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Abstract

Overlapping communication with computation is a well-
known technique to increase application performance.
While it is commonly assumed that communication and
computation can be overlapped at no cost, in reality, they
do contend for resources and thus interfere with each other.
In this paper we present an empirical quantification of the
interference rate of communication on computation. We
measure this rate on a single processor communicating with
both local and remote processors via Java sockets. Among
other results we find that the computation rate can suffer by
as much as 50%, and that the reduction is approximately
proportional to the communication rate. We conclude that
interference deserves further study.

1. Introduction

A common technique for improving the performance of
a parallel application running on a distributed platform is to
use simultaneous computation and communication (e.g., via
multi-threading). However, overlapping computation with
communication is not necessarily without cost, as the two
can interfere with each other. Most published works (see
for instance [1, 2, 3, 4, 5, 11, 12, 13]) have traditionally
ignored the specific cost of this interference. By “interfer-
ence” we do not mean the overhead of synchronization nor
the idle time of a processor waiting for data; instead, we
mean the reduction in computation speed caused by con-
current communication of independent data. This paper is a
quantitative study of interference, which we hope will lead
to better distributed algorithms.

Suppose processor A is concurrently computing and
sending data to processor B. The transfer rate between A
and B can vary, for instance because of network contention.

This paper is based upon work supported by the National Science
Foundation under Grant No. 0234233.

We can measure the computation rate when different trans-
fer rates are sustained. Figure 1 shows results for one of our
testbed configurations (see Section 3 for details). The y-
axis is the computation rate for processor A, normalized to
the maximum achieved. The x-axis is the observed transfer
rate in MB/sec. The graph shows that as the transfer rate in-
creases the computation rate decreases in an approximately
linear fashion. This behavior holds for all systems we have
examined and we thus propose the following definition of
the interference between computation and communication.

Definition: Given a set of measurements of the normalized
computation rate at observed transfer rates, let [ be
the line which is the least squares fit of these observa-
tions. Then, the Interference Rate of Communication
on Computation (IR) is the negative slope of [.

For Figure 1, the line [ is y ~ —0.037x + 0.96, and thus
IR = 0.037. An IR value of 0 implies that communication
and computation may be perfectly overlapped, as assumed
in most literature. However, in our experiments, there was
always some level of interference.

This paper presents an empirical study of the interfer-
ence of communication on computation for both near and
distant heterogeneous processors. Within the framework of
mostly Intel processors and Java with natural threads, we
find that

e the computation rate can be reduced by over 50% when
communication reaches maximum transfer rates, re-
gardless of the number of communicating threads,

e the IR of receiving (IR,.) from a processor is generally
larger than the IR of sending (IR;) to the same proces-
sor, and

e when sending and receiving concurrently, IR; and IR,
are different (usually smaller) than for one-way com-
munication.

Our experiments are conducted in the limited scope of
the Java Virtual Machine (JVM) in which the overlap of
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Figure 1. Interference Rate of Communication
on Computation — Observed computation and
transfer rates when Processor A computes
and concurrently sends to processor B. The
line shown is the least-squares fit on the plot-
ted points. IR, = 0.037, the negative slope of
the line.

communication with computation is dictated by the JVM
thread scheduling policy. Nevertheless this scope is sig-
nificant as Java is used for large distributed peer-to-peer
computing projects such as XtremWeb [6]. Our broader
objective is to show that incorporating the interference
rate of communication on computation could lead to better
scheduling decisions for such systems. Indeed, in our previ-
ous work we studied the distribution of independent identi-
cal tasks to the nodes of a tree overlay network. We showed
that, if the goal is to maximize throughput of the system, an
optimal distribution can be computed [4]. Furthermore, our
simulations verified that autonomous scheduling algorithms
can achieve this optimum [11]. While our results hold for
various processor models, all these models assume either
full or no overlap of communication with computation. The
empirical results presented in this paper suggest that none
of the models exactly fits reality, but a new model can be
used in practice (at least for Java-based systems).

In the next section we outline the method and scope of
our work. We present our results in Section 3. Finally, in
Sections 4 and 5 we discuss related work and conclude.

2. Methodology
2.1. Experimental framework

Each processor in our testbed can be configured to
perform activities (compute, send, receive) in different
threads concurrently. Most processors were running Java
(j2sdk1.3.1 or later) with natural threads, and processors
sent and received information through Java sockets.

