
Realistic Modeling and Synthesis of Resources for
Computational Grids

Yang-Suk Kee
Computer Science & Engineering

University of California at San Diego
yskee@csag.ucsd.edu

Henri Casanova
San Diego Supercomputer Center,
Computer Science & Engineering

University of California at San Diego
casanova@sdsc.edu

Andrew A. Chien
Computer Science & Engineering,

Center for Networked Systems
University of California at San Diego

achien@ucsd.edu

ABSTRACT
Understanding large Grid platform configurations and generating
representative synthetic configurations is critical for Grid
computing research. This paper presents an analysis of existing
resource configurations and proposes a Grid platform generator
that synthesizes realistic configurations of both computing and
communication resources. Our key contributions include the
development of statistical models for currently deployed
resources and using these estimates for modeling the
characteristics of future systems. Through the analysis of the
configurations of 114 clusters and over 10,000 processors, we
identify appropriate distributions for resource configuration
parameters in many typical clusters. Using well-established
statistical tests, we validate our models against a second resource
collection of 191 clusters and over 10,000 processors, and show
that our models effectively capture the resource characteristics
found in real world resource infrastructures. These models are
realized in a resource generator, which can be easily recalibrated
by running it on a training sample set.

Keywords
Computational Grid, resource modeling, clusters, resource
discovery, resource selection, resource management

1. INTRODUCTION
Grid technologies enable the sharing and utilization of widespread
resources in a coordinated fashion. Numerous research and
development activities are ongoing in the Grid computing area,
and a common concern is the analysis and evaluation of the
resulting techniques and algorithms in “representative’’ scenarios;
these include typical software, physical resource, and network
environments for current or future Grid deployments. Current
Grid environments [1-9] exhibit a wide range of software,
physical resource, and network configurations. However,
common themes are present, such as the prevalence of clustered

commodity systems.

To see the importance of understanding current and future Grid
configurations, consider, for instance, the wealth of activity in
scalable and efficient resource discovery and monitoring. Grid
information services (GIS) are core components of the
middleware infrastructure. The MDS [10] is often used for initial
resource discovery, and resource monitoring tools like NWS [11],
Ganglia [12], and Hawkeye [13] are used for measuring dynamic
resource characteristics. Understanding the performance
properties and evaluating these systems requires the exploration
of a wide range of representative resource configuration scenarios.

Similarly, consider resource selection systems such as
Matchmaking/ClassAds [14] and Redline [15] that enable
applications to express complex resource requirements for sets of
resources. Understanding how useful these constraints are, and
how they affect the complexity of selections depends directly on
the actual resource environments in which they are used. More
specifically, researchers are exploring new resource discovery and
selection techniques that selectively consider resource
information – scoping or sampling. For example, the systems
described in [16,17] use a variety of mechanisms to reduce the
information that an application needs to retrieve from the Grid
Information service. [17] suggests that even searching a randomly
selected subset can improve performance by reducing server load.
Understanding how well such a technique will work in a broad
range of future grids requires the generation of representative
resource configurations that can form the basis for performance
studies. Further, scoping and random selection may also
negatively impact the quality of the discovered resources, but
quantifying this impact is only possible with experiments against
a variety of representative real-world Grid resource sets.

In short, it is important to evaluate the utility, cost, and
scalability of the above systems with a variety of realistic
resource configurations. In addition to the evaluation of resource
monitoring and discovery mechanisms, realistic Grid resource
configuration synthesis is also critical in the evaluation of
resource management techniques and policies as well as
application scheduling. This cannot be achieved with real
hardware Grids, but synthesizing resource sets and evaluation by
the means of a simulation system such as MicroGrid [18] is one
promising alternative.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SC’04, Nov. 6–12, 2004, Pittsburgh, PA, U.S.A.
Copyright 0-7695-2153-3/04 $20.00 (c)2004 IEEE

Grid environments consist of both network and endpoint
resources. In the networking community, various network
topology generators are available to synthesize structured

topologies obeying certain power-laws (e.g. Brite [19] and Tier
[20]). These network topologies can be used in a Grid emulator,
like MicroGrid. In this work, we focus on the compute resources
that are interconnected by such networks.

To the best of our knowledge, GridG [21] is the only prior
work focusing on the synthesis of realistic Grid resource
configurations. GridG uses an annotation scheme to generate the
characteristics of single hosts that are individually placed into an
Internet network topology. In contrast, we focus on clusters of
commodity microprocessors (often called Beowulf clusters),
which increase popularity and importance in the Grid. To simplify
the task, we exclude specialized computer systems such as vector,
SIMD, and some MPP machines. These could be added to a future
extension of our model. This simplification is realistic because
the rapid advance of commodity systems and networking suggest
that such commodity clusters will be the dominant component in
Grids. For instance, recent Top500 lists [22] show that clusters are
rapidly growing in popularity in the supercomputing market, and
they are already dominant in commercial systems.

