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Abstract

An important trend in scientific computing is
the establishment of computing platforms that span
multiple institutions to support applications at un-
precedented scales and levels of performance. A
key issue for achieving high performance is the
scheduling of application components onto avail-
able resources, which has been an active area of
research for several decades. However, most of
the platform models traditionally used in schedul-
ing research, and in particular the network mod-
els, break down for platforms spanning multiple
(wide-area) networks. In this paper we examine
modeling issues for large-scale platforms. More
specifically, we discuss network latency, bandwidth
sharing, and network topology. Our discussion is
from the perspective of scheduling research and the
main challenge we address is to develop models
that are sophisticated enough to be realistic, but
simple enough that they are amenable to analysis.
Finally, while the models we propose can be used to
study scheduling problems directly, they also form
a good basis for realistic simulation, which is typ-
ically the method of choice for comparing schedul-
ing strategies.

This material is based upon work supported by the Na-

tional Science Foundation under Grant ACI-0204007.

1. Introduction

Parallel and distributed application scheduling,
i.e. the decision process by which components of
an application are assigned to resources that are
distributed over a network, has been an exception-
ally active research area for several decades. A
scheduling problem is generally defined by three
components: (i) an application model that speci-
fies the application’s structure and requirements;
(ii) a platform model that specifies the nature
of the available resources and of the network by
which they are interconnected; and (iii) an objec-
tive that must be achieved, such as minimizing
application execution time, minimizing cost, max-
imizing execution time predictability, etc.

A trend in high performance computing (HPC)
is to establish computing platforms that span large
networks. The goal is often to support appli-
cations at scales that are beyond what can be
achieved at a single site or institution. This Grid
Computing [11] approach has been made possible
through the development of appropriate middle-
ware services [13, 12] and a number of Grid plat-
forms have been put in production [32, 27, 8]. In
this paper we discuss issues pertaining to the mod-
eling of large-scale platforms from the perspective
of both analysis and simulation for developing and
evaluating scheduling strategies.

One key difference between these platforms
and more traditional parallel computing platforms
(e.g., clusters, MPPs) is the nature of the network.



The properties of wide-area networks are radically
different than those of, say, a switch within an
MPP, and must be well understood to instantiate
realistic platform models. There has traditionally
be an intellectual disconnect between the wide-
area networking community and the scheduling
community: while the former focuses on the ef-
fect of network protocols on global Internet traffic
and advanced networking functionality provided
by new protocols, the latter is generally concerned
with the performance of a single application and
researcher typically use simplistic network models.
Some of these models, while perhaps appropriate
for traditional parallel computing platforms, be-
come radically inadequate for wide-area networks.
In this paper we propose new models that cap-
ture some of the properties of wide-area networks
that are essential for designing scheduling strate-
gies relevant to practice.

The models discussed in the paper can be used
directly as the basis for developing and analyzing
new scheduling algorithms. However, it is often
impossible to obtain analytical results concern-
ing the efficacy of different scheduling algorithms.
One possible approach would be to perform exper-
iments on real-world platforms, but it is difficult
to perform reproducible and diverse experiments
on wide-area computing platforms. Consequently,
simulation has long been the method of choice for
evaluating the relative merit of competing schedul-
ing strategies. Therefore, in the face of new emerg-
ing computing platforms, there is a need for a
simulation framework for scheduling research that
strikes a sound balance between realistic and fast
simulations. In this view, we have implemented
most of the models discussed in this paper as part
of the SimGrid simulation toolkit [1, 19].

2. Network Modeling

In this section we discuss three aspects of net-
works that must be taken into account in plat-
form models: (i) network latencies; (ii) bandwidth
sharing; and (iii) network topology. For each
we describe the issue, briefly review and evaluate
the traditional approach in traditional scheduling
work, and propose new models when necessary.