We created a benchmark to stress both the compute rate
and the transfer rate at a node. The atomic compute task

repeatedly calculates k diagonals of the square of a matrix.
Unless otherwise noted, the matrix was 1024 x 1024 in-
tegers (i.e., 4MB), and k=1. We measure the time it takes
to compute each atomic compute task, and record its in-
verse, the compute rate in tasks/sec. The send and receive
activities involved repeatedly sending or receiving 1MB of
random data. The transfer rate is recorded in MB/sec.

Table 1 describes the nodes used in our study. Most
are Intel-based desktop workstations running some flavor
of Linux. A few are Suns running Solaris. The distance be-
tween nodes ranged from a few meters (in the same lab) to
thousands of kilometers (across continents). As far as pos-
sible, we used quiescent systems and averaged results over
at least 5 duplicate experiments.

2.2. Experimental scenario

All experiments in this paper measure the Interference
Rate (IR) of communication on computation for the node
Lab0. For a portion of each experiment (usually the be-
ginning), Lab0 computes tasks in isolation. The rest of the
experiment introduces activities involving other nodes, in-
cluding communication with Lab0. By correlating the com-
pute and transfer rates, we are able to determine the IR of
communication (send and/or receive) on Lab0’s computa-
tion.

We designed our experiments to display a variety of
compute rates and transfer rates on Lab0. Figure 2(a) shows
a simple experiment: computing on Lab0 and sending to
Campusl. The x-axis shows the time in seconds. The y-
axis shows both the transfer rate in MB/sec and the com-
pute rate in tasks/sec. As seen in the graph, Lab0 starts
sending to Campusl at time T = 50 seconds, and stops
sending at 7' = 200. Over the whole experiment, this pro-
vides two clusters of points: one cluster has communication
rate 0 MB/sec and compute rate values around 9 tasks/sec;
the other has values around 10 MB/sec and 5.5 tasks/sec.

Two points are not sufficient to show that the IR is lin-
early related to the communication bandwidth. Conse-
quently, we introduce a varying load into the system. To
vary the sending transfer rate from Lab0 to the receiving
node, we introduce contention on the receiving node. Fig-
ure 2(b) shows an initial computation on Lab0 joined by a
sending transfer to Campusl at time 7' = 40 seconds. Start-
ing at ' = 80, different nodes start sending to Campusl.
This added contention at Campusl reduces the transfer rate
from Lab0 to Campusl. The figure shows that as the send-
ing transfer rate at LabO drops, its compute rate improves.
These variations provide us with multiple observations of
the compute and transfer rates.

Next, we convert the raw observations into related pairs
of rates. To eliminate anomalies caused by the granular-
ity of our measurements, we average the compute rates and



[ Label ] Arch | oS | MHz [ RAMMB | Location |
Lab0 P4 Linux RH K2.4 1700 512 HPC Lab (SD) oh
Labl P2 Linux RH K2.4 300 512 HPC Lab (SD) tandem
Lab2 P4 Linux RH K2.4 1700 512 HPC Lab (SD) ct
Lab3 P4 Linux RH K2.4 2000 1024 HPC Lab (SD) pa
Lab4 U.SPARC SunOS 5.8 440 256 HPC Lab (SD) kalmar
Lab5 U.SPARC SunOS 5.8 333 128 HPC Lab (SD) picard
Lab6 P2 Linux RH K2.4 451 384 HPC Lab (SD) boltzmann
Campus0-8 dua P3 FreeBSD 4.6.2 800x2 1024 AW Cluster (SD) broach, et d.
Campus9 U.SPARC SunOS 5.8 333 128 APE Lab (SD) ursus
SB0-4 P3 Xeon Linux Deb. K2.4 2200 512 UCSB Mayhem (SB) ash, et d.
SB5 P4 Linux Deb. K2.4 1800 512 UCSB Mayhem (SB) charcoa
Tenn P3 Cu.mine | Linux Deb. K2.4 700 320 SAU (TN) cpp
Brazil P3 Cu.mine | Linux RH K24 865 640 UFCG (BR) lula
France quad Xeon Linux RH K2.4 | 2400x4 1024 ENS-Lyon (FR) graa

Table 1. Processor architecture, operating system, and physical location of nodes in our testbed. We
measured computation speed on Lab0 while it communicated within our Lab and across Campus,
California (SB), the U.S. (TN), the
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Figure 2. The steady transfer rate in (a) results in two clusters of data points(transfer rate, compute
rate) ~ (0,9) or (10,5.5). In (b), while Lab0 sends to Campus1, other processors send to Campus1 for
various intervals, creating bandwidth contention and varying the send transfer rate on Lab0.

