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ABSTRACT 
Understanding large Grid platform configurations and generating 
representative synthetic configurations is critical for Grid 
computing research. This paper presents an analysis of existing 
resource configurations and proposes a Grid platform generator 
that synthesizes realistic configurations of both computing and 
communication resources. Our key contributions include the 
development of statistical models for currently deployed 
resources and using these estimates for modeling the 
characteristics of future systems. Through the analysis of the 
configurations of 114 clusters and over 10,000 processors, we 
identify appropriate distributions for resource configuration 
parameters in many typical clusters. Using well-established 
statistical tests, we validate our models against a second resource 
collection of 191 clusters and over 10,000 processors, and show 
that our models effectively capture the resource characteristics 
found in real world resource infrastructures.  These models are 
realized in a resource generator, which can be easily recalibrated 
by running it on a training sample set. 

Keywords 
Computational Grid, resource modeling, clusters, resource 
discovery, resource selection, resource management 

1. INTRODUCTION 
Grid technologies enable the sharing and utilization of widespread 
resources in a coordinated fashion. Numerous research and 
development activities are ongoing in the Grid computing area, 
and a common concern is the analysis and evaluation of the 
resulting techniques and algorithms in “representative’’ scenarios; 
these include typical software, physical resource, and network 
environments for current or future Grid deployments. Current 
Grid environments [1-9] exhibit a wide range of software, 
physical resource, and network configurations. However, 
common themes are present, such as the prevalence of clustered 

commodity systems. 

To see the importance of understanding current and future Grid 
configurations, consider, for instance, the wealth of activity in 
scalable and efficient resource discovery and monitoring. Grid 
information services (GIS) are core components of the 
middleware infrastructure. The MDS [10] is often used for initial 
resource discovery, and resource monitoring tools like NWS [11], 
Ganglia [12], and Hawkeye [13] are used for measuring dynamic 
resource characteristics. Understanding the performance 
properties and evaluating these systems requires the exploration 
of a wide range of representative resource configuration scenarios. 

Similarly, consider resource selection systems such as 
Matchmaking/ClassAds [14] and Redline [15] that enable 
applications to express complex resource requirements for sets of 
resources. Understanding how useful these constraints are, and 
how they affect the complexity of selections depends directly on 
the actual resource environments in which they are used. More 
specifically, researchers are exploring new resource discovery and 
selection techniques that selectively consider resource 
information – scoping or sampling. For example, the systems 
described in [16,17] use a variety of mechanisms to reduce the 
information that an application needs to retrieve from the Grid 
Information service. [17] suggests that even searching a randomly 
selected subset can improve performance by reducing server load.  
Understanding how well such a technique will work in a broad 
range of future grids requires the generation of representative 
resource configurations that can form the basis for performance 
studies.  Further, scoping and random selection may also 
negatively impact the quality of the discovered resources, but 
quantifying this impact is only possible with experiments against 
a variety of representative real-world Grid resource sets.  

In short, it is important to evaluate the utility, cost, and 
scalability of the above systems with a variety of realistic 
resource configurations. In addition to the evaluation of resource 
monitoring and discovery mechanisms, realistic Grid resource 
configuration synthesis is also critical in the evaluation of 
resource management techniques and policies as well as 
application scheduling. This cannot be achieved with real 
hardware Grids, but synthesizing resource sets and evaluation by 
the means of a simulation system such as MicroGrid [18] is one 
promising alternative.  
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Grid environments consist of both network and endpoint 
resources.  In the networking community, various network 
topology generators are available to synthesize structured 

 



 

topologies obeying certain power-laws (e.g. Brite [19] and Tier 
[20]). These network topologies can be used in a Grid emulator, 
like MicroGrid.  In this work, we focus on the compute resources 
that are interconnected by such networks. 