2.1. Network Latencies

It is well-known that a reasonable approxima-
tion of the time required to send x bytes of data
over a network link is affine of the form α + x/β,
where α is the latency (i.e., the time required for a
zero byte message to travel form the source to the
destination), and β is the data transfer rate (in
fact, models such as LogP [7] proposed more so-
phisticated models as early as ten years ago). Nev-
ertheless, many scheduling works have assumed
linear transfer times x/β, for instance in the di-
visible load scheduling area [4, 2, 21]. Most of
these works were actually developed after the pub-
lication of the LogP model, but assuming a linear
transfer time makes it possible to obtain elegant
solutions to certain scheduling problems. How-
ever, ignoring latencies may lead to flawed solu-
tions as there is no prohibitive cost to sending
large numbers of very small messages. For in-
stance, in [2], which develops a multi-round divis-
ible load scheduling algorithm, it is noted that the
linear model implies an infinite number of rounds
where an infinitesimal amount of work is sent out
at each round. This is clearly impractical and the
authors point out that a “reasonable” number of
rounds should be selected. Without a model that
takes latencies explicitly into account it is difficult
to quantify what may be reasonable. For instance,
one could decide on a minimal message size that
can be scheduled, but it is not clear how to choose
the best such minimal size. Typically, as seen for
instance in [33], taking latencies into account adds
a significant amount of complexity to the schedul-
ing problem.

One may wonder whether the fixed part α of
the transfer time is actually significant when com-
pared to the proportional part x/β. While this
of course depends on the message size x, the
current trend indicates that while latencies are
bounded below by the speed of light, network link
bandwidth increases at an exponential rate. For
instance, the TeraGrid platform [32] has estab-
lished a 40GBit/sec dedicated link between the
San Diego Supercomputer Center (SDSC) and the
National Center for Supercomputing Applications
(NCSA). The expected network latency is in the
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100ms range. A back of-the-envelope calculation
assuming that a data transfer could use the full
bandwidth (e.g., with parallel TCP connections,
tuned congestion windows) gives that one third of
the time to transfer 1 GByte of data is due to the
network latency on the TeraGrid. This is only a
coarse estimate, but it is indicative of the trend for
these types of networks. Therefore, latencies can
indeed be significant and even dominate communi-
cation costs and, for some applications, it is thus
imperative that scheduling strategies take these
latencies into account.

. It is interesting to note that latencies can also
be experienced for computation. Indeed, some ap-
plications require that many (computational) pro-
cesses be initiated on remote resources, which gen-
erally involves calls to middleware services to per-
form authentication, resource acquisition, process
creation, etc. This overhead can be significant.
For instance, data obtained as part of the GRASP
project [6] shows that using the Globus Toolkit
version 2.0 [15] to launch a no-op job on a remote
compute resource could require up to 25 seconds.
This suggests that an affine model for computation
times applies even, for instance, when the number
of cycles required is linear in the input data size.
We have used an affine model for computation in
some of our recent work [35, 34, 33]. .

Accordingly, the SimGrid toolkit provides
ways to define affine models both for communi-
cation and computation times.

2.2. Bandwidth Sharing

A key difference between local-area and wide-
area networks is their bandwidth sharing behav-
iors. Let us first review briefly the traditional
models used in the scheduling literature concern-
ing the sharing of network resources. The typi-
cal assumption is that processors are interconnect
in a point-to-point fashion by network links. In
the “one-port” model a processor can only send
data to one other processor at a time, while in the
“multi-port” model a processor can send data to
multiple processors simultaneously. In both cases,
it is assumed that a single data transfer may oc-
cur on a given network link at a time. With these

assumptions, a fully connected topology can repre-
sent a switch within a cluster, but does not model
a shared communication medium such as an Eth-
ernet network for instance. Arguably, a schedule
could enforce that only one single communication
happens at a time on a given network link, thereby
hiding the fact that network links can be shared.
This however has two major limitations.

The first limitation stems from the fact that
distinct logical network links between hosts of-
ten correspond to shared physical links. There-
fore, although a simultaneous communications be-
tween processor A and B, and between C and D,
may contend for one or more networking resource
and thereby make the non-shared model invalid in
spite of the constraints imposed by the schedule.
This in fact alludes the question of the topology
of the network, which we discuss in Section 2.3.