transfer rates over regular intervals. After normalizing the
compute rate to the maximum achieved compute rate, we
graph the related points. For instance, Figure 1 shown ear-
lier graphs the rate data from the experiment of Figure 2(b).
Finally, we perform a least-squares linear fit and compute
IR as the negative slope of this fit. Thus, the IR is the per-
centage decrease in the computation rate per every MB/sec
of transfer rate. We also performed and report on experi-
ments in which Lab0 receives data from other nodes, and in
which Lab0 both sends and receives data.

3. Results
3.1. Impact of receiving on computing

As we saw in Section 1, there is a steady degradation
in the computation rate as the data transfer rate increases.
A linear fit describes the relationship quite well. We con-

ducted experiments with a local node in our lab, Lab0, com-
puting and receiving from one other node in Table 1. A
single experiment generates an average of 95 data points
relating observed transfer rates to normalized computation
rates. For each experiment, we made a least squares fit.
Over all 117 experiments, a linear fit errs by at most 9.1%;
the average max error is 2.2% and the standard deviation is
around 0.75%. A quadratic least-squares fit errs by at most
7.4% (average max error is 1.8%) with a standard deviation
around 0.52%. The quadratic fit can better accommodate
outliers at the extremes of the data transfer rates. Yet the
accuracy of the linear fit is almost as good as the quadratic
fit, and the linear fit is simpler.

The left half of Table 2 shows the Interference Rates due
to receiving (I R,) when Lab0 computes and receives from
one other node. The average I R, for Lab0 is approximately
0.052. This means that on average when Lab0 is receiving
at 10 MB/sec, it degrades to 1 — 10 x 0.052 = 48% of



Lab0 Receives from Node Lab0 Sends to Node
avg avg avg avg ag avg avg avg

Node IR, const StDev MaxE IR, const StDev MaxE
Labl 0.0458 | 0.9714 | 0.0125 | 0.0312 || 0.0314 | 0.9909 | 0.0085 | 0.0226
Lab2 0.0467 | 0.9770 | 0.0146 | 0.0396 || 0.0299 | 0.9740 | 0.0119 | 0.0247
Lab3 0.0468 | 0.9781 | 0.0136 | 0.0371 || 0.0299 | 0.9752 | 0.0124 | 0.0301
Lab4 0.0452 | 0.9674 | 0.0150 | 0.0371 || 0.0199 | 0.9922 | 0.0048 | 0.0155
Lab5 0.0467 | 0.9723 | 0.0212 | 0.0434 || 0.0211 | 0.9704 | 0.0249 | 0.0631
Lab6 0.0465 | 0.9754 | 0.0140 | 0.0376 || 0.0305 | 0.9738 | 0.0112 | 0.0276
CampusO || 0.0474 | 0.9777 | 0.0053 | 0.0192 || 0.0388 | 1.0296 | 0.0184 | 0.0567
Campusl || 0.0477 | 0.9823 | 0.0052 | 0.0163 || 0.0373 | 1.0223 | 0.0209 | 0.0547
Campus2 || 0.0473 | 0.9772 | 0.0048 | 0.0147 || 0.0383 | 1.0245 | 0.0186 | 0.0549
Campus3 || 0.0471 | 0.9757 | 0.0056 | 0.0255 || 0.0381 | 1.0219 | 0.0151 | 0.0509
Campus4 || 0.0474 | 0.9790 | 0.0054 | 0.0214 || 0.0367 | 1.0122 | 0.0185 | 0.0540
Campusb || 0.0475 | 0.9777 | 0.0046 | 0.0155 || 0.0377 | 1.0218 | 0.0205 | 0.0554
Campus6 || 0.0474 | 0.9779 | 0.0050 | 0.0163 || 0.0372 | 1.0136 | 0.0157 | 0.0507
Campus7 || 0.0472 | 0.9765 | 0.0052 | 0.0167 || 0.0377 | 1.0177 | 0.0141 | 0.0410
Campus8 || 0.0477 | 0.9797 | 0.0048 | 0.0145 || 0.0366 | 1.0073 | 0.0148 | 0.0456
Campus9 || 0.0494 | 0.9737 | 0.0233 | 0.0905 || 0.0237 | 0.9745 | 0.0175 | 0.0404
SBO 0.0510 | 0.9844 | 0.0053 | 0.0171 || 0.0310 | 0.9771 | 0.0026 | 0.0098
SB1 0.0515 | 0.9840 | 0.0054 | 0.0150 || 0.0312 | 0.9781 | 0.0026 | 0.0124
SB2 0.0513 | 0.9844 | 0.0053 | 0.0153 || 0.0313 | 0.9762 | 0.0022 | 0.0071
SB3 0.0511 | 0.9841 | 0.0044 | 0.0144 || 0.0310 | 0.9758 | 0.0027 | 0.0127
SB4 0.0511 | 0.9758 | 0.0058 | 0.0147 || 0.0307 | 0.9762 | 0.0034 | 0.0158
SB5 0.0501 | 0.9762 | 0.0053 | 0.0163 || 0.0307 | 0.9784 | 0.0032 | 0.0110
Tenn 0.0743 | 0.9979 | 0.0019 | 0.0090 (| 0.0638 | 0.9911 | 0.0016 | 0.0074
France 0.0848 | 0.9989 | 0.0024 | 0.0166 || 0.0372 | 0.9966 | 0.0015 | 0.0079
Brazil 0.0891 | 0.9992 | 0.0013 | 0.0053 || 0.0431 | 0.9955 | 0.0008 | 0.0037