To the best of our knowledge, GridG [21] is the only prior 
work focusing on the synthesis of realistic Grid resource 
configurations. GridG uses an annotation scheme to generate the 
characteristics of single hosts that are individually placed into an 
Internet network topology. In contrast, we focus on clusters of 
commodity microprocessors (often called Beowulf clusters), 
which increase popularity and importance in the Grid. To simplify 
the task, we exclude specialized computer systems such as vector, 
SIMD, and some MPP machines. These could be added to a future 
extension of our model.  This simplification is realistic because 
the rapid advance of commodity systems and networking suggest 
that such commodity clusters will be the dominant component in 
Grids. For instance, recent Top500 lists [22] show that clusters are 
rapidly growing in popularity in the supercomputing market, and 
they are already dominant in commercial systems. 

Our approach to resource generation uses distributions inferred 
from existing configurations of Grid resources. We use these 
probability distributions to generate typical configurations for 
current Grids of arbitrary sizes. Specifically, we build a model for 
each resource characteristic and generate possible resource 
configurations accordingly. For some resource characteristics that 
are not reported in the sample set of real-world systems that we 
observed, we use a technology-based analysis for performance 
trends and system configurations provided by system vendors. 
The resulting models capture the key trends, and can be used to 
automatically adjust parameters when new empirical data 
becomes available. Our approach obviates the need for a user to 
build new models by hand. We use a wide range of existing Grid 
configurations to generate our statistical models, and then validate 
them against a second disjoint set of Grid configurations.  Finally, 
we use these statistical models and an analysis of technology 
trends to extrapolate to future Grid resource configurations. Our 
contributions are as follows: 

• New models for Grid resource configurations: based on an 
extensive study of configurations, totaling over 10,000 
processors, we derive appropriate distributions for various 
resource characteristics. For the number of processors in a 
node, memory size per node, and the number of nodes per 
cluster, we find a normal distribution to be a good model.  
For processor architecture, a multinomial distribution is 
appropriate. For clock speed, a uniform distribution is a good 
candidate.  For processor cache size, a step function is 
realistic. Intra-cluster networks are split evenly between 
Ethernet and one of several proprietary networks (e.g. 

Myrinet).  We combine these attributes into a single 
statistical model for Grid resource generation. 

Table 1. Probabilities of processor architectures for the sample set and predicted sample sets (%) 

 Pentium2 Celeron Pentium3 Pentium4 Itanium Athlon AthlonMP AthlonXP Opteron 

Samples 1.4 4.1 40.3 34.6 3.9 0.0 12.4 1.3 2.0 

1 year 0.8 2.5 24.5 46.1 5.2 0.0 16.5 1.8 2.6 

2 years 0.5 1.6 15.9 52.3 5.9 0.0 18.7 2.0 3.0 

3 years 0.4 1.1 10.9 56.0 6.3 0.0 20.0 2.1 3.2 

 

• Validation of the resource models: the models for 
processor architecture, clock speed, and number of 
processors are validated by comparing statistical properties 
of the generator output to another set of sample resource 
configurations for 191 clusters and over 10,000 machines.  

• Extrapolation to future Grid resource configurations: all 
the models except processor architecture and processor clock 
speed are time-independent or have implicit time-dependent 
factors. We show how they can be used to predict future grid 
system configurations in a straightforward fashion. 

• Implementation of the models: we implemented a resource 
generator to realize the models. It is currently used to 
produce resource configurations for evaluating Grid resource 
discovery systems being developed in our lab. 

The remainder of this paper is organized as follows. We 
describe our methodology for generating models and models for 
specific resource entities in Section 2. These models are validated 
against another sample resource set in Section 3. We highlight 
key implementation issues for our resource generator and its 
design in Section 4. Finally, we discuss related work in Section 5, 
and conclude and describe future directions in Section 6.  

2. RESOURCE MODELS 
The major goals of our study are to develop the models for 
resources available in current Grids and to extrapolate from these 
models to future systems. The resource entities of interest are the 
major contributors to application performance, which include 
processor architecture, clock speed, L2 cache size, per-node 
memory size, per-node disk size, per-node number of processors, 
per-cluster number of nodes, and system area network technology. 
Especially, processor architecture is crucial to application 
performance. CPU vendors try to achieve higher performance by 
optimizing processor microarchitecture, extending instruction set, 
and increasing processor clock speed. Ideally, our processor 
models might include microarchitecture, clock rate, cache 
hierarchy, etc.  However, we are limited by the resource 
information that is readily available.  As a result, we use 
processor architecture, clock speed, and cache size as a basis for 
our processor resource model. 