Our approach to resource generation uses distributions inferred
from existing configurations of Grid resources. We use these
probability distributions to generate typical configurations for
current Grids of arbitrary sizes. Specifically, we build a model for
each resource characteristic and generate possible resource
configurations accordingly. For some resource characteristics that
are not reported in the sample set of real-world systems that we
observed, we use a technology-based analysis for performance
trends and system configurations provided by system vendors.
The resulting models capture the key trends, and can be used to
automatically adjust parameters when new empirical data
becomes available. Our approach obviates the need for a user to
build new models by hand. We use a wide range of existing Grid
configurations to generate our statistical models, and then validate
them against a second disjoint set of Grid configurations. Finally,
we use these statistical models and an analysis of technology
trends to extrapolate to future Grid resource configurations. Our
contributions are as follows:

• New models for Grid resource configurations: based on an
extensive study of configurations, totaling over 10,000
processors, we derive appropriate distributions for various
resource characteristics. For the number of processors in a
node, memory size per node, and the number of nodes per
cluster, we find a normal distribution to be a good model.
For processor architecture, a multinomial distribution is
appropriate. For clock speed, a uniform distribution is a good
candidate. For processor cache size, a step function is
realistic. Intra-cluster networks are split evenly between
Ethernet and one of several proprietary networks (e.g.

Myrinet). We combine these attributes into a single
statistical model for Grid resource generation.

Table 1. Probabilities of processor architectures for the sample set and predicted sample sets (%)

 Pentium2 Celeron Pentium3 Pentium4 Itanium Athlon AthlonMP AthlonXP Opteron

Samples 1.4 4.1 40.3 34.6 3.9 0.0 12.4 1.3 2.0

1 year 0.8 2.5 24.5 46.1 5.2 0.0 16.5 1.8 2.6

2 years 0.5 1.6 15.9 52.3 5.9 0.0 18.7 2.0 3.0

3 years 0.4 1.1 10.9 56.0 6.3 0.0 20.0 2.1 3.2

• Validation of the resource models: the models for
processor architecture, clock speed, and number of
processors are validated by comparing statistical properties
of the generator output to another set of sample resource
configurations for 191 clusters and over 10,000 machines.

• Extrapolation to future Grid resource configurations: all
the models except processor architecture and processor clock
speed are time-independent or have implicit time-dependent
factors. We show how they can be used to predict future grid
system configurations in a straightforward fashion.

• Implementation of the models: we implemented a resource
generator to realize the models. It is currently used to
produce resource configurations for evaluating Grid resource
discovery systems being developed in our lab.

The remainder of this paper is organized as follows. We
describe our methodology for generating models and models for
specific resource entities in Section 2. These models are validated
against another sample resource set in Section 3. We highlight
key implementation issues for our resource generator and its
design in Section 4. Finally, we discuss related work in Section 5,
and conclude and describe future directions in Section 6.

2. RESOURCE MODELS
The major goals of our study are to develop the models for
resources available in current Grids and to extrapolate from these
models to future systems. The resource entities of interest are the
major contributors to application performance, which include
processor architecture, clock speed, L2 cache size, per-node
memory size, per-node disk size, per-node number of processors,
per-cluster number of nodes, and system area network technology.
Especially, processor architecture is crucial to application
performance. CPU vendors try to achieve higher performance by
optimizing processor microarchitecture, extending instruction set,
and increasing processor clock speed. Ideally, our processor
models might include microarchitecture, clock rate, cache
hierarchy, etc. However, we are limited by the resource
information that is readily available. As a result, we use
processor architecture, clock speed, and cache size as a basis for
our processor resource model.

To estimate the probability distribution of the resource
characteristics mentioned above, we gathered a large sample set
of existing cluster resources, and use this set as the basis for
statistical models for our resource generator. We gathered system
configuration data for 114 clusters totaling over 10,000 processors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1997 1998 1999 2000 2001 2002 2003 2004 2005

Year

C
lo

ck
 R

at
e

(G
hz

)

Pentium2 Celeron Pentium3 Pentium4 Itanium

Figure 1. Processor clock speed of Intel processors (Ghz)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1999 2000 2001 2002 2003 2004 2005

Year

C
lo

ck
 R

at
e

(G
hz

)

Athlon Athlon MP Athlon XP Opteron

Figure 2. Processor clock speed of AMD processors (Ghz)

from 12 web sites for cluster and Grid computing. Some
representative sites include Lawrence Berkeley National Lab1,
Ganglia demo2, U.C. Berkeley Millennium project3, and NPACI4.
Although many clusters are not publicly available, we believe that
our sample set is representative because it includes clusters with a
variety of popular microprocessors from old Pentium 2 processors
to state-of-the-art Opteron processors, and because the cluster
system sizes range from single machines to over one thousand
nodes. In the next sections, we describe our models for each
considered attribute.

2.1 Processor Architecture
Among the factors contributing to computing power, processor
architecture is among the most crucial. The first step is to estimate
the distribution of processor architectures in the population. For
this purpose, we counted the total number of processors per
architecture in the sample set (not the number of systems). The
sample set includes 10,179 processors. The ratio of processors for
each architecture is shown in the first row of Table 1. Two
architectures, Intel’s Pentium 3 and Pentium 4, are dominant,
accounting for 40.3% and 34.6% of all processors, respectively.
We assume the sample set is representative and use the sample
ratios as the population distribution in the resource generator for
current cluster systems.

