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Abstract—Applications structured as parallel task graphs exhibit both data and task parallelism and arise in many domains.

Scheduling these applications efficiently on parallel platforms has been a long-standing challenge. In the case of a single

homogeneous platform, such as a cluster, results have been obtained both in theory, i.e., guaranteed algorithms, and, in practice, i.e.,

pragmatic heuristics. Due to task parallelism, these applications are well suited for execution on distributed platforms that span multiple

clusters possibly in multiple institutions. However, the only available results in this context are nonguaranteed heuristics. In this paper,

we develop a scheduling algorithm, MCGAS, which is applicable to multicluster platforms that are almost homogeneous. Such

platforms are often found as large subsets of multicluster platforms. Our novel contribution is that MCGAS computes task allocations

so that a (tunable) performance guarantee is provided. Since a performance guarantee does not necessarily imply good average

performance in practice, we also compare MCGAS with a recently proposed nonguaranteed algorithm. Using simulation over a wide

range of experimental scenarios, we find that MCGAS leads to better average application makespans than its competitor.

Index Terms—Mixed parallelism, parallel task graph scheduling, performance guarantee, multicluster platform.
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1 INTRODUCTION

SCIENTIFIC simulations executed on parallel computing
platforms can exploit two types of parallelism: task

parallelism and data parallelism. A task-parallel application is
partitioned into a set of tasks with possible precedence and
communication constraints. A data-parallel application
typically exhibits parallelism at the level of loops, i.e.,
iterations can be executed conceptually in a Single Instruc-
tion Multiple Data (SIMD) fashion. A way to expose
increased parallelism, to, in turn, achieve higher scalability
and performance, is to write parallel applications that use
both types of parallelism, using what is often called mixed
parallelism. With mixed parallelism, applications are struc-
tured as parallel task graphs (PTGs), that is, task graphs of
data-parallel tasks. PTGs arise naturally in many applica-
tions (see [1] for a discussion of the benefits of mixed
parallelism and application examples). One well-known
challenge for PTGs is scheduling, that is, making decisions
for mapping computation and data transfers to platform
components in a view to optimizing some performance
metric. The vast majority of works that target the schedul-
ing of PTGs use application execution time, or makespan, as
the performance metric. Mixed parallelism adds another
level of difficulty to the already challenging scheduling

problem for task-parallel applications because data-parallel
tasks are moldable, i.e., they can be executed on various
numbers of processors, with more processors leading to
faster task execution times. This raises the question of how
many processors should be allocated to each data-parallel
task. In other words, what is the best trade-off between
running more concurrent data-parallel tasks with each
fewer processors, or running fewer concurrent tasks each
with more processors?

The most popular parallel computing platforms today
are commodity clusters, which are therefore primary
candidates for running PTGs. Most clusters consist of
identical compute nodes (at least when they are initially
put in production), and thus, the question of scheduling
PTGs on homogeneous platforms has been studied by many
researchers. From a theoretical standpoint, although the
scheduling problem is NP-complete, algorithms with
performance guarantees, defined as the maximum ratio
between the produced makespan and the optimal make-
span, have been developed in [2], [3], [4], [5]. From a more
applied standpoint, many nonguaranteed heuristics have
been proposed and shown to lead to good average
performance in practice [6], [7], [8], [9], [10], [11].

In spite of the abundance of deployed homogeneous
clusters, heterogeneous platforms have received a lot of
attention in the last decade. The primary motivation comes
from improvements in network and middleware technology
that have made it possible to aggregate several clusters over
multiple institutions. Thesemulticluster platforms,whichare
a form of grid computing, hold the promise of higher levels of
scale and performance than possible with a single cluster.
This is particularly true for task-parallel applications, which
are less tightly coupled thanpurelydata-parallel applications
and can thus accommodate large intercluster network
latencies (e.g., on wide-area networks). Consequently, many
PTGs are well-suited to execution on multicluster platforms.

Multicluster platforms raise two challenges for the
scheduling of parallel applications, and PTGs are no
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exception. First, these platforms are heterogeneous because
they consist of clusters in different institutions. Second, they
are composite and, thus, it is inadvisable to run data-parallel
tasks across clusters, which adds an additional constraint
when compared to the PTG scheduling problem for
noncomposite platforms. Developing PTG scheduling algo-
rithms with performance guarantees on (multicluster)
heterogeneous platforms is an open research question and
previous work has instead focused on developing prag-
matic heuristics [12].

In this paper, we adapt theoretical results for PTG
scheduling on homogeneous platforms to multicluster
platforms. We address the two aforementioned challenges
as follows. With respect to heterogeneity, we make the
observation that there are deployed multicluster platforms
(or significant subsets thereof) that exhibit low heterogene-
ity in terms of processor speed. Therefore, guaranteed
scheduling algorithms developed for homogeneous plat-
forms could lead to good results in our context. With
respect to the composite nature of multicluster platforms,
we adapt recent theoretical results obtained for “hierarch-
ical” clusters of Symmetric Multiprocessors (SMPs) [13],
noting that “collection of clusters” hierarchies are akin to
“cluster of SMPs” hierarchies. More specifically, we make
the following contributions.

. We develop the first practical implementation and
experimental evaluation of a previously described
task allocation algorithm that leads to a performance
guarantee.

. We design a scheduling algorithm with a tunable
performance guarantee for homogeneous multiclus-
ter platforms.

. We evaluate our scheduling algorithm in simulation
to put its average performance in perspective with
its performance guarantee.

. We compare our scheduling algorithm with a
recently published pragmatic heuristic for schedul-
ing PTGs on multicluster platforms.

This paper is organized as follows: Section 2 details our
platform and application models. Section 3 discusses
related work. Section 4 presents our scheduling algorithm,
which we evaluate in Section 5. Section 6 concludes the
paper with a summary of our findings.

2 PLATFORM AND APPLICATION MODELS

2.1 Platform Model

In this paper, we base our platform model on a real-world
multicluster platform, Grid’5000 [14], [15]. The goal of
Grid’5000 is to build a highly reconfigurable, controllable,
and monitorable experimental platform to allow experi-
mental parallel and distributed computing research. The
platform consists of nine geographically distributed sites,

aggregating a total of 5,000 CPUs, and is funded by the
French ACI Grid incentive of the French Ministry of
Research and Education. Each of the nine sites hosts at
least one commodity cluster, and the number of processors
per cluster ranges from around 100 to around 1,000. The
architectures of these processors are AMD Opteron, Intel
Xeon, Intel Itanium 2, or PowerPC.

Although the Grid’5000 platform is heterogeneous, it was
established as a concerted effort with a goal of avoidingwide
heterogeneity of processor performance. This may not be the
case for other production grid platforms, in which it may not
be possible to find a significant subset of the resources with
low heterogeneity. By contrast, we can easily identify an
“almost homogeneous” subset of Grid’5000. This subset
comprises 545 processors distributed among six clusters.
Table 1 summarizes the number of processors per cluster
and the computing speed of the processors in each cluster, in
GFlop/sec. These values were obtained with the High-
Performance Linpack benchmark over the AMD Core Math
Library (ACML) either with the original clock rates (on the
Lyon, Nancy, Orsay, Rennes, and Sophia sites) or by under-
clocking the processors, which is done on the Lille site
specifically to reduce the heterogeneity of Grid’5000. Five
hundred forty-five processors, although amounting to only a
little over 10 percent of the overall platform, still represent a
large homogeneous compute platform. There is, therefore, a
strong motivation for attempting to use this almost homo-
geneous subset to the best of its potential for running PTGs,
for instance, by using sophisticated task allocation algo-
rithms with performance guarantees.