To estimate the probability distribution of the resource 
characteristics mentioned above, we gathered a large sample set 
of existing cluster resources, and use this set as the basis for 
statistical models for our resource generator. We gathered system 
configuration data for 114 clusters totaling over 10,000 processors 
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Figure 1. Processor clock speed of Intel processors (Ghz) 
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Figure 2. Processor clock speed of AMD processors (Ghz)

from 12 web sites for cluster and Grid computing. Some 
representative sites include Lawrence Berkeley National Lab1, 
Ganglia demo2, U.C. Berkeley Millennium project3, and NPACI4. 
Although many clusters are not publicly available, we believe that 
our sample set is representative because it includes clusters with a 
variety of popular microprocessors from old Pentium 2 processors 
to state-of-the-art Opteron processors, and because the cluster 
system sizes range from single machines to over one thousand 
nodes.  In the next sections, we describe our models for each 
considered attribute.  

2.1 Processor Architecture 
Among the factors contributing to computing power, processor 
architecture is among the most crucial. The first step is to estimate 
the distribution of processor architectures in the population. For 
this purpose, we counted the total number of processors per 
architecture in the sample set (not the number of systems). The 
sample set includes 10,179 processors. The ratio of processors for 
each architecture is shown in the first row of Table 1. Two 
architectures, Intel’s Pentium 3 and Pentium 4, are dominant, 
accounting for 40.3% and 34.6% of all processors, respectively. 
We assume the sample set is representative and use the sample 
ratios as the population distribution in the resource generator for 
current cluster systems.  

However, the resource population never stands still, and new 
systems with state-of-the-art processors are being deployed while 
old systems are being retired. To extrapolate to future systems, we 
would ideally know exactly which new processor architectures 
would be introduced, when they would be available, and their 
performance. However, we do not have such detailed information. 
As an alternative, we use an extrapolation of processor clock 
speed to predict the release dates of new processors. Processor 
clock speed increases as microprocessor technology advances and 
users tend to install the newest (or most cost effective) processors 
available on the market. Hence, the processor clock speed of a 
system within each processor family is a good indicator of its 
release year. For instance, the clock speeds of Intel and AMD 

processors released since 1997 are shown in Figure 1 and Figure 2. 
The observed trend can be fitted linearly as follows: 

                                                                 
1 http://www.lbl.gov 
2 http://ganglia.sourceforge.net/ 
3 http://www.millennium.berkeley.edu/ 
4 http://www.npaci.edu/ 

ppppp byrreleaseaclock +−= )(* ,                    (1) 

where  is the release year of processor p,  is the 

release year of the first processor of this architecture, and a  and 

 are constants. We use a simple linear regression analysis to 

find a line with a least mean-square error. The slope and intercept 
are determined independently for each architecture. For example, 
the slope of the Pentium 4 processor’s group is 0.661, the 
intercept is 0.759, and the coefficient of determination (R-square) 
is 0.9. The coefficient of determination is used to estimate how 
well the fitted line is matched to data. When the coefficient value 
is close to 1, the line is well fitted. Since the R-square value is 
close to 1, this line is quite well matched to the trend. We can 
then estimate the release year of a given system by its processor 
clock speed using the inverse function of equation (1) as follows. 

prelease pyr
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a
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Figure 3 shows, for our sample data, the number of  processors 
that were released each year, as computed by equation (2). The 
trend in this histogram can be fitted by a polynomial with degree 
2 as follows: 

cbaCount yryryr +∆+∆= ** 2                           (3) 

where 
yr∆  is the difference of release year based on the year 

when the first Pentium 2 processor was announced (e.g., 1997). 
For our sample set, a is equal to 190.6, b to 437.3, and c to 320.2, 
and the R-square value of the fitted curve is 1.0. 