However, the resource population never stands still, and new
systems with state-of-the-art processors are being deployed while
old systems are being retired. To extrapolate to future systems, we
would ideally know exactly which new processor architectures
would be introduced, when they would be available, and their
performance. However, we do not have such detailed information.
As an alternative, we use an extrapolation of processor clock
speed to predict the release dates of new processors. Processor
clock speed increases as microprocessor technology advances and
users tend to install the newest (or most cost effective) processors
available on the market. Hence, the processor clock speed of a
system within each processor family is a good indicator of its
release year. For instance, the clock speeds of Intel and AMD

processors released since 1997 are shown in Figure 1 and Figure 2.
The observed trend can be fitted linearly as follows:

1 http://www.lbl.gov
2 http://ganglia.sourceforge.net/
3 http://www.millennium.berkeley.edu/
4 http://www.npaci.edu/

ppppp byrreleaseaclock +−=)(* , (1)

where is the release year of processor p, is the

release year of the first processor of this architecture, and a and

 are constants. We use a simple linear regression analysis to

find a line with a least mean-square error. The slope and intercept
are determined independently for each architecture. For example,
the slope of the Pentium 4 processor’s group is 0.661, the
intercept is 0.759, and the coefficient of determination (R-square)
is 0.9. The coefficient of determination is used to estimate how
well the fitted line is matched to data. When the coefficient value
is close to 1, the line is well fitted. Since the R-square value is
close to 1, this line is quite well matched to the trend. We can
then estimate the release year of a given system by its processor
clock speed using the inverse function of equation (1) as follows.

prelease pyr

p

pb

p
p

pp
p yr

a
bclock

release +
−

= (2)

Figure 3 shows, for our sample data, the number of processors
that were released each year, as computed by equation (2). The
trend in this histogram can be fitted by a polynomial with degree
2 as follows:

cbaCount yryryr +∆+∆= ** 2 (3)

where
yr∆ is the difference of release year based on the year

when the first Pentium 2 processor was announced (e.g., 1997).
For our sample set, a is equal to 190.6, b to 437.3, and c to 320.2,
and the R-square value of the fitted curve is 1.0.

Because we are extrapolating, we assume that future systems
will adopt one of the processor architectures currently available in
the market: Pentium 4, Itanium 2, Athlon XP/MP, and Opteron.
We estimate the sample ratios of these processors and how many
processors will be available in the future by equation (3). This
allows us to calculate the sample ratios of the processor
architectures at points in the future. Because the relative fraction
of older processors decreases as more new processors are added to
the system, we need not explicitly model system retirement. Our
extrapolations for several years are shown in the second, third,
and fourth row of Table 1.

0

1000

2000

3000

4000

5000

1998 1999 2000 2001 2002 2003
Year

of

 P
ro

ce
ss

or
s

Figure 3. Number of sample processors released every year

2.2 Processor Clock Speed
A key-contributing factor to a processor’s computing power is its
clock speed. As an approximation of the distribution of clock
speeds that actually occur for a given processor architecture, we
use a uniform distribution. We postulate that the cause of the
dense distribution of certain clock speeds is due to the fact that
several processors with different clock speeds are often
announced at the same time and some processors with the same
clock speed are released several times. In addition, the advent of
new processors affects the purchase of existing processors.
However, it is very difficult to capture these factors in a simple
unified model.

For older processors out of production, we calculate the
possible clock speed values using the average clock increment
(), the slowest clock speed (), and the fastest clock

speed (). Then, there are (-)/ possible clock speeds,

one of which is selected randomly between and by the unit

of . For example, the slowest clock speed of Pentium 3

processor was 400Mhz, the fastest was 1.4Ghz, and the average
clock increment was 50Mhz. As a result, there are 20 possible
clock speed values by the units of 50Mhz. Meanwhile, for new
processors still in production, we calculate the possible clock
speed values using the average clock increment of the processor
architecture (), the interval () in which new versions are

released, and the elapsed time after the first one was announced
(). Then, one between and can be

randomly selected by the units of . For instance, the

slowest clock speed of the Pentium 4 processor was 1.4 Ghz, the
average clock increment has been 115Mhz, and new versions
have been released every 3 months.

),(clkp∆ pc

pC pC pc),(clkp∆

pc pC

),(clkp∆

),(clkp∆ pI

pT pc ppclkpp ITc /*),(∆+

),(clkp∆

2.3 Processor Cache
Caches are crucial components that affect application
performance and programmers often try to optimize cache reuse.
Since cache size is determined by processor architecture and
manufacturing technology, there seems to be no simple rule for
cache size. The L2 cache size of Intel processors and AMD
processors are shown in Figure 4 and 5, respectively. The cache
size increment is mainly related to the advent of new processors.
Celeron processors have 128 KB or 256 KB L2 cache, Pentium 3

processors have 256 KB or 512 KB, and Pentium 4 processors
have 256 KB, 512 KB, or 1024 KB. Meanwhile, Athlon, Athlon
MP, Athlon XP processors have 256 KB or 512 KB L2 cache, and
Opteron processors have 1 MB cache. Due to multithreading
support, the recent processors tend to have larger L2 cache.