Each cluster uses a Gigabit interconnect (GigaEthernet or
Myrinet) internally, and all clusters are interconnected
together by the wide-area RENATER Education and
Research Network, a 10 Gigabit/sec network. Table 2 shows
the intersite latencies as measured on Grid’5000, in seconds.
The simulations in this paper are based on the values given
in Tables 1 and 2.

2.2 Application Model

A PTG application is modeled as a Directed Acyclic Graph
(DAG) G ¼ ðV; EÞ, where V ¼ fvi j i ¼ 1; . . . ; V g is a set of
vertices representing data-parallel tasks, or “tasks” for
short, and E ¼ fei;j j ði; jÞ 2 f1; . . . ; V g � f1; . . . ; V gg is a set
of edges between vertices, representing communication
between tasks. Each edge ei;j has a weight, which is the
amount of data (in bytes) that task vi must send to task vj
(we call vj a successor of vi and vi a predecessor of vj). Note
that in addition to data communication itself, there may be
an overhead for data redistribution, e.g., when task vi is
executed on a different number of processors than task vj.
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Without loss of generality, we assume that G has a single
entry task and a single exit task. Since data-parallel tasks
can be executed on various numbers of processors, we
denote by Tkðv; pÞ the execution time of task v if it were to
be executed on p processors of cluster Ck. In practice,
Tkðv; pÞ can be measured via benchmarking on each cluster
for several values of p, or it can be calculated via a
performance model. In this work, we assume that Tkðv; pÞ
does not increases as p increases, i.e., using more processors
for a task does not lengthen its execution time. The overall
execution time of G, or makespan, is defined as the time
between the beginning of G’s entry task and the completion
of G’s exit task.

We take a simple approach for modeling data-parallel
tasks.We assume that a task operates on a data set of ddouble
precision elements (for instance, a

ffiffiffi
d

p � ffiffiffi
d

p
square matrix).

We arbitrarily assume that processors have at most 1 GByte

of memory, and thus d � 121 M. We also assume that d is
above 4 M (if d is too small, the data-parallel task shouldmost
likely be fusedwith its predecessor or successor). The volume
of data communicated between two tasks is equal to 8� d

bytes. We model the computational complexity of a task, in
number of operations, with one of the three following
expressions, which are representative of common applica-
tions: a � d (e.g., a stencil computation on a

ffiffiffi
d

p � ffiffiffi
d

p
domain),

a � d log d (e.g., sorting an array of d elements), d3=2 (e.g.,
multiplication of

ffiffiffi
d

p � ffiffiffi
d

p
matrices). For the first two types of

complexity, a is picked randomly between 26 and 29 to
capture the fact that some of these tasks often perform
multiple iterations. We consider four scenarios: three in
which all tasks have one of the three computational complex-
ities above, and one in which task computational complex-
ities are chosen randomly among the three.

The above model leads to a range of communication-
computation ratios that correspond to many typical
computational tasks and real-world applications. More
specifically, assume a 1-Gbit/sec network (as the internal
switches in our clusters) and 3.388 GFlop/sec processors
(as the fastest processors in our platform). Our synthetic
PTGs correspond to situations in which the total
(sequential) time for performing all computations is
between 1.1 and 42.8 times larger than the total
(sequential) time for performing all data communications.
Therefore, our experiments span the range from commu-
nication-intensive to computation-intensive applications.

While the above provides a model for sequential task
execution, we also need to account for parallel executions,
i.e., for how task execution time varies with the number of
processors. We use a simple model that is used extensively
in the literature, thus allowing our results to be compared
with previously published results consistently. This model
is based on Amdahl’s law [16] and specifies that a fraction �

of a task’s sequential execution time is nonparallelizable.
We pick random �-values uniformly between 0 and
25 percent. With this “Amdahl model,” an application task
exhibits different execution times for different numbers of
processors. We denote by !i the work of task vi, i.e., the
product of its execution time and the number of processors
allocated to it.

We consider applications that consist of 10, 20, or 30 data-
parallel tasks. We use four popular parameters to define the
shape of the DAG: width, regularity, density, and “jumps.”
The width determines the maximum parallelism in the
DAG, that is, the number of tasks in the largest level. A
small value leads to “chain” graphs and a large value leads
to “fork-join” graphs. The regularity denotes the uniformity
of the number of tasks in each level. A low value means that
levels contain very dissimilar numbers of tasks, while a high
value means that all levels contain similar numbers of tasks.
The density denotes the number of edges between two
levels of the DAG, with a low value leading to few edges
and a large value leading to many edges. These three
parameters take values between 0 and 1. In our experiments,
we use values 0.2, 0.5, and 0.8 for width, and 0.2 and 0.8 for
regularity and density. Finally, we add random “jumps
edges” that go from level l to level lþ jump, for jump ¼
1; 2; 4 (the case jump ¼ 1 corresponds to “layered DAGs”
[6]). We refer the reader to our DAG generation program
and its documentation for more details [17]. Note that our
DAG generation procedure is similar to ones used pre-
viously in the literature, for instance, in [18]. It was also used
to evaluate the HCPA scheduling heuristic [12], to which we
compare the algorithm proposed in this paper.

Overall, we have 42 � 33 ¼ 432 different DAG types. Since
someDAGcharacteristics are random, for eachDAGtype,we
generate three sample DAGs, for a total of 1;296 DAGs.

3 RELATED WORK

In this section, we review related work, categorizing it with
respect to the underlying platform model, and referring
both to theoretical results, such as guaranteed algorithms,
and to pragmatic nonguaranteed heuristics, whenever
applicable. The objective of all these algorithms is to
minimize application makespan. This is the performance
metric we use in this work as well.

3.1 Single Homogeneous Cluster

Early work in the area [19], [20] proposes an algorithm to
compute optimal PTG schedules under strong assumptions,
namely that all data-parallel tasks exhibit the same
particular parallel performance behavior and processor
allocations can be fractional rather than integral. In the
general case, a seminal result in the area of PTG scheduling
from a theoretical standpoint is the guaranteed two-step
algorithm proposed in [4]. In a first step, the algorithm
decides how many processors should be allocated to each
task, which is done via a relaxed linear program minimiza-
tion and which also results in fractional processor alloca-
tions. A rounding procedure is then used to obtain integral
allocations [21]. In step two, the algorithm uses a simple list
scheduling approach to map tasks to sets of processors. The
guaranteed performance ratio is defined as the maximum
ratio between the produced makespan and the optimal
makespan. In [4], it is shown that the guaranteed
performance ratio of this algorithm is �2:62 in the specific
case of tree-shaped PTGs and �5:24 in the general case. This
result was improved in [5], leading to a �4:73 performance
ratio in the general case. One of our contributions is that to
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the best of our knowledge, we provide the first experi-
mental evaluation of the approach in [4].