Table 2. IR, when LabO0 receives from various nodes. I R; when Lab0 sends to various nodes.

its maximum compute rate. Depending upon the processor
type, operating system, network connection and distance to
Lab0, the I R, varies between 0.0452 and 0.0891. The dom-
inant factor is distance. For the closest nodes (Labn) the
IR, isroughly 0.0463, and the I R, increases with distance
to above 0.074. For the France node, the receive transfer
rates were so low (with or without contention) that the data
looked more like a cluster than a line; nevertheless, the com-
puted I R, was consistent with other locations.

We also experimented with Lab0 receiving data from
several nodes simultaneously. We observed a maximum to-
tal receiving transfer rate of just over 11 MB/sec on Lab0.
When receiving from a single quiescent near node, the ob-
served data transfer rate achieves 85%-95% of that maxi-
mum. When receiving from multiple quiescent near nodes,
the observed data transfer rate achieves that maximum. In
general, once a node is receiving at its maximum transfer
rate, the impact on computation is maximized, regardless of
the number of receiving threads.

It turns out that it is possible to estimate the result-
ing compute rate at Lab0 using the sum of the individual
IR,’s weighted by their respective transfer rates. We cal-
culate the expected normalized compute rate to be [1 —
Zle(IRr(i) x TR(i))] when receiving from & nodes,
where IR,(i) is the interference rate from node 4, and
T R(4) is the transfer rate from node i.

When computing on Lab0 and concurrently receiving

from four nodes with similar TR, values within the Lab,
the expected compute rate varies from the actual compute
rate by 2.58% on average. For dissimilar I R, values, (e.g.,
when computing on Lab0 and concurrently receiving from
Labl, Campus4, SB1, and Tenn), the expected compute
rate varied from the actual compute rate by 1.21% on av-
erage. Over all our experiments with multiple receives on
Lab0, using the aggregate interference rates to predict com-
pute rates yields a standard deviation as low as 0.22%, and
0.82% on average. This demonstrates the utility of collect-
ing the individual interference rates (I R,.’s) between nodes.
These rates can be combined arbitrarily to understand the
aggregate impact of receiving multiple communications on
computation.

3.2. Impact of sending on computing

When a node is computing and concurrently sending to
other nodes, we also see a steady degradation in the com-
pute rate per MB/sec of sending. We conducted experi-
ments with Lab0O computing and concurrently sending to a
receiving node chosen from those listed in Table 1. Over all
118 IR, experiments we performed, a linear least-squares
fit errs by at most 9.6% (average max error is 3.1%) with a
standard deviation around 1.05%. A quadratic least-squares
fit errs by at most 10.1% (average max error is 2.6%) with
a standard deviation around 0.74%. Although both of these
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Figure 3. Impact of Receiving versus Sending
on Computation.

fits are looser than those we saw with receiving, we still
choose to use a linear fit for simplicity.