Because we are extrapolating, we assume that future systems 
will adopt one of the processor architectures currently available in 
the market: Pentium 4, Itanium 2, Athlon XP/MP, and Opteron. 
We estimate the sample ratios of these processors and how many 
processors will be available in the future by equation (3). This 
allows us to calculate the sample ratios of the processor 
architectures at points in the future. Because the relative fraction 
of older processors decreases as more new processors are added to 
the system, we need not explicitly model system retirement.  Our 
extrapolations for several years are shown in the second, third, 
and fourth row of Table 1. 
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Figure 3. Number of sample processors released every year

2.2 Processor Clock Speed 
A key-contributing factor to a processor’s computing power is its 
clock speed.  As an approximation of the distribution of clock 
speeds that actually occur for a given processor architecture, we 
use a uniform distribution. We postulate that the cause of the 
dense distribution of certain clock speeds is due to the fact that 
several processors with different clock speeds are often 
announced at the same time and some processors with the same 
clock speed are released several times. In addition, the advent of 
new processors affects the purchase of existing processors. 
However, it is very difficult to capture these factors in a simple 
unified model.  

For older processors out of production, we calculate the 
possible clock speed values using the average clock increment 
( ), the slowest clock speed ( ), and the fastest clock 

speed ( ). Then, there are ( - )/ possible clock speeds, 

one of which is selected randomly between  and  by the unit 

of . For example, the slowest clock speed of Pentium 3 

processor was 400Mhz, the fastest was 1.4Ghz, and the average 
clock increment was 50Mhz. As a result, there are 20 possible 
clock speed values by the units of 50Mhz. Meanwhile, for new 
processors still in production, we calculate the possible clock 
speed values using the average clock increment of the processor 
architecture ( ), the interval ( ) in which new versions are 

released, and the elapsed time after the first one was announced 
( ). Then, one between  and  can be 

randomly selected by the units of . For instance, the 

slowest clock speed of the Pentium 4 processor was 1.4 Ghz, the 
average clock increment has been 115Mhz, and new versions 
have been released every 3 months. 

),( clkp∆ pc

pC pC pc ),( clkp∆

pc pC
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),( clkp∆ pI

pT pc ppclkpp ITc /*),(∆+

),( clkp∆

2.3 Processor Cache 
Caches are crucial components that affect application 
performance and programmers often try to optimize cache reuse. 
Since cache size is determined by processor architecture and 
manufacturing technology, there seems to be no simple rule for 
cache size. The L2 cache size of Intel processors and AMD 
processors are shown in Figure 4 and 5, respectively. The cache 
size increment is mainly related to the advent of new processors. 
Celeron processors have 128 KB or 256 KB L2 cache, Pentium 3 

processors have 256 KB or 512 KB, and Pentium 4 processors 
have 256 KB, 512 KB, or 1024 KB. Meanwhile, Athlon, Athlon 
MP, Athlon XP processors have 256 KB or 512 KB L2 cache, and 
Opteron processors have 1 MB cache. Due to multithreading 
support, the recent processors tend to have larger L2 cache.  

Table 2. Processor performance factors 

Factor Processor architecture 

1 Pentium 2, Celeron, Pentium 3, Athon 

2 Pentium 4, Athlon MP, Athlon XP, Opteron 

4 Itanium, Itanium 2 

 

Observing historical data over several years, one can see that 
cache sizes increases following a clear step function. For Intel 
processors, increases occur every odd year and the average step 
duration is 3.5 years. There seems to be no obvious trend in AMD 
processors. From this observation, we model cache size as follows, 
simply assuming that the step duration ( ) is twice as long as 

the step-up period ( ).  
stepT

upT

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −
+

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −
+

=

1

)(log2

up

base
base

up

base
base

T
yrrelease

Cache

or

T
yrrelease

Cache

Cache

         (4) 

where is the base year, release  is the estimated release year, 
and  is the cache size of the base year. This step function 
matches 80% of the cache size data points for Intel processors 
when the step-up period is 2, the step duration is 4, the base year 
is 1999.8, and the base cache size is 8 (256 KB). Meanwhile, this 
function matches 77% of the cache size data points for AMD 
processors with the same parameter values as Intel processors. 

baseyr

baseCache

This model has time-dependent terms, so it can be used for 
future systems as well as current systems. Based on equation (4), 
we expect that the possible cache sizes for future processor 
architectures are 512KB or 1MB for the foreseeable future. For 
existing systems, however, we can determine the exact cache size 
of a processor by referencing processor datasheets. 