Several practical PTG scheduling algorithms based on
heuristics have been proposed in the literature [6], [8], [9],
[10], [11]. Like the guaranteed algorithms discussed earlier,
the algorithms in [6], [8], [9], [10] proceed in two phases. A
prominent algorithm is Critical Path and Area (CPA)-based
scheduling [8], which aims at finding the best compromise
between two quantities. The first quantity is the length of
the critical path, i.e., the path in the PTG on which the sum of
the edge and vertex weights is maximal. We denote the
length of the critical path by Cmax. The second quantity is the
ratio of the total work, i.e., W ¼PV

i¼0 !i, and of the total
number of processors, m. This ratio is then the average work
per processor. The principle of the CPA algorithm is to start
by allocating only one processor to each task. Therefore,
initially Cmax is larger than W

m . Then, at each iteration, CPA
adds one more processor to the task belonging to the critical
path that benefits the most from this one-processor
allocation increase. The allocation process stops when
Cmax becomes smaller than W

m . Indeed, the case Cmax ¼ W
m

corresponds to an optimal trade-off because both these
quantities are lower bounds of the application makespan.
Depending on application and platform characteristics,
CPA may lead to excessively large allocations that can
prevent the concurrent execution of independent tasks. Two
algorithms address this limitation. MCPA [6], which is only
applicable to layered PTGs, limits processor allocations to
ensure that all the tasks in a level of the PTG can be
executed concurrently. HCPA [12] employs a modified
definition of the average work per processor to remove the
bias induced by a large number of available processors and
is applicable to any PTG. These last three algorithms all use
a list scheduling-based task mapping phase by which tasks
are mapped to processors in order of decreasing “bottom
level” (i.e., distance to the PTG’s exit task), accounting for
data communication and data redistribution costs. The
iCASLB one-step algorithm in [11] was shown to lead to
better performance than some two-step algorithms, includ-
ing CPA, while maintaining reasonable complexity. This
algorithm performs allocation and mapping simultaneously
by iteratively increasing the allocations of tasks on the
critical path, with a look-ahead mechanism to avoid being
trapped in local minima, and a backfilling approach to
improve the schedule.

3.2 Multiple Homogeneous Clusters

Scheduling algorithms with performance guarantees have
been studied for a “hierarchy of homogeneous clusters,”
which is, in fact, a single cluster with identical nodes, where
each node is an SMP and thus is a “cluster” of processors,
where each cluster has the same number of processors. Using
thework in [22] as a basis, Dutot [13] has proposed extensions
to the approach in [4] to accommodate multiple clusters. The
key difficulty is that the execution time of a data-parallel task
on a set of processors depends on the repartition of these
processors among clusters. This difficulty is alleviated by
enforcing a placement rule, which works as follows. Let p be
the number of processors to be allocated to a data-parallel
task, s be the number of processors per cluster, and q and r be
the quotient and the remainder of the integer division of p by

s (p ¼ q � sþ r). An allowable placement must use q full
clusters and r processors in a single cluster. This rule simply
minimizes the number of different clusters used to run a
data-parallel task.

The algorithm in [13] uses an allocation step similar to
that in [4] for a single cluster and a specialized list
scheduling in the second step. However, the transition
between the two steps is based on a differentiation between
“small” and “large” tasks (depending on the number of
allocated processors) and on constraints on the number of
clusters that can run small tasks simultaneously. With the
optimal choice for this differentiation and this constraint, the
algorithm has an overall guarantee no worse than �5:64.
This result holds for PTGs structured as trees, and a
guarantee twice as large can be easily obtained in the
general case. Note, however, that a lower guarantee in the
general case could be achieved by leveraging the techniques
proposed in [5].

To the best of our knowledge, no (nonguaranteed)
scheduling heuristics were developed specifically for the
case of multiple homogeneous clusters. However, the
heuristics for multiple heterogeneous clusters reviewed in
the next section are certainly applicable to multiple homo-
geneous clusters.

3.3 Multiple Heterogeneous Clusters

To the best of our knowledge, no PTG scheduling algorithm
with performance guarantees has been developed for
heterogeneous (multicluster) platforms. Two heuristics have
been recently proposed: Heterogeneous CPA (HCPA) [23]
and M-HEFT [24]. HCPA extends the CPA algorithm [8] to
heterogeneous platforms by using the concept of a reference
cluster.Allocationson the reference cluster are translated into
allocations on clusters containing processors with various
speeds. M-HEFT extends the well-known HEFT algorithm
for scheduling task-parallel DAGs [25]. M-HEFT performs
list scheduling by reasoning on average data-parallel task
execution times for one-processor allocations on all possible
clusters. Weaknesses in both HCPA and M-HEFT were
identified and remedied in [12]. In that paper, the authors
performa thoroughcomparisonofboth improvedalgorithms
and find that althoughnoalgorithm is overwhelminglybetter
than the other, HCPA would most likely lead to schedules
that would be preferred by the majority of users. HCPA was
shown to achieve a good trade-off between application
makespan and parallel efficiency (i.e., how well resources
are utilized). In this work, we compare our approach to this
improved HCPA version.

4 A GUARANTEED ALGORITHM FOR

HOMOGENEOUS MULTIcLUSTER PLATFORMS

In Section 2.1, we noted that there are grid platforms, such
as multicluster grids, in which significant subsets of the
resources are almost homogeneous in terms of compute
speed. This provides the motivation for this paper, namely,
the investigation of a guaranteed algorithm for a homo-
geneous multicluster platform. Our work draws inspiration
from the work in [13]. Recall that in that work, the target
platform is a homogeneous cluster of SMP nodes, while we
consider a homogeneous collection of clusters. There are
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thus two key differences between the platform model in
that paper and ours.

1. In [13], all nodes have the same number of
processors (because they are homogeneous SMP
nodes), but in this paper, clusters can have different
numbers of nodes (there are small clusters and large
clusters).

2. In [13], data-parallel tasks are allowed to run over
multiple nodes. By contrast, in this work, we restrict
a data-parallel task to run within a single cluster.
Disallowing data-parallel tasks running over multi-
ple clusters is sensible because of the cost of
intercluster communication and this restriction is
enforced in all previous work on the topic of PTG
scheduling on multicluster platforms.

While the first difference above causes difficulties, the
second one simplifies the scheduling problem. Indeed, with
tasks runningoverasingle cluster, theplacement ruledefined
in [13] and outlined in Section 3 is no longer necessary.

4.1 Fundamental Previous Results

Before presenting the details of our algorithm, we recall two
fundamental results that provide the basis of our approach.
The first result, by Skutella [21], gives a linear program to
find the task allocations that lead to the best possible trade-
off between the length of the critical path and the average
work per processor. The second result, by Lepère et al. [4],
introduces the notion of bounding the number of processors
allocated to each task to improve the performance ratio of
the list scheduling.

4.1.1 The Time-Cost Trade-Off Problem

The time-cost trade-offproblem(see [26]) is very similar to the
processor allocationproblemwe facewhen schedulingPTGs.
As in the time-cost trade-off problem, we have two lower
bounds on themetric to be optimized: the length of the critical
path and the average work per processor. Reducing the
number of processors allocated to any task affects this trade-
off in favor of a smaller average work, while it may increase
the critical path. Conversely, increasing the number of
processors used to compute a task is likely to shorten the
critical path and increase the averageworkperprocessor. The
goal is to achieve the best trade-off between the two, i.e.,
minimizing theirmaximum.As a result, providedwe are in a
one-cluster scenario, we can reuse the approach in [21] for
solving the time-cost trade-off problem directly for schedul-
ing a PTG. We defined earlier Tkðv; pÞ as the time it takes to
complete task vwhenusing pprocessors of cluster k. Since for
now,we consider only one cluster, we shorten the notation to
T ðv; pÞ in this section. Theworkused for task von pprocessors
is then pT ðv; pÞ. There arempossible allocations for each task:
execution timeT ðv; pÞ andaworkof pT ðv; pÞ, for p ¼ 1; . . . ;m.
We thus have to solve a discrete optimization problem, i.e.,
finding the optimal trade-off by picking for each task a
particular allocation among a finite set of possible allocations.

As with many problems, solving the discrete problem is
strongly NP-hard, while solving a continuous version of
problem is easy. The idea here is then to first solve a larger,
but continuous problem, in which each task v is replaced by
a set of m� 1 “activities.” Each activity has a continuous
linear cost function defined based on execution time. To

each activity vi corresponds a variable xv;i verifying the
following inequalities: T ðv;mÞ � xv;i � T ðv; iÞ. The cost of
activity vi, denoted by !v;i, is set to

!v;i ¼ T ðv; iÞ � xv;i

T ðv; iÞ � T ðv;mÞ ððiþ 1ÞT ðv; iþ 1Þ � iT ðv; iÞÞ:

Since T ðv;mÞ decreases as m increases, for all i smaller
than m, T ðv; iÞ is no smaller than T ðv;mÞ.