Table 2. Processor performance factors

Factor Processor architecture

1 Pentium 2, Celeron, Pentium 3, Athon

2 Pentium 4, Athlon MP, Athlon XP, Opteron

4 Itanium, Itanium 2

Observing historical data over several years, one can see that
cache sizes increases following a clear step function. For Intel
processors, increases occur every odd year and the average step
duration is 3.5 years. There seems to be no obvious trend in AMD
processors. From this observation, we model cache size as follows,
simply assuming that the step duration () is twice as long as

the step-up period ().
stepT

upT

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −
+

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −
+

=

1

)(log2

up

base
base

up

base
base

T
yrrelease

Cache

or

T
yrrelease

Cache

Cache

 (4)

where is the base year, release is the estimated release year,
and is the cache size of the base year. This step function
matches 80% of the cache size data points for Intel processors
when the step-up period is 2, the step duration is 4, the base year
is 1999.8, and the base cache size is 8 (256 KB). Meanwhile, this
function matches 77% of the cache size data points for AMD
processors with the same parameter values as Intel processors.

baseyr

baseCache

This model has time-dependent terms, so it can be used for
future systems as well as current systems. Based on equation (4),
we expect that the possible cache sizes for future processor
architectures are 512KB or 1MB for the foreseeable future. For
existing systems, however, we can determine the exact cache size
of a processor by referencing processor datasheets.

2.4 Number of Processors per Node
Multiprocessor systems can provide cheap inter-processor
communication and exploit lightweight parallelism through
threads. Although more processors deliver more computing power,
the dual-processor configuration is widely accepted as the most
cost effective since cost and system complexity increase with the
number of processors hyper-linearly. This is seen in our sample
set. Figure 6 counts the cluster systems according to the number
of processors per node in a log scale. As expected, clusters with
dual-processors are dominant and account for about 70 percent of
the samples. This histogram can be fitted by a normal distribution
as follows.

),(~)(log2 σµNCountSMP
 (5)

The samples passed a normality test for goodness-of-fit and
showed a normal distribution in which the mean is 0.98 and the

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

1998 1999 2000 2001 2002 2003 2004 2005

Year

C
ac

he
 S

iz
e

in
 L

og
 S

ca
le

 (K
B

)

Celeron Itanium Pentium3 Pentium4 Pentium2

upT

stepT

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

1999 2000 2001 2002 2003 2004 2005
Year

C
ac

he
 S

iz
e

in
 L

og
 S

ca
le

 (K
B

)

Athlon Athlon MP Athlon XP Opteron

Figure 5. L2 cache size of AMD processors in a log scale (KB)Figure 4. L2 cache size of Intel processors in a log scale (KB)

standard deviation is 0.55. We should note that this distribution is
only applied to clusters for high-performance computing. A
survey about hosts in a Desktop Grid environment managed by
Entropia [23] shows quite different results as most desktop
systems have a single processor.

Since this trend is independent of processor architecture, this
model can be applied to any processor even though high-end
microprocessors like Itanium and Opteron target server systems
with more than 2 processors. In addition, since this trend seems
time-independent, we expect that it will continue for the
foreseeable future.

2.5 Memory Size per Processor
Memory size is a critical performance element for a wide range of
applications, particularly for data-intensive Grid computing. For
these applications, memory, network, and disk performance
directly impacts Grid performance. Because the price of memory
has fallen steadily with time, it is reasonable to correlate higher
performance processors with larger memory configurations. To
develop an appropriate rule, we surveyed the vendor
specifications for minimum memory configurations. IBM xSeries
machines with Pentium 4 processors have a minimum of 256MB,
Xeon processors have a minimum of 512MB, and Itanium
processors have 2GB memory. Meanwhile, HP desktops and
workstation with Pentium 4 and Athlon XP processors have
128MB and those with Itanium processors have a minimum of
2GB.

From these observations, we hypothesize that memory size
increases linearly with the number of processors per node and
geometrically with processor performance. Applying these
correlation factors to the installed memory sizes of the sample set,
we get the histogram shown in Figure 7. This histogram can be
fitted by a normal distribution as follows:

),(~))2*/((log2 σµNCountSize PF
SMPmemory

 (6)

where denotes the number of processors per node and

 denotes the correlation due to the processor performance
factor presented in Table 2. These factors are determined by the
performance of floating-point operations per second. The samples
passed a normality test and showed a normal distribution in which
the mean value is 8.41 and the standard deviation value is 1.00.
Since the time-dependent part is hidden under the relative
performance factor, this model can be used for both current and
future systems.

SMPCount
PF2

2.6 Disk Capacity per Node
Many Grid applications produce large amount of data and store it
to disk. The local disk capacity and the I/O rate are critical to this
kind of application. Regardless of its importance, disk
information is rarely available: only 34 of the systems in our
sample set provided disk information and vendor specifications
give only limited guidelines. As an alternative, we use the well-
known rule of thumb that disk capacity doubles every year [24].
We also assume that most cost-effective disks are installed. For
example, 120GB EIDE hard drives were the most cost effective at
the end of 2003 and 250 GB drives are available in the market as
of April 2004. Meanwhile, 36GB SCSI drives were popular at the
end of 2003 and 74GB and 150GB drives are in widespread use
now. We assume that only a single disk is installed per node. In
the past, a single disk capacity was not sufficient to store a large
amount of data, so many systems had multiple disks. However,
this is increasingly uncommon and most systems have only one
disk (although they may have multiple disks to support RAID).
For a given year, we assume that disk size follows a uniform
distribution. From these assumptions, we can formulate disk size
of system as follows.