The right half of Table 2 shows the Interference Rates
due to sending (IR,) when Lab0 computes and sends to
one other node. The average I R, for Lab0 is around 0.034.
This means that on average when Lab0 is sending at 10
MB/sec, its computation rate degrades to 66% of its maxi-
mum compute rate. Thus, sending has less of an impact on
computation than receiving does. This is illustrated in Fig-
ure 3, which shows computing on Lab0 and a sequence of
three receives followed by two sends, all involving different
nodes. The three receives clearly show a larger interference
on the compute rate than the two sends.

In our experiments, the TR, varies between 0.0199 and
0.0638. With receiving, the distance between nodes had
the greatest influence on the value of IR,.. However, with
sending, the operating system also significantly influences
the value of IR, as explained in Section 3.7.

In general, the greater the distance between nodes, the
larger the interference rate. Our first results from sending to
nodes within the Lab, across Campus, and across the state
to Santa Barbara displayed this general principle. Our more
current results (duplicative over two months and displayed
within the table of this section) show an exception to that
general rule. Notice that for sending, the Campus nodes ac-
tually have I R, values that are larger than those of the SB
nodes. The maximum achieved transfer rate from Lab0 to
Campus is 10.2, while the maximum achieved transfer rate
to SB nodes is only 6.4 (down from 7.5 in original runs).
Also, the least-squares linear fit for the Campus nodes con-
tain constant values above 1. We suspect a change in the
underlying intervening network structures, but have no in-
formation in that regard.

The observed maximum transfer rate for sending is
slightly less than that for receiving. When simultane-
ously sending to six nodes, Lab0 achieved a rate of around
10.7MB/sec. As with receiving, once a node is sending at
its maximum transfer rate, the impact on computation is
maximized, regardless of the number of sending threads.
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Figure 4. Example of a variety of bandwidth
usage by time and its affect on computation.

Again, we can estimate the resulting compute rate using
the formula [1 — 3% | (TR,(i) x TR(3))], where TR, (i)
is the interference rate of sending to node ¢, and T R(3) is
the transfer rate to node 4. When computing on Lab0 and
concurrently sending to four Linux nodes with similar IR,
values within the Lab, the calculated compute rate varies
from the actual compute rate by 0.88% on average. For dis-
similar IR, values due to distance, (e.g., when computing
on Lab0 and concurrently sending to Lab1, Campus4, SB1,
and Tenn), the calculated compute rate varied from the ac-
tual compute rate by 2.04% on average. Over all our ex-
periments with multiple sends on Lab0, using the aggregate
interference rates to predict compute rates yields a standard
deviation as low as 0.43%, and 1.21% on average.

3.3. Combined impact of sending and receiving

One might expect that when a processor node is receiv-
ing at rate TR(A) from node A and sending at TR(B) to
node B, the resulting normalized compute rate would be the
weighted sum 1—[T'R(A) X IR,.(A)]—[TR(B) x IR4(B)].
Interestingly, we found that this was not the case. We ob-
served a synergistic effect, where the actual compute rates
were higher than the formula above predicts.

Figure 4 shows one of the experiments we used to inves-
tigate the combined effect of sending and receiving on com-
putation. Lab0 computes while sending to Lab1 and receiv-
ing from Lab2. Look first at the receiving rate from Lab2
marked by triangles. This rate starts at roughly 9 MB/sec
and drops to 7, 5 and 4 as receiving contention on Lab2 is
increased. Within each of these 200 second long periods,
the sending rate, shown by the circles, has five levels. This
gives us a rich collection of send and receive rates. The
compute rate is shown by the heavy black line.

Having had success with a linear fit when sending or re-
ceiving alone, we performed a least-squares planar fit of the
send and receive transfer rates to the compute rates. The
resulting equation for the plane is NormComputeRate =~
C —[TR(A) x IRl — [TR(B) x IR/}], where IR, and
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Figure 5. Send rate, Receive rate, and Compute rate on the corresponding x-, y- and z-axes.

IR,/ are the coefficients for the interference rates of re-
ceiving and sending in combination, and C' is the con-
stant term, which is usually close to 1. For the data points
from Figure 4, the fit equation is NormComputeRate =
0.9542— [T R(A) x0.0427]—[T R(B) x0.0265]. Figure 5(a)
shows the fit plane. The planar fit for this example differed
from the measured data by at most 5.2%, with a mean error
of 1.4% and standard deviation of 1.1%.