To keep track of the precedence constraints, we intro-
duce variables sv to ensure that no task starts before all
its predecessors end. In short, for all ðu; vÞ 2 E, sv �
maxiðsu þ xu;iÞ.

To summarize, for any given critical path length �Cmax, the
minimal cost necessary to achieve it is found by solving the
rational linear program defined by the following constraints:

8v; i; T ðv;mÞ � xv;i;

8v; i; xv;i � T ðv; iÞ;
8ðu; vÞ 2 E; maxiðsu þ xu;iÞ � sv;

8v; i; sv þ xv;i � �Cmax;

and minimizing the cost function

X
v2V

Xm�1

i¼1

!v;i:

Note that a fixed cost corresponding to the smallest
possible totalwork, achievedwhen each task is allocated only
one processor, has to be added to the above cost function in
order to compute the true total work, whichwe denote by �W .
We refer the reader to [21] for all details and justifications
about the construction of the above linear program.

At this point, we have a way to pick any �Cmax value and
compute the corresponding �W value, with the goal of
finding the optimal trade-off. The �Cmax and �W values are
continuous and not necessarily integers. Since

�W
m and �Cmax

have opposite behavior, there are two possible scenarios. If
one is always larger than the other, one can use straightfor-
ward extreme allocations (each task uses one processor if

�W
m

is always larger, or all processors if �Cmax is always larger).
Otherwise, an optimal trade-off can be approached by
binary search. In the latter scenario, the values obtained are
lower bounds of the optimal discrete trade-off, that is, of the
discrete values of the critical path length and of the total
work, so that the maximum of the critical path length and
the average work per processor is minimized. We denote
these discrete values by C�

max and W �, respectively.
The work in [21] uses a rounding technique to turn the

continuous solution ð �Cmax;
�W
mÞ into a solution of the discrete

problem with time and cost values ðCmax;
W
mÞ, which are,

respectively, lower than 1
1��C

�
max and 1

�
W�
m , where � is a

parameter that can be chosen arbitrarily between 0 and 1.
Choosing an allocation with a processors for task v in the
original problem amounts to setting all the xv;i to T ðv;mÞ
with i lower than a and xv;i equals to T ðv; iÞ for i larger than
or equal to a. The cost incurred in the linear program for
task i with these xv;i values is thenX

i<a

ðiþ 1ÞT ðv; iþ 1Þ � iT ðv; iÞð Þ ¼ aT ðv; aÞ � T ðv; 1Þ;
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which is the expected cost minus the aforementioned fixed
cost corresponding to the smallest total work. When
rounding the linear program’s optimal solution, one must
choose which xv;i will be set to T ðv;mÞ and which ones will
be set to T ðv; iÞ. This is done with respect to a threshold in
the following way. If T ðv;iÞ�xv;i

T ðv;iÞ�T ðv;mÞ is lower than or equal to �,
then xv;i is set to T ðv; iÞ, reducing the work contribution !v;i

of the corresponding activity to 0, while increasing the time
dedicated to activity i

T ðv; iÞ � xv;i � �ðT ðv; iÞ � T ðv;mÞÞ � �T ðv; iÞ:
Therefore, xv;i ¼ T ðv; iÞ � 1

1�� xv;i and the time used for any
activity is not increased by more than a factor 1

1�� ; hence,
Cmax � 1

1��C
�
max.

Conversely, if T ðv;iÞ�xv;i
T ðv;iÞ�T ðv;mÞ is greater than �, then xv;i is

set to T ðv;mÞ, reducing the time needed for the activity,

while increasing !v;i to ðiþ 1ÞT ðv; iþ 1Þ � iT ðv; iÞ. Since

T ðv; iÞ � xv;i > �ðT ðv; iÞ � T ðv;mÞÞ, straightforwardly !v;i >

�!v;i, which means that the total work is not increased by a

factor of more than 1
� ; hence,

W
m � 1

�
W �
m .

We have thus computed discrete Cmax and W values that
are at most a factor 1

1�� and 1
� larger than the optimal

discrete values, respectively.

4.1.2 Scheduling Moldable Tasks on a Single Cluster

Based on the linear programming approach in [21], the work
in [4] focuses on how to schedule the tasks efficiently while
preserving most of the allocations so that one can obtain a
performance ratio derived from the lower bounds on the
critical path and the average work per processor. The
difficulty comes from the fact that the allocations are
computed in a settingwhere an infinite number of processors
can be used at the same time since there are no constraints in
the linearprogramonsimultaneousexecutionofdata-parallel
tasks. With tasks with different execution times, there is no
simple geometrical transformation to transform a schedule
for an unbounded number of processors into one for a fixed
number of processors. The schedule has to be reconstructed
from scratch, only keeping the allocation information.

The algorithm proposed in [4] is derived from the
classical list scheduling algorithm. However, list scheduling
cannot be used directly as it can be arbitrarily far from the
optimal schedule. Consider, for example, an instance with
m pairs of tasks where the first task has to be executed on all
processors for a very short amount of time, while the
second task has to be scheduled afterwards on a single
processor for a long time. The worst case for list scheduling
is to schedule all pairs one after the other, while the optimal
is to schedule all the first tasks and then all the second tasks
in parallel, resulting in a schedule without idle time.

To avoid the problem of having lots of ready tasks
requiring too many processors, the solution proposed in [4]
is to enforce a maximum number of processors per task. In
the original article, this limit was noted �ðmÞ, where m is
the number of processors of the cluster; however, to avoid
confusions with the threshold of the linear program, this
limit is noted b in the rest of this paper.

Simply put, the algorithm inserts a bounding step
between allocation (derived from the time-cost linear
program with parameter � set to 1

2 ) and placement

(according to a list scheduling algorithm). This bounding
step ensures the desired performance ratio of 3þ ffiffiffi

5
p

. The
analysis can be summarized as follows. There are three
different kinds of time intervals in the output schedule:

. T1: intervals where at most b� 1 processors are used;

. T2: intervals where at least b and at most m� b
processors are used; and

. T3: intervals where at least m� bþ 1 processors are
used.

As in Graham’s classical proof for the 2� 1
m performance

ratio [27], a bounding of the critical path and of total work
can be made with respect to the length of these three
intervals, as

. during the first kind of interval, no tasks has seen its
allocation reduced to exactly b processors (otherwise
at least b processors would be used);

. during the first and second time interval, no task is
ready to be scheduled since there are at least b idle
processors and the placement algorithm is a list
scheduling algorithm;

. we can give for each kind of time interval a lower
bound on the number of processors used, namely, 1
for T1, b for T2, and m� bþ 1 for T3.

A straightforward calculation yields the optimal b depend-
ing on the total number of processors, and the performance
ratio. See [4] for all details.

4.2 The MCGAS Algorithm

We call our new algorithm MultiCluster Guaranteed
Allocation Scheduling (MCGAS). MCGAS, like the algo-
rithm in [13] for scheduling PTGs on clusters of SMPs, relies
heavily on the works in [21] and [4]. The first step of the
algorithm is the allocation phase from [21], which rounds off
the solution of a rational linear program corresponding to a
time-cost trade-off problem, as explained in Section 4.1.1. Let
us denote by C�

max and W � the values of Cmax and W that
correspond to the optimal trade-off. The allocations pro-
duced in this first phase ensure that Cmax andW are at most
1=ð1� �Þ and 1=� as large as C�

max and W �, respectively,
where � is a parameter between 0 and 1. Note that this
approach has been repeatedly presented in the theoretical
literature over the last decade. One of our contributions in
this paper is that to the best of our knowledge, we present
the first practical implementation of the time-cost trade-off
linear program. Therefore, for the first time, we are able to
evaluate its efficacy for application scheduling in practice.

