.32 x10~%
2 7,548 + 399 2.51 x10~4
4 7,548 + 1,197 4.57 x10~4
10 7,548 + 2,800 9.66 x10~*
20 7,548 + 5,999 14.76 x10~%

Table 1. Platform costs (based on data from
the Dell Inc. web site, as of March 2008).

Results — Due to lack of space, we only present re-
sults for selected sets of significant experiments

(see [4] for more results). In the first set of simula-
tions, we study the behavior of the heuristics when
the download frequency is high (1/2s) and ob-
ject sizes small (5-30MB). Figures 2(a) and 2(b)
show the cost as the number of nodes N in the tree
varies, with a fixed computation factor a. As ex-
pected, Random performs poorly. Subtree-bottom-
up achieves the best costs. All Greedy heuris-
tics exhibit similar performance, poorer than
Subtree-bottom-up. Perhaps surprisingly, the
heuristics that pay special attention to basic ob-
jects, Object-Grouping and Object-Availability,
perform poorly. With a larger value of a (cf. Fig-
ure 2(b)) the operator tree size becomes a more
limiting factor. For trees with more than 80 oper-
ators, almost no feasible mapping can be found.
However, the relative performance of our heuris-
tics remains almost the same, with two notable
features: a) Object-Grouping still finds some map-
pings for operator trees with up to 120 operators;
b) Comp-Greedy performs as well as and some-
times better than Subtree-bottom-up when the
number of operators increases.

Figure 3 shows the behavior of the heuristics
when N is fixed and the computation factor « in-
creases. Up to a threshold, the o parameter has
no influence on the heuristics’ performance. When
« reaches the threshold, the solution cost of each
heuristic increases until o exceeds a second thresh-
old after which solutions can no longer be found.
Depending on the number of operators both thresh-
olds have lower or higher values. In the case of
small operator trees with only 20 nodes, the first
threshold is for a=1.7 and the second at a=2.2 (vs.
a=1.6 and a=1.8 for operator trees of size 60, as
seen in Figure 3). Subtree-bottom-up behaves in
both cases the best, whereas Random performs the
poorest. Object-Grouping and Object-Availability
change their position in the ranking: for small trees
Object-Grouping behaves better, while for larger
trees it is outperformed by Object-Availability. The
Greedy heuristics are between Subtree-bottom-up
and the object sensitive heuristics.

With the same experimental setting but large
object sizes (450-530MB), the results are simi-
lar except that no feasible solution can be found
as soon as the trees exceed 45 nodes. In gen-
eral, Subtree-bottom-up still achieves the best
costs, but at times it is outperformed by Comm-
Greedy. Subtree-bottom-up even fails in two
cases (the server selection does not succeed be-

Alpha 0.9

T T
Yo Random +

Comp-Greedy ~ x
400000 i Comm-Greedy
4a+T Subtree-bottom-up
* Object-Groupins
H Object-Availability ~ ©

XA
o

350000

300000

250000 4

cost
Ll

200000 »

150000 4

100000 * 0.2
SHTD g 52 E‘
Pt
50000 |- a
number of nodes
(a) a=0.9.
Alpha 1.7
Random -
CompGreedy x |
400000 - Comm-Greedy
++ Subtree-bottom-up a
Object-Grouping = |
350000 wd Object-Availability
"
300000 o
|
. - -
250000 has
Wt
€ 200000 *
ERS om
+ %
. -
150000 ¢: o a%.x
+ " P o
4r . " 00]
100000 e .
© w8 T x
o CE T
50000 - i Bt &
PUPEIEE
&M“
i
20 0 60 80 100 120 140
number of nodes
(b) a=1.7.

Figure 2. Simulation with high frequency
and small object sizes, increasing V.

cause of bandwidth limitation), while other heuris-
tics find a solution. Please refer to [4] for the de-
tailed results. The behaviors of the heuristics with
low download frequencies (fr = 1/50s) are al-
most the same as for high frequency. In general
the heuristics lead to the same operator map-
ping, but in some cases the purchased processors
have less powerful network cards.