Interestingly, the interference rate of receiving alone
from A is IR, = 0.0502, and the interference rate of send-
ing alone to B is IR, = 0.0327. These are both higher
than the interference rates when sending (I R,') and receiv-
ing (IR,) in combination. Thus sending and receiving in
combination have a synergy; the compute rate observed
when sending and receiving combined is higher than that
predicted by sending or receiving alone.

Another way to view the impact of combined sending
and receiving on computation is through a contour map.
Figure 5(b) shows the raw data points and plots the com-
pute rate as a contour map on the Send-Receive plane. The
send rate is mapped along the y-axis and the receive rate is
mapped along the x-axis. At the origin when both the re-
ceive rate and the send rate are zero, the compute rate is at
its highest point. The contour lines are relatively straight,
suggesting a linear relationship. If sending and receiving
had equal interference upon computing, we would expect
these lines to be at a -45% angle. Instead, we observe that
they are closer to a -60% angle, showing that the interfer-
ence from receiving is greater than that of sending, even
when in combination.

Figure 5(b) also shows the synergy of combined sending
and receiving on computation. Notice the data points where
the sending rate is about 3 MB/sec. The corresponding re-
ceive rate varies between 4.5 and 9.5 MB/sec. Here, as the
receive rate increases, the compute rate drops from 0.70 to
almost 0.45, spanning almost 5 contour sections. Contrast

this with the group of data points where the sending rate is
about 10.5 MB/sec. We see that the corresponding receive
rate varies between 1.0 and 5.5 MB/sec. The compute rate
drops from 0.65 to 0.5, spanning 3 contour sections. From
these two groups of data points we observe that the impact
on computation is steeper at a sending rate of 3 MB/sec than
at 10.5 MB/sec. Thus we can receive at a higher rate for a
lower additional impact on computation when the send rate
is high than when it is low. See [10] for extensive yet similar
experimental results for other testbed configurations.

As in our example above, the interference rates from the
planar fit on combined sending and receiving are lower than
those predicted from sending and receiving alone. On av-
erage, the compute rate calculated from the planar fit coef-
ficients had a maximum error of 19.1%, and a mean error
of 1.5% with a standard deviation of 1.2%. If we ignore
the synergy and use the I R,. and I R, values from receiving
or sending alone to predict the compute rate, we found on
average, a maximum error of 37.3%, and a mean error of
5.3% with a standard deviation of 3.1%. As with our exam-
ple, using IR, and IR, values from sending or receiving
alone increases the mean error, but may still be within an
acceptable range as a predictor.

3.4. Impact of computation data footprint

The use of cache and the TLB differs with the range of
memory addresses used by a compute-intensive process. By
changing the data footprint of the computational tasks in
our experiments, we can see whether the cache and TLB
usage impact the IR. To achieve different data footprints,
we change the size of the matrix that we use as the basis of
our computation task.

We varied the size of the matrix from 1024 x 1024 down
to 8 x 8 for experiments in which LabO computes and re-
ceives data from Campus8. We found that as the matrix



size decreases so does the I R,- (from 0.049 down to 0.025).
We hypothesize that as the task footprint fits into smaller
levels of the memory hierarchy on Lab0, receiving has less
of an opportunity to interfere with the computation’s use of
memory. We observed the same decrease in IR, values.
Since different applications have different data footprints, it
is likely that for each application, the TR,. and TR, values
will need to be measured anew.

3.5. Impact of different message sizes

All experiments mentioned so far used a message size
of 1 MB. We also investigated the effect of the size of the
messages on the Interference Rates. For LabO computing
and sending to Lab3, we experimented with message sizes
from 8 MB down to 128 KB. The IR, values differ by at
most 0.0012. There is slightly more variation in the IR,
values, differing by at most 0.0020. Overall, we believe
that the observed difference in interference rates show no
significant variation with message size.

3.6. Near vs. remote nodes

The I R, on the more remote nodes was in general higher
than on near nodes. When the more remote nodes (Tenn,
France, Brazil) were sending, they achieved IR, values
over 0.075 (see Table 2). Were they actually able to send
at Lab0’s maximum receive transfer rate, this would consti-
tute an enormous obstacle to computation. In reality, they
were only able to send at rates well below 1 MB/sec, and
thus lowered the computation rate by at most 7.5%.