Once the initial processor allocation is determined, the
schedule is produced via a modified list scheduling algo-
rithm as in [4]. As explained in Section 4.1.2, we perform a
bounding of task allocations so that these allocations are at
most b, where the value of b is to be defined. A large value
favors data parallelism, while a small value favors task
parallelism. The goal for setting b to a value lower than, say,
the number of processors of the largest cluster is to avoid ill-
advised stalling of the critical path. Indeed, the allocation
phase of MCGAS, albeit leading to a performance guarantee,
does not attempt to balance data and task parallelism, and
may thus lengthen the critical path in ways that could be
avoided.Onceall allocationshavebeenbounded, tasks canbe
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thenmapped to processors using a list scheduling algorithm.
Fig. 1 summarizes the steps of the MCGAS algorithm.

The efficacy of the scheduling algorithm and the
performance guarantee are both contingent upon a good
choice for the values of the � and b parameters, as seen in
the next section. It is important to note that the performance
guarantee in MCGAS, which is detailed in the next section,
does not account for communication between tasks. This is
also the case for previously proposed guaranteed algo-
rithms for homogeneous noncomposite platforms [2], [3],
[4], [5]. We leave the investigation of a guarantee that takes
communication into account outside the scope of this paper.

4.3 Finding the Best Parameters for MCGAS

In this section, we compute MCGAS’s performance guar-
antee as a function of � and b. We then show how to set the
values of these two parameters so that the performance
guarantee is as tight as possible.

We consider a multicluster homogeneous platform. Let n
be the number of clusters in the platform, and pi,
i ¼ 1; . . . ; n, the numbers of processors in these clusters.
We refer to pi as the size of cluster i. Without loss of
generality, we assume that the clusters are sorted by
nonincreasing sizes (p1 � p2 � � � � � pn), so that p1 is the
size of the largest cluster.

Given the clusters sizes, we define

S ¼
Xn
i¼1

max 0; pi � bþ 1ð Þ;

which is a quantity that we will use in what follows.
Intuitively, S represents the minimum number of allocated
processors so that no cluster has b idle processors.

For a given PTG, we can categorize each time step in the
resulting MCGAS schedule into three kinds of time
intervals according to the following rules:

. T1: intervals where at most b� 1 processors are used;

. T2: intervals where at least b and at most S � 1
processors are used; and

. T3: intervals where at least S processors are used.

The definitions of these intervals are adapted from those
used in [4] (see Section 4.1.2), and use our newly defined

constant S. For the sake of simplicity, we use ti to denote the
sum of the lengths of all intervals of type Ti.

The goal of this classification is to bound the contribution
of each time step to Cmax and to W . We know from [21] that
after the rounding phase, Cmax is at most 1=ð1� �Þ larger
thanC�

max and thatW is at most 1=� larger thanW �. After the
allocation bounding step, during which tasks that were
allocated more than b processors are reduced to exactly b
processors,W does not increase. Indeed, a smaller processor
allocation for a task does not increase the task’s work
becausewe assume that tasks have parallel efficiencies lower
than 1. For the same reason, the reduction to b processors
causes Cmax to increase by at most a factor p1=b.

During intervals of type T1, no task has seen its allocation
reduced to exactly b processors (since fewer than b
processors are used). Therefore, for each interval T1, there
is a task that is on the critical path and whose allocation has
not been reduced during the allocation bounding step.
During intervals of type T2, there is at least one cluster
where b processors are idle, which means that no task is
ready to be scheduled, which means again that there is a
task in each of these intervals that belongs to the critical
path. However, in this case, the task may have seen its
allocation reduced from p1 processors to b processors. With
this reduced allocation, the task’s contribution to Cmax is at
least b=p1. For intervals of type T3, there is no cluster with at
least b idle processors, which means that there might be an
unscheduled ready task that is on the critical path.

Consequently, on the one hand, Cmax is not smaller
than t1 þ b=p1 � t2, and on the other hand, W is larger
than t1 þ b� t2 þ S � t3. Since the schedule length Cmax

is the sum t1 þ t2 þ t3, we can now write a complete set
of inequalities leading to the performance guarantee for our
algorithm, using C�

max to denote the optimal schedule length

Cmax ¼ t1 þ t2 þ t3;
C�

max

1� �
� Cmax � t1 þ b

p1
t2;

C�
max

�

Xn
i¼1

pi � W � t1 þ bt2 þ St3:

Let us define m ¼Pn
i¼1 pi and introduce a new parameter

� 2 ½0; 1	. This parameter does not have any concrete
interpretation, but is used as an algebraic device to combine
the two above inequalities. More specifically, multiplying
the first inequality by �, the second by ð1� �Þ, and adding
them together, we obtain

C�
max � �ð1� �Þ þ ð1� �Þ�

m

� �
t1

þ b
�ð1� �Þ

p1
þ ð1� �Þ�

m

� �
t2 þ ð1� �Þ�S

m
t3:

Let us now define � as the minimum of the three following
quantities:

�1ð�; �; bÞ ¼ �ð1� �Þ þ ð1� �Þ�
m

;

�2ð�; �; bÞ ¼ b
�ð1� �Þ

p1
þ ð1� �Þ�

m

� �
;

�3ð�; �; bÞ ¼ ð1� �Þ�S
m

:
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Using the fact that Cmax ¼ t1 þ t2 þ t3, we obtain

C�
max � �Cmax:

The guaranteed performance ratio is thus equal to 1=�,
which is minimized when � is maximized. Finding a closed
form for the �-, b-, and �-values that maximize � given the
ðp1; . . . ; pnÞ values seems very challenging. But it turns out
that it is possible to determine a good approximation of the
solution.

The three quantities �1, �2, and �3 are of the form AX þ
BY with A equal to �ð1� �Þ, B equal to ð1� �Þ�, and with
both X and Y greater than or equal to zero.

Lemma 1. Given two numbers X and Y greater than or equal to
zero, and two parameters � and � with values in ½0; 1	, the
function fð�; �Þ ¼ �ð1� �ÞX þ ð1� �Þ�Y reaches its max-
imum when � ¼ 1� �.

Proof 1. Let t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þp

. We prove that ð1� tÞ2 is larger
than or equal to ð1� �Þ�

ð1� tÞ2 ¼ 1þ t2 � 2t ¼ 1þ �ð1� �Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

p
¼ 1þ �� ��� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

p
¼ 1� �þ �þ ð1� �Þ�� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

p
¼ ð1� �Þ�þ ð ffiffiffiffi

�
p �

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
Þ2 � ð1� �Þ�:

Since t2 ¼ �ð1� �Þ and X and Y are greater than or equal
to zero, we have fðt; 1� tÞ � fð�; �Þ. Therefore, for any
couple ð�; �Þ, we can find another couple ð�0; �0Þ that
verifies �0 ¼ 1� �0 and fð�0; �0Þ � fð�; �Þ, which completes
the proof. tu

Using Lemma 1, we can remove the � parameter from
the equations

� ¼ minð�1ð�; bÞ; �2ð�; bÞ; �3ð�; bÞÞ

¼ min ð1� �Þ2 þ �2

m
; b

ð1� �Þ2
p1

þ �2

m

 !
;
�2S

m

 !
:

Let us compute the values of b and � that maximize this
quantity (recall that m and p1 are characteristics of the
platform and are fixed, while S is a piecewise linear
function of b). Note that �1ð�; bÞ depends only on �. Also, �1

decreases from 1 to 1=m when � increases from 0 to 1, and
�3 increases from 0 to S=m when � increases from 0 to 1.
Therefore, the largest minimum of �1 and �3 is achieved
when �1ð�; bÞ ¼ �3ð�; bÞ ¼ �1;3, that is, when ð1� �Þ2 ¼
�2ðS � 1Þ=m. � is then maximized when �2ð�; bÞ is equal to
�1;3, that is, when bðS � 1þ p1Þ ¼ Sp1. We obtain the best
value for b as an integer approximation of the noninteger
solution of this simple equation and can then compute the
best value of �. Recall that by “best values” we mean the
values that lead to the tightest performance guarantee.