In another set of experiments, we study the influ-
ence of download rates on the solution. Recall that
the download rate of a basic object k is computed
by rater = fr X di. A first result is that frequen-
cies smaller than 1/10s have no further influence on
the solution. All heuristics find the same solutions
for a fixed operator tree (see figures in [4]). For fre-
quencies between 1/2s and 1/10s, the solution cost
changes. In general the cost decreases, but for N =
160 the cost for the Object-Grouping heuristic in-
creases. Furthermore, the heuristic ranking remains:
Subtree-bottom-up, followed by the Greedy family,
followed by the object sensitive ones, and Random.
Interestingly, the costs of Object-Availability de-

T
Random
350000 Comp-Greedy

Comm-Greedy
Subtree-bottom-up

300000

omDx X+

Obj ping
Object-Availability
+

250000

200000

cost

150000

o
100000 o .
"

mo
o
o
o
o
mo
o
o
o

50000

8
KKK KEEKBEKEEHE
0.5 1 15 2 25
alpha

Figure 3. Simulation with high frequency
and small object sizes, increasing o, N = 60.

crease with the number of operators. In this case the
number of operators that need to download a basic
object increases, and hence the privileged treatment
of basic objects in order of availability on servers be-
comes more important. We conclude that the level
of replication of basic objects on servers may mat-
ter for application trees with specific structures and
download frequencies, but that in general we can
consider that this parameter has little or no effect
on the heuristics’ performance.

The last set of experiments is dedicated to the
evaluation of our heuristics versus a lower bound
given by the solution of our ILP. We use the com-
mercial Cplex 11 solver to solve our linear program.
Unfortunately, the ILP is so enormous that, even
when using only 5 possible groups of processors and
using trees with 30 operators, the ILP description
file could not be opened in Cplex. For trees with
20 operators, Cplex returns the optimal solution,
which consists in all cases in buying a single proces-
sor. Therefore, we decided to compare the heuris-
tic solution with the optimal solution only in a ho-
mogeneous setting, in which there is only a sin-
gle processor type. In this case we can skip the
downgrading step after the server allocation step.
Both for « values lower and higher than 1, Subtree-
bottom-up finds the optimal solution in most of
the cases. The same ranking of the heuristics holds
in the homogeneous setting: Subtree-bottom up,
the Greedy family, followed by Object-Grouping,
Object-Availability and finally Random. Focusing
on the Greedy family, we observe that in most cases
Comm-Greedy achieves the best cost.

Summary of results — Results show that all
our more sophisticated heuristics perform better

than the simple random approach. Unfortunately,
the object sensitive heuristics, Object-Grouping and
Object-Availability, do not show the desired per-
formance. We believe that in some situations these
heuristics could lead to good performance, but this
is not observed on our set of random application
configurations. We have found that Subtree-bottom-
up outperforms other heuristics in most situations
and also produces results very close to the optimal
(for the cases in which we were able to determine the
optimal). There are some cases for which Subtree-
bottom-up fails. In such cases our results suggest
that one should use one of our Greedy heuristics.

6. Conclusion

In this paper we have studied the problem of re-
source allocation for in-network stream processing,
with the objective of minimizing the platform cost.
We have formalized the operator-placement prob-
lem. The complexity analysis showed that all prob-
lems are NP-complete, even for the simpler cases.
We have derived an integer linear programming
formulation, and we have proposed several poly-
nomial time heuristics. We have compared these
heuristics through simulation and we have assessed
the absolute performance of our heuristics with re-
spect to the optimal solution of the linear program
for homogeneous platforms and small problem in-
stances. The Subtree-bottom-up heuristic almost al-
ways produces optimal results and almost always
outperforms the other heuristics.