)(
),(2* base

base

yryr
yrtypeDiskDisk −= (7)

where represents the base size of a drive type at year

; for EIDE, it is 120 at 2003 and for SCSI, 74 at 2003. We
assume that the EIDE and SCSI are chosen with same probability.
We get the release year and month information of a given system
from the clock speed trend.

),(baseyrtypeDisk

baseyr

2.7 Number of Nodes per Cluster
Cluster users have a keen interest in the number of processors
available for their parallel applications. Because of the increasing
cost, there are fewer cluster systems with larger numbers of
cluster nodes. This intuition suggests a power-law model.
However, as shown in Figure 8, the distribution observed in our
sample set is quite different. Actually, the distribution of the
number of nodes in a log scale is close to a normal distribution
and it can be modeled as follows:

),(~)(log2 σµNCountnode
 (8)

This distribution supports the notion that cluster sizes that
range from 8 to 64 nodes are preferred. The samples passed a
normality test and showed a normal distribution in which the

mean is 3.87 and the standard deviation is 2.13. According to our
observation of the samples, there is no correlation between the
number of nodes and the year of release even though the total
number of processors increases. We believe that this model is
robust and can be applied to future systems.

2.8 System Area Network
In addition to the computing power, another important attribute of
clusters is their internal communication performance. Clusters
with high performance communication often use specialized
System Area Network (SAN) technology. In many parallel-
processing applications, latency is as important as bandwidth, so
lightweight communication networks like Myrinet [25] and VIA
[26] have been adopted. However, Gigabit Ethernet products are
cheap and powerful, so many cluster systems are deployed with a
single or even dual Gigabit Ethernet network. For simplicity, we
categorize SANs into Ethernet and non-Ethernet network types
and model them using a binomial distribution. However, SAN
information is available in only 56 clusters in our sample set and
more samples would be required to build a more rigorous model.

To understand the current distribution, we calculated the ratio
of Ethernet to non-Ethernet for our sample set. For 56 samples,
Ethernet accounts for 46% and Myrinet for 54%. This result

suggests that Ethernet and Myrinet evenly share the market.
However, to build a model that can extrapolate future
configurations, we need to know the trend over time. We count
the number of systems released every two years and the results
are shown in Figure 9. The graph says that the ratio of Fast
Ethernet decreases and the ratio of Gigabit Ethernet increase.
However, the ratio of Myrinet to Ethernet has been almost
constant for the last four years. From this observation, we expect
this trend to continue and the sample ratios can be used for the
probabilities of a binomial distribution.

3. MODEL VALIDATION
We use a second sample set to validate our resource models. This
second sample set is from NPACI Rocks clusters [27]. The Rocks
software provides cluster configuration management. As of March
2004, there were 191 registered Rocks clusters totaling 10,073
processors. Because of its recent release and popularity, the
population of Rocks clusters is a good representative of recent
cluster configurations. Unfortunately, because the Rocks registry
only includes a subset of modeled attributes (but arguably the
most critical ones, at least for compute intensive applications), we
can only validate our models for processor architecture, clock
speed, and total number of nodes.

Memory Size per Node (Log Scale)

N
um

be
r

of
 S

ys
te

m
s

2048102451225612864

40

30

20

10

0

Mean 8.412
StDev 0.9974
N 97

Figure 7. Distribution of memory size per node in a log scale
applying the correlation factors due to processor architecture
and number of processors per node (MB)

Number of Processors per Node (Log Scale)

Nu
m

be
r

of
 S

ys
te

m
s

421

80

70

60

50

40

30

20

10

0

Mean 0.9802
StDev 0.5474
N 101

Figure 6. Distribution of number of processors per node in a
log scale

Number of Nodes per Cluster (Log Scale)

N
um

be
r

of
 S

ys
te

m
s

1024256641641

30

25

20

15

10

5

0

Mean 3.874
StDev 2.128
N 97

Figure 8. Distribution of the number of nodes per cluster in
log scale

2
7

3
12

0

2

12
14

5
9 16 30

0%

25%

50%

75%

100%

1999 2001 2003 Average

Year

R
at

io

FastEthernet GigabitEthernet Myrinet

Figure 9. Distribution of cluster System Area Network (SAN):
the numbers in the boxes represent the number of systems with
that SAN type.

3.1 Proces
Since several m
processor arch
essential. The
clusters is show
between the sa
our models and
Pentium 3 and
account for 40
account for 18.
of this differen
past two years.
years are consi
model for this
As shown in th
account for 15.

Although th
processor, the o
of Intel process
AMD in the t
clusters is 79 to
AMD is 8 to 2
architecture to
architectures in
Rocks clusters
released in the
becomes signi
distribution fo
derived from th
sound basis for

3.2 Proces
Since Rocks cl
processors are
speeds, we cou
processors rele
clusters, about
about 70 cluste
shown in Figu
Pentium 4 proc
goodness-of-fit
too large to ma
major reason o
model. Thus, it
these processor
clock speed w
spikes will dim
uniform distrib

3.3 Numb
In Section 2.7,
cluster. Howev
available in the

Rocks

This year

Table 3. Distribution of processor architectures in Rocks clusters and 1 year predicted samples (%)