With our particular target platform, described in Sec-

tion 2.1, the above computation yields that the best � is

reached when b ¼ 87. This value is the smallest integer

such that bðS þ p1 � 1Þ > Sp1. In this case, the best value for �

is � ¼ 1=ð1þ
ffiffiffiffiffiffiffiffiffi
S�1
m Þ

q
’ 0:662. The value of � is then

S=ð ffiffiffiffiffiffiffiffiffiffiffiffi
S � 1

p þ ffiffiffiffiffi
m

p Þ2 ’ 0:115, which corresponds to a perfor-

mance ratio 1=� close to 8.695.

For given values of ðp1; . . . ; pnÞ, in our case, the values
corresponding to the subset of the Grid’5000 platform
described in Table 1, we can easily plot the different
guaranteed performance ratios 1=�, each for given values of
b and �. For our platform configuration, 1=� takes values in
the interval ½8:696;þ1½ depending on b and �. Fig. 2 shows
the two projections of all triplets ðb; �; 1=�Þ along the �-
and the b-axes for performance ratios at most 10. The top
graph shows the projection along the b-axis. The bottom
graph shows the projection along the �-axis. In both graphs,
we see that the performance ratio increases more sharply as b
or � become larger than their optimal values, and more
moderately when they become smaller than their optimal
values. Fig. 3 shows the domain of the� and bvalues inwhich
one is guaranteed that the performance ratio is lower than 10.

These graphs, or similar graphs obtained for other
platform configurations, provide good guidance for tuning
the values of � and b. Indeed, the values of � and b that lead
to the tightest performance guarantee may not lead to the
best average application performance in practice. Therefore,
one may wish to tune the � and b values to ensure a
reasonable performance guarantee while leading to good
average observed performance over a range of relevant
application configurations.

5 SIMULATION RESULTS

We use simulation for evaluating our proposed algorithm
and comparing it to previously proposed heuristics.
Simulation allows us to perform a statistically significant
number of experiments for a wide range of application
configurations (in a reasonable amount of time). We use the
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SIMGRID toolkit [28], [29] as the basis for our simulator.
SIMGRID provides the required fundamental abstractions
for the discrete-event simulation of parallel applications in
distributed environments and was specifically designed for
the evaluation of scheduling algorithms. We use SIMGRID

v3.3-r5,668. Our simulations are for the Grid’5000 platform,
as described in Section 2.1. They account for time taken by
computation, data communication, and data redistribution
operations (even though some of our algorithms may ignore
data communication and data redistribution overheads
when making scheduling decisions).

5.1 Processor Allocation

The main strength of MCGAS, as discussed at length in
Section 4, is that it computes a sound allocation of
processors to data-parallel tasks, which is the basis for its
performance guarantee. In this section, we evaluate the
quality of this allocation when compared to that of the
allocation procedure used by the HCPA algorithm [12],
which improves upon that used by the seminal CPA
algorithm [8].

We compare the quality of allocations as follows. For our
1,296 application configurations (see Section 2.2), we
compute a processor allocation using MCGAS and HCPA.
For each allocation, we compute the length of its critical
path (lower values mean better performance) and its total
work (lower values mean lower resource consumption).

For each application configuration, Fig. 4 shows the
length of the critical path achieved by the MCGAS allocation
relative to that achieved by the HCPA allocation. We use the
values b ¼ 87 and � ¼ 0:66 for MCGAS, which lead to the
best performance guarantee. We show three curves, with a
curve for each set of application configurations with a given
number of tasks (10, 20, and 30). For each curve, the data
points are sorted by increasing value of the relative
makespan. We see that across our application configura-
tions, the length of the critical path of the MCGAS allocation
is at most 95.28 percent of that achieved by HCPA. As the
number of tasks increases, the relative critical path increases:
MCGAS leads to critical paths 12 percent, 9 percent, and
8 percent shorter than HCPA, on average, across application
configurations with 10, 20, and 30 tasks, respectively.

Fig. 5 is similar to Fig. 4, but plots the total work of the
allocations computed by MCGAS relative to that of
allocations computed by HCPA. We see that overall

MCGAS leads to allocations that consume more resources
than HCPA. This is because HCPA was designed to limit
resource consumption explicitly, as explained in [12].
Therefore, unlike MCGAS, HCPA tends to trade off shorter
critical path length for lower resource consumption (which
is the reason for the trends in Fig. 4). However, we can see
that MCGAS consumes fewer resources relatively to HCPA
as the number of application tasks increases: MCGAS
consumes 110 percent, 57 percent, and 35 percent more
resources than HCPA, on average, across application
configurations with 10, 20, and 30 tasks, respectively.

Similar plots for application parameters other than the
number of tasks (i.e., width, density, regularity, jumps, and
complexity, which impacts the communication-computa-
tion ratio), not included here, show that the critical path
length and total work of MCGAS, relative to that of HCPA,
do not depend significantly on these parameters.

Ultimately, we wish to assess whether allocations
produced by MCGAS are inherently better than those
produced by HCPA in a view to minimizing application
makespan. The length of the critical path and the total work
divided by the number of processors are two lower bounds
of application makespan. Therefore, for a given application
configuration, we compute the maximum of these two
lower bounds, which we term M, as computed by MCGAS
and by HCPA. A lower value of M indicates a better
opportunity to achieve a lower makespan. We have seen that
the makespan for MCGAS is lower than that of HCPA, and
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Fig. 3. Domain of b and � values for which MCGAS’s performance ratio

is lower than 10, for our particular platform configuration.

Fig. 4. Relative critical path length of MCGAS (� ¼ 0:66 and b ¼ 87)

compared to HCPA, for applications with 10, 20, and 30 tasks.

Fig. 5. Relative total work of MCGAS (� ¼ 0:66 and b ¼ 87) compared to

HCPA, for applications with 10, 20, and 30 tasks.
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the total work for MCGAS is higher than that of HCPA.
Therefore, it is not clear what the trend would be for the
maximum of the two. It turns out that MCGAS achieves a
lower M value in all cases across our experiments
(9.63 percent lower, on average, and at most 33.47 percent
lower). This means that when MCGAS exhibits higher total
work than HCPA, then the makespan is larger than the
average work per processor anyway, and thus determines
the value of M.

We also compared the allocations produced by MCGAS
and HCPA for PTGs from real mixed parallel applications.
We used PTGs from the Strassen matrix multiplication and
from the Fast Fourier Transform (FFT) application. Both are
classical test cases for PTG scheduling algorithms [19], [30]
andwe refer the reader, for instance, to [31] for details on their
PTGs. These PTGs aremore regular than our synthetic PTGs,
which aremore representative ofworkflowapplicationswith
the composition of arbitrary operators in arbitrary ways. For
each application, we considered 10 different PTGs config-
urations. We found that, on average, MCGAS produces
M values that are 39 percent and 21 percent shorter than
HCPA for the Strassen matrix multiplication and the FFT
application, respectively. The advantage of MCGAS is thus
even larger than with our synthetic PTGs.