The near nodes had lower I R, values, around 0.50, but
were able to achieve a much higher send rate, approaching
the maximum of 11 MB/sec. Thus, in practice, they low-
ered the computation rate by as much as 50%. When a SBn
node was sending, its I R was similar to machines on Cam-
pus. However, it had a smaller actual impact due to its only
being able to reach a send transfer rate of 7 MB/sec. In the
long run, when receiving the same amount of data from near
and more remote nodes, the more remote nodes will have a
higher overall impact on computation: it will be a lower
unit amount spread over a relatively longer time frame, so
that the impact at any one time will be lower than that when
receiving from a near node.

3.7. Differences by software at a node

The most striking difference by software occurs between
nodes running Linux and those running Solaris. On a con-
figuration where Lab0 is receiving from two near Linux and
two near Solaris nodes, each node uses a relatively equal
portion (roughly 2.8 MB/sec) of Lab0’s receive bandwidth.
Yet when Lab0 is sending to that same collection of nodes,

the send data transfer rate is unequally divided. The Solaris
nodes equally share a smaller portion of Lab0’s send data
transfer rate, around 1.8 MB/sec. The Linux nodes equally
share a larger portion, around 3.8 MB/sec. While our goal
is not to explain such behaviors, they had the following im-
pact on our evaluation of the interference of communication
on computation.

First, experiments involving the Solaris nodes (Lab4 and
Lab5) resulted in significantly higher relative error of the
linear fit than when only Linux nodes are used (roughly by
a factor 4). Second, for sending, we observe that nodes run-
ning Solaris have lower I R, values than other nodes at sim-
ilar distances from Lab0. For nearby nodes (Labn), those
running some flavor of Linux have an IR, around 0.030,
while those running Solaris (Lab4 or Lab5) have IR, val-
ues near 0.020. Similarly with the Campusn nodes: the
Solaris node, Campus6, has an I R, of 0.0237 while the rest
have values closer to 0.0370.

Not only does the operating system impact the interfer-
ence of communication on computation but also the Java
implementation at a node. In particular, some Java imple-
mentations are unable to use ’native threads’ and instead
must use 'green threads’, which precludes any overlapping
of communication and computation. In our experiments, we
ensured that all our computing nodes ran Java with natural
threads.

3.8. Two-way communication

Frequently, the communication between machines oc-
curs in both directions. One reason would be to return the
results of the task to the originating machine. Another could
be that machines are producing/consuming dependent in-
formation. Regardless, we measured the interference rate
on computation on one machine that was both sending and
receiving with another machine.

For most near machines, the contributing interference
rate of both sending and receiving was higher. Together,
neither machine was able to operate at full bandwidth, yet
each was able to achieve a higher bandwidth than had they
been performing the same type of communication (either
both sending or both receiving). This is another case of the
synergy of concurrently sending and receiving.

4. Related Work

We present work on the impact of communication on
computation. Most published work (see for instance [1, 2,
3,4, 5, 11, 12, 13]) makes the simplifying assumption that
communication and computation may overlap without cost.
This work, which is part of a larger work [10] that studies
dynamic autonomous scheduling on large-scale heteroge-



neous systems, provides empirical evidence that challenges
the above assumption.

Several works deal with the overlap of communication
and computation for particular hardware [7, 8, 15, 14]. By
contrast our work evaluates the overlap capability between
Java threads running in a JVM on mostly Intel processors
running some flavor of Linux or Solaris.

We can note the work in [9], which decomposes commu-
nication into a fraction that can be overlapped by computa-
tion, and a fraction that cannot. Our empirical results could
be used to instantiate such a model.

5. Conclusion

In this paper we present an empirical study of the in-
terference of communication on computation for multi-
threaded Java. We define the interference rate of com-
munication on computation (/R) to be the negative slope
of the linear least-squares fit representing the relationship
between the rate of computation on a processor and the
rate(s) of communication between processors. We deployed
an experimental measurement system on a select group of
both near and distant heterogeneous processors. Within the
framework of mostly Intel processors and Java with natural
threads, we found that the computation rate is reduced by
over 50% when communication reaches its maximum trans-
fer rates. This reduction is roughly linear with the amount
of data transferred per second, and is independent of the
number of communicating threads. Furthermore, the IR of
receiving (R, from a processor is generally larger than the
IR of sending (I R;) to the same processor. Among other re-
sults, an intriguing one was that there is a synergy between
sending and receiving, meaning that the IRs of concurrent
communication, IR, and IR}, are smaller than IR, and
IR,. Our results should be considered when developing al-
gorithms that attempt to improve performance by overlap-
ping computation and communication, at least in the context
of distributed computing systems implemented with Java.
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