The second limitation is that allowing network
sharing can in fact be beneficial to an applica-
tion, which we illustrate here with a simple ex-
ample. Consider an on-line scheduling problem in
which requests for computation arrive at a server
and must be dispatched to any of several identi-
cal worker processors over a network link. Say
that a request arrives at time t for a job that
requires 10 minutes of data transfer for 10 min-
utes of computation, and that a request arrives
at time t + 5 minutes for a job that requires 1
minute of data transfer time for 19 minutes of
computation. Finally, say that the performance
metric is the average slowdown over all submitted
jobs, where the slowdown is the ratio of a job’s
effective turn-around time and of the turn-around
time that could be achieved if the platform where
dedicated to that job. This metric is commonly
used for on-line scheduling problems and should
be minimized. Three possible scheduling strate-
gies are: (i) first come first serve; (ii) wait until
both jobs have arrived and schedule the second job
first; and (iii) start jobs exactly when they arrive
allowing simultaneous communication on the net-
work link and assuming that each communication
gets half of the available bandwidth. Other strate-
gies are possible but can easily be shown to reduce
to or be outperformed by one of the above. In
this example, the average slowdown obtained for
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Figure 1. Bandwidth-sharing experiments be-
tween a host at UCSD and one in the Nether-
lands, UVA, UW, and the local-area network.

the three strategies are respectively 1.125, 1.175,
and 1.050, showing that allowing the link to be
shared is the best option. Note that another pos-
sibility would be to allow for interruptible com-
munications by which any communication can be
stopped and resumed at will, which can theoreti-
cally achieve the same average slowdown as strat-
egy (ii) if done appropriately but poses several im-
plementation problems and incurs overhead.

2.2.1. A Simple Bandwidth Sharing Experiment

The (admittedly contrived) example above uses
the simple assumption that when x connections
occur simultaneously on a network link with avail-
able bandwidth B (in Mbit/sec) then each connec-
tion proceeds at B/x Mbit/sec. This model has
been used in most previous work and is represen-
tative of what can be observed, for example, on
a non-switched Ethernet local-area network. This
model however is not adequate for wide-area net-
works, mostly due to the implementation of TCP.
Figure 1 shows the results from experiments in
which we performed data transfers of 100MB files
over TCP between a host in our lab at the Uni-
versity of California, San Diego, and hosts in that
same lab (”Local”), at the Delft Technical Univer-
sity, Netherlands (”Netherlands”) at the Univer-

sity of Virginia (”UVA”), and at the University
of Washington (”UW”). For each of these destina-
tions we initiated from 1 to 32 simultaneous TCP
connections and the graph in Figure 1 plots the
achieved data transfer rate per connection ver-
sus the number of connections. The data transfer
rate is normalized that that achieved when only
one connection is used. In addition the graph
plots the ideal bandwidth-sharing model described
above (dashed line).

We can make the following observations. First,
the ideal bandwidth-sharing model, while accurate
for the ”Local” experiment, is widely inappropri-
ate for any of the wide-area transfers. In fact,
the curves for the two most distant sites, Nether-
lands and UVA, are roughly flat, meaning that
connections beyond the first one get bandwidth
”for free”. The behavior for the wide-area trans-
fers is due to multiple factors. For instance, no
matter how much bandwidth may be available on
an Internet backbone the portion of that band-
width used by a TCP connection is limited by
the sender’s congestion window. Also as backbone
links typically support very large numbers of con-
nections the contention among the connections of
a single application is often effectively negligible,
at least up to a point.

2.2.2. An Empirical Model for Bandwidth Sharing

Based on these results, we conclude that the
simple bandwidth sharing model is not applica-
ble to wide-area links. Furthermore, a reasonable
model for these links is that each concurrent con-
nection of an application gets assigned the same
amount of bandwidth (we will refine this state-
ment in Section 2.3). The SimGrid simulator
makes it possible to instantiate network links that
follow either the simple bandwidth sharing model,
or the backbone model. This provides the foun-
dation for differentiating the contention among
data transfers of an application over both local-
area and wide-are networks. Note that the curve
corresponding to the UW experiment in Figure 1
follows neither model but exhibits somewhat of
a hybrid behavior. We have also observed this
behavior for experiments between UCSD and the

4



University of California, Santa Barbara. This sug-
gests that a more appropriate model could be one
that allows some type of exponential decay of the
bandwidth per connection, which we will investi-
gate in future work. Finally, note that our models
ignore TCP “slow-start” behavior and models only
bandwidth sharing in steady state, which may not
be accurate for short messages.