An interesting direction for future work is the
study of the case when multiple applications must
be executed simultaneously so that a given through-
put must be achieved for each application. In this
case a clear opportunity for higher performance
with a reduced cost is the reuse of common sub-
expressions between trees [14, 13]. Another direc-
tion is the study of applications that are mutable,
i.e., whose operators can be rearranged based on op-
erator associativity and commutativity rules [5].

References

[1] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.

[2] Source Code for the Heuristics. http://graal.
ens-lyon.fr/~vsonigo/code/query-streaming/.

[3] B. Badcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream sys-
tems. In Proceedings of the Intl. Conf. on Very
Large Data Bases, pages 456—467, 2004.

[4] A. Benoit, H. Casanova, V. Rehn-Sonigo, and
Y. Robert. Allocation Strategies for Constructive
In-Network Stream Processing. Research Report
2008-20, LIP, ENS Lyon, France, June 2008.

[5] J. Chen, D. J. DeWitt, and J. F. Naughton. De-
sign and Evaluation of Alternative Selection Place-
ment Strategies in Optimizing Continuous Queries.
In Proceedings of ICDE, 2002.

[6] M. Cherniack, H. Balakrishnan, M. Balazinska,
D. Carney, U. Cetintemel, Y. Xing, and S. Zdonik.
Scalable distributed stream processing. In Proc. of
the CIDR Conf., January 2003.

[7] E. Cooke, R. Mortier, A. Donnelly, P. Barham, and
R. Isaacs. Reclaiming Network-wide Visibility Us-
ing Ubiquitous End System Monitors. In Proceed-
ings of the USENIX Annual Technical Conf., 2006.

[8] M. R. Garey and D. S. Johnson. Computers
and Intractability, a Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[9] B. Hong and V. K. Prasanna. Adaptive alloca-
tion of independent tasks to maximize through-
put. IEEE Trans. Parallel Distributed Systems,
18(10):1420-1435, 2007.

[10] Y. E. Ioannidis. Query optimization. ACM Com-
puting Surveys, 28(1):121-123, 1996.

[11] J. Krdme and B. Seeger. A Temporal Foundation
for Continuous Queries over Data streams. In Pro-
ceedings of the Intl. Conf. on Management of Data,
pages 70-82, 2005.

[12] D. Logothetis and K. Yocum. Wide-Scale Data
Stream Management. In Proceedings of the
USENIX Annual Technical Conference, 2008.

[13] K. Munagala, U. Srivastava, and J. Widom. Opti-
mization of continuous queries with shared expen-
sive filters. In PODS ’07: Proc. of the twenty-sixth
ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. ACM, 2007.

[14] V. Pandit and H. Ji. Efficient in-network evalua-
tion of multiple queries. In HiPC, 2006.

[15] P. Pietzuch, J. Leflie, J. Shneidman, M. Roussopou-
los, M. Welsh, and M. Seltzer. Network-Aware Op-
erator Placement for Stream-Processing Systems.
In Proceedings of the 22nd International Confer-
ence on Data Engineering (ICDE’06), 2006.

[16] U. Srivastava, K. Munagala, and J. Widom. Oper-
ator Placement for In-Network Stream Query Pro-
cessing. In Proceedings of the 24th Intl. Conf. on
Principles of Database Systems, 2005.

[17] R. van Rennesse, K. Birman, D. Dumitriu, and
W. Vogels. Scalable Management and Data Min-
ing Using Astrolabe. In Proceedings from the First
Intl. Workshop on Peer-to-Peer Systems, 2002.

Acknowledgment We thank the reviewers for their com-
ments and suggestions. This work was supported in part by
the ANR StochaGrid project.

http://aws.amazon.com/ec2/
http://graal.ens-lyon.fr/~vsonigo/code/query-streaming/
http://graal.ens-lyon.fr/~vsonigo/code/query-streaming/

	1 Introduction
	2 Models
	3 Complexity
	4 Heuristics
	5 Simulation Results
	6 Conclusion