Pentium2 Celeron Pentium3 Pentium4 Itanium Athlon AthlonMP AthlonXP Opteron

0.7 0.0 18.8 57.9 1.1 0.2 13.4 2.0 5.8

0.0 0.5 15.1 53.5 6.3 0.0 19.4 2.1 3.2
sor Architecture
odels developed in this paper are dependent on the

itecture distribution, an accurate model for it is
 processor architecture distribution for Rocks
n in the first row of Table 3. The major difference

mple set (the “training samples”) used to develop
 the Rocks cluster sample set is the proportions of
 Pentium 4 processors. Pentium 3 and Pentium 4
.3% and 34.6% in the training samples and they
8% and 57.9% in Rocks clusters. The major cause
ce is that most Rocks clusters were released in the
 When the processors released in only the last two
dered in our sample set, however, the extrapolated
year is well matched to those derived from Rocks.
e last row of Table 3, Pentium 3 and Pentium 4

1% and 53.3% in the extrapolated samples.
ere are discrepancies in the ratios for each
verall trend is quite similar. Let’s look at the ratio
ors to AMD processors first. The ratio of Intel to

raining samples is 84 to 16 while that in Rocks
 21. Roughly, we can say that the ratio of Intel to

 in both sets. Another aspect is the ratio of 32-bit
 64-bit architecture. The percentage of 64-bit
 the training samples is about 6% while that in
 is about 7%. When we consider the systems
 past two years, the gap between two sample sets
ficantly lower. In summary, the multinomial
r processor architecture and the sample ratios
e training samples are representative and form a

 a model.

sor Clock Speed
usters were deployed recently, higher clock speed
dominant. To understand the distribution of clock
nted the number of Athlon MP/XP and Pentium 4
ased in the last two years. Among 191 Rocks
40 clusters have Athlon MP/XP processors and
rs have Pentium 4 processor. The distribution is

re 10. Athlon MP/XP processors at 1.6 Ghz and
essors at 2.8 Ghz are responsible for the spikes. A
 test using mean square error says that the error is
tch this distribution to a uniform distribution. The
f this discrepancy is that we oversimplified the

 may still possibly be a uniform distribution. Since
s are in production and new systems with higher
ill be released continuously, we expect that the

inish and the overall trend will be close to a
ution.

er of Processors per Cluster
we developed a model for the number of nodes per
er, only the number of processors per cluster is
 Rocks cluster lists. As most systems have dual-

processor nodes and the number of nodes in a cluster follows a
normal distribution, we can assume that the number of processors
also follows a normal distribution. Figure 11 shows the
distribution of the number of processors in a log scale for the
training samples and the Rocks clusters. Each histogram can be
fitted by a normal distribution and both passed a normality test.
The number of processors for the training samples follows a
normal distribution in which the mean is 4.86 and the standard
deviation is 2.00 while the Rocks clusters follows a normal
distribution in which the mean is 4.50 and the standard deviation
is 1.78.

To answer the question, “Is the training sample set equivalent
to the Rocks cluster sample set?” we performed an independent
sample t-test and an f-test. An f-test is used to test if the standard
deviations of two groups are equal. The formula for f-test is a
ratio between the standard deviations of the two groups. The test
result at the 5% significance level indicates that there is no
evidence that the deviations of the two sets are different. Then, we
performed a t-test under the assumption that the standard
deviations are equal. A t-test assesses whether the means of two
groups are statistically different from each other. This analysis is
appropriate whenever one want to compare the means of two
groups. The formula for t-test is a ratio of the differences between
two group means to variability of groups. The test result with the
5% risk level also indicates that there is no evidence that the
means are different. Even though these tests do not guarantee that
both sets are same, the consistent results of two tests mean it is
highly probable that two groups are statistically the same.

4. IMPLEMENTATION
In the previous sections, we developed resource models and
validated them. In this section, we discuss the implementation of a
resource generator that implements these models. The resource
generator consists of three components: a processor architecture
description file, a training sample file, and a modeler. The
processor architecture description file contains the data available
in processor datasheets, which include processor architecture
name (e.g. Pentium 4, Itanium), processor clock speed, L2 cache
size, and current availability. It is mainly used to determine the
values of the model parameters for clock speed and cache size. In
addition, it is used to check if the clock speed and cache size of
the training samples and synthesized resource entities are valid.
For instance, it can detect that Pentium 3 processor with 2.0 Ghz
clock or Itanium 2 processor with 1 MB L2 cache are invalid.
Users can add new processor data whenever they become
available.

To build models for resource entities, the resource generator
reads representative data for clusters. This training sample file
contains the configurations of our sample clusters (over 10,000
processors). This architecture allows the models to be updated
seamlessly as more cluster data becomes available. Finally, the
modeler implements the models for each resource attribute as we
have described at length and determines the model parameters by

referencing the architecture description and the training sample
file. It performs a linear regression analysis, implements the
uniform and normal distribution models, and determines the
model parameters for the resource entities.

5. RELATED WORK
Most closely related to ours is the work by Lu and Dinda’s grid
resource generator, GridG [21]. GridG synthesizes resource
information through two steps: topology generation and node
annotation. In the topology generation step, GridG produces
structured network topologies obeying Internet power laws using
Tier. Our model presumes a similar technique. GridG then
annotates the nodes in the network with the attributes of
computing resource entities according to the user supplied rules
and empirical resource distribution information. In the annotation
step, they captured two correlations between computing resource
entities. The first correlation can be used to capture dependencies
between number of processors, clock speed, memory size, and
disk size. The second correlation, which the authors call the OS
concentration, can be used to model the typical phenomenon of a
dominant operating system in a local area network.