2.3. Network Topology

The backbone model in the previous section
suggests that an infinite number of connections
could be established “for free” over a backbone
link, which is clearly not the case in practice.
In fact, a host that participates in a distributed
computation is never attached directly to a back-
bone link, but has a network card with some lim-
ited capacity, which is itself connected to possibly
multiple local-area links via a number of routers
and eventually to the backbone. Therefore, when
many connections are opened from a host to re-
mote hosts, the network bottleneck may be the
host’s network card for instance, which limits the
number of connections that can be used effectively.
This effect was not seen in Figure 1 given the
moderate number of connections and the relative
speeds of the backbone link and the local links.
Furthermore simultaneous communication from a
single host to different sites (say from UCSD to
both UCSB and UW) share network resources, in
this case the network card and probably network
links all the way to the first backbone link, and
maybe other backbone links beyond the first one.
Similarly, communication emanating from differ-
ent hosts within a site most likely share local-area
network resources on their way to the Internet
backbone.

Therefore, it is clear that a reasonable net-
work model must consider a sequence of links, or
a path, rather than only single-link connections.
Note that these links can be logical links that each
model a set of physical links, as further discussed
in Section 3. The question then arises of how to
model data transfers over network paths. One pos-
sibility could be to use a store-and-forward model
by which a message is sent in its entirety through

each link in sequence. However, this is extremely
unrealistic because in fact messages are split into
packets and packet transfers are pipelined over the
network links. One possibility would then be to
model the network at the packet level. While this
can be done for simulation (e.g., as in NS [28]), the
resulting complexity precludes the analysis neces-
sary for the development of scheduling algorithms.

2.3.1. A Simple Macroscopic Model of TCP

The key observation here is that, due to the
aforementioned pipelining of messages, the gen-
eral behavior is that a data transfer over a network
path goes at the speed of the slowest link, i.e. the
bottleneck link, on that path. This makes it possi-
ble to develop macroscopic models of bandwidth-
sharing. Such models have been derived via an
analogy between network connections, or flows,
and fluids in pipes while ignoring the packet gran-
ularity [23] and several authors have proposed
theoretical models for TCP bandwidth allocation
among flows [5, 10, 24]. These works show that
bandwidth sharing among TCP flows is not fair
but in fact depends on the network latencies ex-
perienced by the different flows. Simply put, two
flows competing over a same bottleneck link re-
ceive bandwidth approximately inversely propor-
tional to their round trip times, which is propor-
tional to the link’s latency.

Building on these considerations we have de-
signed an efficient algorithm for simulating TCP
flows competing over multi-path routes. Due to
lack of space we only give here the main ideas
and we refer the reader to [3] for all details. The
algorithm first considers all links and determines
bottleneck links for some flows. These flows are
assigned bandwidth on these links inversely pro-
portionally to their round-trip times (remember
that as seen in Section 2.1 network link latencies
are a fundamental part of the network model).
These flows consume this bandwidth end-to-end,
and thus our algorithm reduces the bandwidth ca-
pacity of links traversed by all these flows in the
network accordingly. This process is repeated un-
til bandwidth has been allocated to all flows and
considers backbone links and local-area links as
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discussed in Section ??. We have proved the cor-
rectness of our algorithm and validated it with
the Network Simulator (NS) [28]. The critical
point is that the bandwidth sharing model that
our algorithm implements is simple enough that it
can be used directly for analyzing and developing
scheduling strategies that take bandwidth sharing
into account (we are currently engaged in doing
so for divisible load scheduling problems). Sim-

Grid implements our algorithm and thus makes
TCP bandwidth-sharing completely transparent
to the SimGrid user. Note that network protocols
more evolved than TCP are being investigated for
supporting Grid computing applications, for in-
stance ones by which bandwidth sharing can be
controlled better at the application level or ones

that exploit optical network technology. However,
for the time being, TCP is the de-facto standard
that most Grid platforms use, and is thus the focu
of our model and of SimGrid.

3. Putting it Together

3.1. A Simple Grid model

A key question is to decide which platform
model should be instantiated for the purpose of
scheduling research. The challenge is to instanti-
ate a model that is simple enough that it can be
used for analytical purposes and for fast simula-
tions, and complex enough that it captures the rel-
evant characteristics of real-world platforms. It is
almost impossible to precisely quantify this trade-
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off, but the discussion in the two previous sections
points to the following requirements: network la-
tencies should be modeled, wide-area backbone
links should be modeled differently than local-area
links, a macroscopic model of TCP bandwidth-
sharing should be used. But the question of which
network topology to model is still open.