5.2 Task Mapping

The task allocation computed by MCGAS provides a
performance guarantee as long as mapping tasks to
processors is done using list scheduling. In the theoretical
literature, the default is to use a naı̈ve First Fit (FF) strategy:
for each ready task, simply map the task to one of the
clusters that can start executing the task the earliest. In our
case, these candidate clusters are determined accounting for
previous task mapping decisions but ignoring the (slight)
heterogeneity of the platform and the cost of data
communication/redistribution between tasks. In practice,
however, one is better advised to use a more sophisticated
mapping strategy which, while not providing a tighter
performance guarantee, should lead to better average
performance. Comparing the average performance of FF
and of this better strategy with a set of experiments is
interesting. Let x denote the performance guarantee (i.e., the
produced schedule is at most a factor x worse than
optimal). Then if one observes that the better strategy is,
on average, a factor y better than the FF strategy, then it can
be concluded that it is, on average, at most a factor x=y from
optimal. The worst-case performance is the same for both
mapping strategies.

We experimented with a popular task mapping heuristic,
Earliest Finish Time (EFT): for each ready task, map the task
to one of the clusters that can complete the task the earliest.
This computation accounts for previous task mapping
decisions, for the (slight) heterogeneity of the platform,
and for the cost of data communication and redistribution
between tasks. We conducted experiments over all our
application configurations for b ¼ 87 and � ¼ 0:66, values
which lead to the best performance guarantee, i.e., 8.695.

As expected, we find that the average performance of
EFT is better than that of FF for all our experimental
scenarios. The advantage of EFT increases for wider PTGs
as the FF algorithm makes allocation decisions that end up

hindering task parallelism, and we discuss average results
based on PTG width. Specifically, we found that for PTGs
with width 0.2, 0.5, and 0.8, EFT outperforms FF, on
average, by 3.7 percent, 20.5 percent, and 34.2 percent,
respectively. Therefore, we can conclude that, on average,
EFT is at most a factor 8:695� 0:963 ¼ 8:373, 8:695�
0:795 ¼ 6:913, and 8:695� 0:658 ¼ 5:721 away from opti-
mal for PTGs with width 0.2, 0.5, and 0.8, respectively. In
the rest of the paper, all results are presented using the EFT
task mapping heuristic.

As in the previous section, we evaluated MCGAS and
HCPA on PTGs from real applications, namely, the Strassen
matrix multiplication and the FFT application. For the
Strassen matrix multiplication, we found that MCGAS
produces makespans that are, on average, 22 percent shorter
than those produced by HCPA. But for the FFT application,
HCPAproduces better results thanMCGAS by 13 percent on
average. This is in spite of the MCGAS-produced allocation
being inherently better than that produced byHCPA, as seen
in the previous section. This phenomenon highlights a
weakness of the EFT task mapping algorithm for the
particular FFT PTGs. These PTGs are well balanced in terms
of communication and computation. An important charac-
teristic is that some tasks produce large output data.
However, EFT reasons only about task completion time,
without“lookingahead” to seewhat amountofdatawill need
to be communicated by a task after it has completed.
Therefore, it can map tasks on different clusters, thereby
forcing them to engage later in costly intercluster commu-
nications for their output data. When using the HCPA-
computed allocations this weakness of EFT is not as notice-
able because tasks are allocated fewer processors. Therefore,
more tasks can fit on fewer clusters, thus saving communica-
tions. This observation is important because it motivates the
development of more sophisticated task mapping heuristics
to improve average application makespan, even when
starting with good allocation decisions.

5.3 Trading off Guarantee for Performance

In this section, we describe how the behavior of MCGAS
can be tuned to trade off its performance guarantee (i.e.,
obtain a looser guarantee) for average performance (i.e.,
obtain a lower average makespan over our range of PTG
configurations). Fig. 6 plots the average makespan for
different values of � as b varies. A striking trend seen in
Fig. 6 is the improvement in average makespan as �
increases beyond 0.66, value for which the performance
guarantee of the allocation is minimal. The best value of �
leads to the tightest guarantee in terms of worst-case
performance, while Fig. 6 shows average performance over
a particular population of PTG configurations. Never-
theless, one may have expected that values of � that are
far from its best value would produce allocations that are
detrimental to the average makespan. One possible ex-
planation is that our PTG configuration populations,
although representative of real-world applications, is
biased. In terms of DAG structure, our PTGs do span a
wide range of characteristics. However, all our data-parallel
tasks have reasonable parallel efficiencies (� < 0:25),
which are typical in real-world applications, but which
could lead to the aforementioned bias. For this reason, we
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also ran simulations for PTGs whose data-parallel tasks
have poor parallel efficiencies (� > 0:5), but we obtained
similar results.

We conclude that indeed, large � values improve the
average makespan, but one must be careful to consider the
behavior of the average total work as well. We find that
the average total work increases with �. More specifically, in
our experiments, we find that each time � increases by 0.15,
the average total work increases by 10 percent to 20 percent.
Therefore, while at first glance it seems that the best
approach is to pick a � value as large as possible, it leads
to a less efficient use of the platform (implying higher cost in
practice). Therefore, one should pick the largest � value so
that the performance guarantee is under some desirable
value, thus attempting to strike a compromise between
average makespan and efficiency while bounding the worst-
case performance. In all that follows we pick the largest
� value so that the performance guarantee is lower than 10.
Based on Fig. 3, this value is � ¼ 0:81.

Unlike for �, picking values of b that are respectively
larger or lower than the value that leads to the tightest
performance guarantee is not desirable. Indeed, we see in
Fig. 6 that the best value of b (b ¼ 87) leads to the best
average makespan in practice. Using smaller values length-
ens the critical path, while using larger values forces the
allocation of most tasks to the largest cluster, preventing
fruitful use of the other clusters.

5.4 Comparison of MCGAS and HCPA

In this section, we compare the average makespan achieved
by MCGAS and HCPA. Fig. 7 shows average makespans
relative to the HCPA algorithm, over our range of
application configurations. To the best of our knowledge,
HCPA is the best previously published pragmatic algorithm
for scheduling PTGs in multicluster platforms. The figure
shows individual averages for PTGs with width 0.2, 0.5, and
0.8, and the overall average.

The main observation is that the MCGAS algorithm
outperforms HCPA across the board. Grouping the PTGs by
width, we see that this advantage is, on average, at most
17 percent, and 13 percent when averaged over all PTGs.

We conclude that although a performance guarantee
does not necessarily imply good average performance in
practice, in this case, configuring the algorithm with its best
b value of 87 and with a high � value so that the

performance guarantee is under a particular bound (see
previous section) leads to better average performance than
that achieved by the best previously published nonguar-
anteed algorithm.

5.5 Comparison of Scheduling Times

While the results in the previous section demonstrate the
superiority of MCGAS over HCPA, they are to be put in
perspective with the time to compute the schedule. MCGAS
involves solving a linear program, which can be time-
consuming. In this section, we compare the execution time
of MCGAS to that of HCPA. We ran both algorithms on an
Intel Xeon 1.86GHz processor, using the GNU Linear
Programming Kit (GLPK) library for solving the linear
program. Table 3 shows the average execution times, in
seconds, for different PTG sizes (i.e., numbers of tasks),
each averaged over 10 runs for 10 different PTG configura-
tions. The table also shows the average sequential applica-
tion makespan and the average makespan produced by
both algorithms.