Their observation of these correlations is valuable to
understand the characteristics of computing resources in the
computational Grid environment. However, they focus only on
the procedure of resource synthesis and do not evaluate the
accuracy of their rules. Hence, there is little evidence that the
synthesized resource configurations are representative; only that
impossible configurations are eliminated. For example, our study
shows that their argument that the memory size is proportional to
the number of processors is correct, but they missed another
factor of processor performance. In addition, OS concentration
does not fully capture the fact that the Grid consists primarily of
clusters, not individual hosts. Finally, GridG does not support any
way to predict configurations for future grid systems.

Our resource generator focuses on clusters as the dominant
resource type in Grids. In contrast to GridG, our resource
generator uses a general statistical framework for modeling
resource attributes, allowing uniform treatment of a wide range of
attributes and easy addition of future ones. In addition, the
statistical approach allows automatic parameter tuning through

the incorporation of new cluster data as well as extrapolation for
future cluster configurations.

6. SUMMARY & FUTURE WORK
We have discussed models for the resources in computational
Grids and a novel resource generator for the dominant resource in
Grids, commodity clusters. Our major contributions are the
development of realistic models for the resource entities in a
computational Grid. Using a statistical approach, we capture the
characteristics of a sample data set automatically and generate
models that enable representative resource generation for
contemporary and future clusters (and thereby grids). Using a
second sample set for validation, we demonstrate that the models
capture the distributions of current systems.

Some attributes of our models include the number of processors
in a node, memory size per node, and the number of nodes per
cluster. These follow a normal distribution. Meanwhile, processor
architecture follows a multinomial distribution, clock speed
follows a uniform distribution, cache size follows a step function,
and intra-cluster networking is split evenly between Ethernet and
Myrinet.

Due to the a paucity of data, however, our models for disk size
per node and SAN type are not yet complete. In addition, we need
more study about the distribution of clock speed. To develop
more realistic and accurate models, we need more sample data.
This is certainly an area of active continuing work, and we are
now accumulating cluster configurations from various sources.

To evaluate the robustness of our models more deeply, it would
be good to evaluate the models using a bootstrapping technique.
This deeper validation would build on the work we have
presented here, which validates the models using two disjoint,
independent sample sets. As we collect more sample data, we
pursue these further experiments.

Our resource generator has been fully implemented and is
being used to develop a resource discovery system for a range of
projects – the OptIPuter’s DVC [28] and the VGrADS project.
Moreover, it will be integrated with a variant of Brite network
topology generator in MicroGrid [29] to perform various
experiments in a virtual grid environment with respect to
scalability, resource optimization, and performance prediction.

Number of Processors in Cluster (Log scale)

N
um

be
r

of
 S

ys
te

m
s

1024256641641

50

40

30

20

10

0

Variable
Traning Sample
Rocks

Figure 11. Distribution of the number of processors per
cluster for the training samples and Rocks clusters

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Clock Speed (Ghz)

Pe
rc

en
ta

ge

Athlon MP/XP Pentium4

Figure 10. Distribution of clock speed for Rocks clusters
released in the past two years (%)

7. ACKNOWLEDGEMENTS
The authors and research described here are supported in part by
the National Science Foundation under awards NSF EIA-99-
75020 Grads and NSF Cooperative Agreement NSF CCR-
0331645, NSF NGS-0305390, and NSF Research Infrastructure
Grant EIA-0303622. Support from Hewlett-Packard,
BigBangwidth, Microsoft, and Intel is also gratefully
acknowledged. The Ministry of Information and Communication,
Republic of Korea also supports this research study.

8. REFERENCES
[1] Charlie Catlett, The TeraGrid: A Primer,

http://www.teragrid.org/about, Sep. 2002.
[2] William E. Johnston, Dennis Gannon, and Bill Nitzberg,

Grids as Production Computing Environments: The
Engineering Aspects of NASA's Information Power Grid, In
the Proceedings of IEEE International Symposium on High
Performance Distributed Computing (HPDC’99), Aug. 1999

[3] Japans National Research Grid Initiative (NAREGI), Asian
Technology Information Program Report, ATIP03.016,
http://www.atip.org/REPORTSMATRIX/public/year2003_to
tal.html, Dec. 2003.

[4] Geoffrey Fox and David Walker, e-Science Gap Analysis,
UK e-Science Technical Report, UKeS-2003-0,
http://www.nesc.ac.uk/technical_papers/uk.html, Jun. 2003.

[5] William E. Johnston, et. al, The DOE Science Grid,
http://www.doesciencegrid.org/Grid/papers, 2003.

[6] J. Waldo, The Jini architecture for network-centric
computing, Communications of the ACM, 42(7): 76-82,
1999.

[7] L. Gong, JXTA: A Network Programming Environment,
IEEE Internet Computing, Vol. 5, pp. 88-95, June 2001

[8] Butterfly.net Inc., Butterfly Grid Solution for Online Games,
http://www.butterfly.net, 2003.