Several Internet topology generators have been
developed [17, 25, 31, 22] that create a network
consisting of links and router that has properties
similar to that of real Internet topologies (power
laws, structure, etc.). These generators typically
do not model link characteristics and/or traffic
and it is the responsibility of the user to annotate
the generated topology appropriately, which is dif-
ficult. The generated topologies has been tradi-
tionally used for simulation, notably with NS [28]
in the network research area, and in fact SimGrid

makes it possible to import and annotate topolo-
gies generated by BRITE [25]. However, there are
problems with using such complex topologies for
the purpose of designing scheduling algorithms.
The most significant one is that since these algo-
rithms are implemented at the application level,
only very coarse information about topology and
routing is available to them in practice. So while
using complex topologies may be appropriate for
simulation, more synthetic models that only use
information available at the application level are
needed for designing new scheduling algorithms.

One possibility is to abstract away the wide-are
networking infrastructure as a fully connected net-
work among the “sites” that form the Grid plat-
form, where a site typically corresponds to an in-
stitution in a single geographical location. This
simplifying model implies that there is no con-
tention between application transfers on the In-
ternet when the source and/or destination sites of
these transfers are different. For instance, trans-
fers from UCSD to UVA do no interfere with
transfers from UCSD to UW on the Internet, but
of course can interfere with each other within
the UCSD institution, i.e., before the connection
to an Internet backbone. We have seen in Sec-
tion 2.3 that backbone links can often be modeled
as ones on which transfers of the applications do
not contend for bandwidth among themselves. If

this is the case, then this model implies no inter-
ference between any transfer on wide-area links.
Within each institution it is reasonable to think
that some knowledge of the network topology is
directly available or that it can be easily discov-
ered. For instance, the work in [18] describes an
extension to the Effective Network View (ENV)
software [30] by which effective layer 3 topologies
can be discovered with application-level measure-
ments and contention tests (we focus on layer 3
topology information as this is information that
can be obtained at the application level). See [20]
for an example of the type of topologies that can
be discovered with this tool. Note that ENV also
annotates the (logical) network links with effec-
tive bandwidths. The bandwidth and bandwidth-
sharing behavior of wide-area links can be identi-
fied with experiments similar to the one used to
compute the data in Figure 1. Other layer 3 topol-
ogy discovery approaches are of course also avail-
able and may be used if deployed [9, 29, 14, 26, 16].

Figure 2 depicts a sample Grid model with four
sites. Backbone links are shown as grey lines,
while local-area links are shown in black. Even
with such a seemingly complex topology, it is
straightforward to exploit the bandwidth sharing
model described in Section 2.3 to develop new
scheduling algorithms analytically and we are cur-
rently engaged in such efforts. Note that the ENV
approach could also be used to try to infer link
sharing over the wide area and move beyond the
fully connected assumption if needed.

We claim that this topology model together
with our bandwidth sharing model strikes a good
balance by being simple enough to be amenable
to the analysis and development of novel schedul-
ing algorithms and yet significantly more realistic
than models traditionally used in the scheduling
literature. We have performed component-wise
validation of our model (see Section ?? and 2.3)
and the SimGrid software makes it straightfor-
ward to instantiate model simulations.
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3.2. The SimGrid Framework

4. Conclusion

In this paper we have discussed a number of is-
sues pertaining to the modeling of large-scale com-
putational platforms for the specific purpose of
scheduling research. In particular we have focused
on network models and have highlighted the short-
comings of modeling approaches used tradition-
ally in the parallel computing area when applied
to wide-area networks. We have made a case for
the modeling of network latencies, outlined new
models for bandwidth sharing that better reflect
the behavior of TCP on real-world networks, and
proposed a streamlined model for Grid comput-
ing platforms that is more realistic that used pre-
viously and yet amenable to analysis. We have
also highlighted those models that we have imple-
mented as part of our own simulation framework
for evaluating scheduling algorithms, SimGrid.
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