From the table, we can see that, expectedly, the execution
times of both algorithms increase with PTG size. More
striking is the fact that MCGAS is much more expensive
than HCPA. For instance, for PTGs with 30 tasks, MCGAS
takes about 1,600 times longer to compute a schedule than
HCPA. Most of the MCGAS execution time is due to solving
a rational linear program. The linear program must be
solved several times to implement the binary search
described in Section 4.1.1. The number of steps of the binary
search is constant for a given precision. Polynomial-time
algorithms are known for solving rational linear programs
(e.g., Karmarkar’s algorithm [32]) and, thus, the complexity
of MCGAS is also polynomial. Note that in this work, we
use the GLPK toolkit to solve linear programs. GLPK uses
the simplex method. While this method is known to exhibit

DUTOT ET AL.: SCHEDULING PARALLEL TASK GRAPHS ON (ALMOST) HOMOGENEOUS MULTICLUSTER PLATFORMS 11

Fig. 6. Evolution of the average makespan obtained with the MCGAS

algorithm as b varies. Each curve is for a different � value.
Fig. 7. MCGAS versus HCPA using � ¼ 0:81, b ¼ 87.

TABLE 3
Average Execution Times and Resulting Application Makespans

of the MCGAS and the HCPA Algorithms, in Seconds, for
Different PTG Sizes
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low polynomial-time complexity in practice, in spite of a

theoretical exponential-time complexity [33]. And indeed, in

our case, at least up to 30 data-parallel tasks, the execution

time appears roughly quadratic.
While the results in Table 3 seem to indicate that MCGAS

may not be applicable to large PTGs, there are three simple

reasons why its relatively high execution time can be

reduced or tolerated. First, commercial solvers, such as

CPLEX [34], are known to compute results in times up to

several orders of magnitude shorter than GLPK, and their

use would thus greatly reduce the MCGAS execution time.

Second, the results in the previous section and those in the

table show that running HCPA instead would lead to a

performance loss 13 percent, on average, depending on the

PTG’s width. The scheduling time is thus to be put in

perspective with the expected order of magnitude of the

makespan. Importantly, the time to compute the schedule

does not depend on the duration of the application tasks

(only on the structure of the PTG and the number of tasks).

Therefore, the higher MCGAS execution time may be well

worth the additional expense if the application makespan is

large due to long tasks. In this case, the time to compute the

schedule is negligible compared to the application make-

span, and the makespan improvement when using MCGAS

instead of HCPA can be significant. For instance, consider

the last row of Table 3 and assume that the application tasks

were 100 times more time-consuming. The average applica-

tion turn-around time, i.e., the sum of the time to compute

the schedule and the application makespan, would be

approximately 237:05þ 139:64� 100 ’ 14;199 for MCGAS

and 0:15þ 156:26� 100 ’ 15;626 for HCPA. Third, it is

important to note that in many production scenarios, a

(good) schedule is reused for many executions of an

application, thereby amortizing the cost of computing the

schedule in the first place.
A simple technique to reduce the execution time of

MCGAS is to limit the number of possible task allocations

that are considered in the time-cost trade-off problem. This

technique reduces the flexibility of the allocation procedure

and degrades the initial performance guarantee of MCGAS.

As an example, Table 4 shows average makespans

produced by and execution time of MCGAS for PTGs with

50 and 100 tasks, for the original algorithm and a modified

version of it that considers only 20 possible configurations

for each task (corresponding to 1, 2, 3, 4, 5, 7, 9, 11, 14, 17, 23,

29, 38, 48, 62, 79, 102, 130, 168, or 215 processors). We see on

the table that the modified algorithm achieves an average

makespan that is less than 2 percent larger than that

achieved by the original algorithm, while exhibiting an

average execution time roughly 117 faster for 50-task PTGs,

and 52 faster for 100-task PTGs. We conclude that this

modification makes MCGAS usable, in practice, for large

PTGs at the expense of the performance guarantee. In this

paper, we have focused on the original MCGAS algorithm,

which provides a better guarantee that the modified

algorithms. Consequently, we have only presented results

for PTGs with at most 30 tasks, for which MCGAS runs in

under 4 minutes on an Intel Xen 1.86-GHz processor.

6 CONCLUSION

Guaranteed algorithms for scheduling applications struc-
tured as parallel task graphs (PTGs) have been developed in
the case of a single homogeneous parallel computing
platform, such as a cluster [2], [3], [4], [5]. However, PTGs
are particularly well suited to execution on multicluster
platforms. In this context, to the best of our knowledge, the
only previously proposed algorithm is the nonguaranteed,
but pragmatic, HCPA algorithm [12]. In this paper, we set
out to develop MCGAS, a PTG scheduling algorithm that
provides a performance guarantee for multicluster plat-
forms. These platforms pose two challenges: they are
heterogeneous and composite. Indeed, they consist of
processors with different speeds located in clusters of
difference sizes. We have for now side-stepped the first
challenge by noting that there are real-world multiclusters
platforms that comprise homogeneous or approximately
homogeneous subsets. Therefore, schedules computed
assuming that a homogeneous platform can be effective
on such subsets. To address the second challenge, we have
developed a guaranteed task allocation procedure that is
applicable to a platform that consists of clusters with
different numbers of processors. This guarantee is tunable
via two parameters. We have determined the values of
these parameters that lead to the tightest performance
guarantee both analytically and in practice. While having a
performance guarantee is always desirable, it does not
mean that the algorithm leads to good average performance
in practice. Our key finding, however, is that MCGAS
outperforms the nonguaranteed HCPA algorithm, on
average, over a large range of application configurations.
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[23] T. N’Takpé and F. Suter, “Critical Path and Area Based
Scheduling of Parallel Task Graphs on Heterogeneous Platforms,”
Proc. 12th Int’l Conf. Parallel and Distributed Systems (ICPADS ’06),
pp. 3-10, July 2006.

[24] H. Casanova, F. Desprez, and F. Suter, “From Heterogeneous Task
Scheduling to Heterogeneous Mixed Parallel Scheduling,” Proc.
10th Int’l Euro-Par Conf., pp. 230-237, Aug. 2004.

[25] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-Effective
and Low-Complexity Task Scheduling for Heterogeneous Com-
puting,” IEEE Trans. Parallel and Distributed Systems, vol. 13, no. 3,
pp. 260-274, Mar. 2002.

[26] M. Vanhoucke and D. Debels, “The Discrete Time/Cost Trade off
Problem: Extensions and Heuristic Procedures,” J. Scheduling,
vol. 10, nos. 4/5, 2007.

[27] L.R. Graham, “Bounds on Multiprocessing Timing Anomalies,”
SIAM J. Applied Math., vol. 2, pp. 416-429, 1969.

[28] H. Casanova, A. Legrand, and M. Quinson, “SimGrid: A Generic
Framework for Large-Scale Distributed Experiments,” Proc. 10th
Int’l Conf. Computer Modeling and Simulation, Mar. 2008.

[29] SimGrid, http://simgrid.gforge.inria.fr, 2009.

[30] H. Zhao and R. Sakellariou, “Scheduling Multiple DAGs onto
Heterogeneous Systems,” Proc. 15th Heterogeneous Computing
Workshop (HCW ’06), Apr. 2006.

[31] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. MIT Press/McGraw-Hill, 1990.

[32] N. Karmarkar, “A New Polynomial Time Algorithm for Linear
Programming,” Combinatorica, vol. 4, no. 4, pp. 373-395, 1984.

[33] D.G. Luenberger and Y. Ye, Linear and Nonlinear Programming,
third ed. Springer, 2008.

[34] CPLEX, http://www.ilog.com/products/cplex/, 2009.

Pierre-François Dutot received the MS degree
from the Ecole Normale Supérieure de Lyon,
France, in 2000, and the PhD degree from the
Institut National Polytechnique of Grenoble in
2004. He is an assistant professor at the
University Pierre Mendès France, Grenoble,
France. His research interests include theore-
tical aspects of scheduling.
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