[9] Oliver Storz, Adrian Friday and Nigel Davies: Towards
‘Ubiquitous’ Ubiquitous Computing: an alliance with the
Grid, System Support for Ubiquitous Computing Workshop
at the Fifth Annual Conference on Ubiquitous Computing
(UbiComp 2003), Oct. 2003. Apr. 2003.

[10] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, Grid
Information Services for Distributed Resource Sharing, In
the Proceedings of IEEE International Symposium on High-
Performance Distributed Computing (HPDC’01), Aug. 2001.

[11] Rich Wolski, Neil Spring, and Jim Hayes. “The Network
Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing,” Journal of Future
Generation Computing Systems, 15(5-6): 757-768, Oct. 1999.

Processor architecture descriptionProcessor architecture description

Training sampleTraining sample

Synthesized
resources

Synthesized
resources

Resource model Normal

Uniform

Multinomial
User inputUser input

Figure 12. Resource generator structure

[12] Federico D. Sacerdoti, Mason J. Katz, Matthew L. Massie,
David E Culler, “Wide Area Cluster Monitoring with
Ganglia,” In the Proceedings of IEEE International
Conference on Cluster Computing (Cluster’03), Dec. 2003.

[13] Todd Tannenbaum, HawkEye: A Monitoring and
Management Tool for Distributed Systems,
http://www.cs.wisc.edu/condor/hawkeye, Mar. 2002.

[14] Rajesh Raman, Miron Livny, and Marvin Solomon,
Matchmaking: Distributed Resource Management for High
Throughput Computing, In the Proceedings of IEEE
International Symposium on High Performance Distributed
Computing (HPDC’98), Jul. 28-31, 1998.

[15] Chuang Liu; Ian Foster, A Constraint Language Approach to
Grid Resource Selection, TR-2003-07, Mar. 2003.

[16] D. Lu, P. Dinda, J. Skicewicz, Scoped and Approximate
Queries in a Relational Grid Information Service, In
proceedings of International Workshop on Grid Computing
(Grid’03), pp.192-201, Nov. 2003.

[17] Peter Dinda and Dong Lu, Nondeterministic Queries in a
Relational Grid Information Service, In the Proceedings of
Supercomputing 2003 (SC’03), Nov. 2003.

[18] Song, H. J., Liu, X., Jakobsen, D., Bhagwan, R., Zhang, X.,
Taura, K., and Chien, A. A., The microgrid: a scientific tool
for modeling computational grids, In the Proceedings of
Supercomputing 2000 (SC’00), Nov. 2000.

[19] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John
Byers. BRITE: An Approach to Universal Topology
Generation. In Proceedings of the International Workshop on
Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS'01), Aug. 2001.

[20] Doar, M. A better model for generating test networks. In the
Proceedings of IEEE Global Internet, pp. 86-93, 1996.

[21] D. Lu and P. Dinda, Synthesizing Realistic Computational
Grids, In the Proceedings of Supercomputing 2003 (SC’03),
Nov. 2003

[22] Erich Strohmaier and Jack Dongarra, Highlights of the 23rd
TOP500 List/Awards for the #1 System Worldwide and the
#1 System in Europe, In the Opening Session of International
Supercomputer Conference, Jun. 2004.

[23] Fran Berman, Geoffrey C. Fox, and Anthony J. G. Hey,
Architecture of a Commercial Enterprise Desktop Grid: The
Entropia System, Grid Computing: Making the Global
Infrastructure a Reality, pp.337-350, Dec. 2002, John Wiley
& Sons.

[24] D. A. Patterson and J. L. Hennessy, Computer Architecture -
A Quantitative Approach, (second edition), Morgan
Kaufmann, 1996

[25] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C.
L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet- A Gigabit-
per-Second Local-Area Network, IEEE Micro, 15(1): 29-38,
Feb. 1995.

[28] Nut Taesombut and Andrew Chien, Distributed Virtual
Computer (DVC): Simplifying the Development of High
Performance Grid Applications, In the Proceedings of
workshop on Grids and Advanced Networks (GAN ’04), Apr.
2004.

[26] Dave Dunning, Greg Regnier, Gary McAlpine, Don
Cameron, Bill Shubert, Frank Berry, Anne Marie Merritt, Ed
Gronke, Chris Dodd, “The Virtual Interface Architecture,”
IEEE Micro, 18(2): 66-76, Mar./Apr. 1998.

[27] Philip M. Papadopoulos, Mason J. Katz, Greg Bruno,
“NPACI Rocks: Tools and Techniques for Easily Deploying
Manageable Linux Clusters,” In the Proceedings of IEEE
International Conference on Cluster Computing (Cluster'01),
pp. 258-270, Oct. 2001.

[29] Xin Liu, Huaxia Xia, and Andrew Chien, Validating and
Scaling the MicroGrid: A Scientific Instrument for Grid
Dynamics, To appear, Journal of Grid Computing.

	INTRODUCTION
	RESOURCE MODELS
	Processor Architecture
	Processor Clock Speed
	Processor Cache
	Number of Processors per Node
	Memory Size per Processor
	Disk Capacity per Node
	Number of Nodes per Cluster
	System Area Network

	MODEL VALIDATION
	Processor Architecture
	Processor Clock Speed
	Number of Processors per Cluster

	IMPLEMENTATION
	RELATED WORK
	SUMMARY & FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