2.4 Number of Processors per Node 
Multiprocessor systems can provide cheap inter-processor 
communication and exploit lightweight parallelism through 
threads. Although more processors deliver more computing power, 
the dual-processor configuration is widely accepted as the most 
cost effective since cost and system complexity increase with the 
number of processors hyper-linearly. This is seen in our sample 
set. Figure 6 counts the cluster systems according to the number 
of processors per node in a log scale. As expected, clusters with 
dual-processors are dominant and account for about 70 percent of 
the samples. This histogram can be fitted by a normal distribution 
as follows. 

),(~)(log2 σµNCountSMP
                            (5) 

The samples passed a normality test for goodness-of-fit and 
showed a normal distribution in which the mean is 0.98 and the 
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Figure 5. L2 cache size of AMD processors in a log scale (KB)Figure 4. L2 cache size of Intel processors in a log scale (KB)

standard deviation is 0.55. We should note that this distribution is 
only applied to clusters for high-performance computing. A 
survey about hosts in a Desktop Grid environment managed by 
Entropia [23] shows quite different results as most desktop 
systems have a single processor. 

Since this trend is independent of processor architecture, this 
model can be applied to any processor even though high-end 
microprocessors like Itanium and Opteron target server systems 
with more than 2 processors. In addition, since this trend seems 
time-independent, we expect that it will continue for the 
foreseeable future. 

2.5 Memory Size per Processor 
Memory size is a critical performance element for a wide range of 
applications, particularly for data-intensive Grid computing. For 
these applications, memory, network, and disk performance 
directly impacts Grid performance. Because the price of memory 
has fallen steadily with time, it is reasonable to correlate higher 
performance processors with larger memory configurations.  To 
develop an appropriate rule, we surveyed the vendor 
specifications for minimum memory configurations. IBM xSeries 
machines with Pentium 4 processors have a minimum of 256MB, 
Xeon processors have a minimum of 512MB, and Itanium 
processors have 2GB memory. Meanwhile, HP desktops and 
workstation with Pentium 4 and Athlon XP processors have 
128MB and those with Itanium processors have a minimum of 
2GB. 

From these observations, we hypothesize that memory size 
increases linearly with the number of processors per node and 
geometrically with processor performance. Applying these 
correlation factors to the installed memory sizes of the sample set, 
we get the histogram shown in Figure 7. This histogram can be 
fitted by a normal distribution as follows: 

),(~))2*/((log2 σµNCountSize PF
SMPmemory

                  (6) 

where  denotes the number of processors per node and 

 denotes the correlation due to the processor performance 
factor presented in Table 2. These factors are determined by the 
performance of floating-point operations per second. The samples 
passed a normality test and showed a normal distribution in which 
the mean value is 8.41 and the standard deviation value is 1.00. 
Since the time-dependent part is hidden under the relative 
performance factor, this model can be used for both current and 
future systems. 

SMPCount
PF2

2.6 Disk Capacity per Node 
Many Grid applications produce large amount of data and store it 
to disk. The local disk capacity and the I/O rate are critical to this 
kind of application.  Regardless of its importance, disk 
information is rarely available: only 34 of the systems in our 
sample set provided disk information and vendor specifications 
give only limited guidelines. As an alternative, we use the well-
known rule of thumb that disk capacity doubles every year [24]. 
We also assume that most cost-effective disks are installed. For 
example, 120GB EIDE hard drives were the most cost effective at 
the end of 2003 and 250 GB drives are available in the market as 
of April 2004. Meanwhile, 36GB SCSI drives were popular at the 
end of 2003 and 74GB and 150GB drives are in widespread use 
now. We assume that only a single disk is installed per node. In 
the past, a single disk capacity was not sufficient to store a large 
amount of data, so many systems had multiple disks. However, 
this is increasingly uncommon and most systems have only one 
disk (although they may have multiple disks to support RAID). 
For a given year, we assume that disk size follows a uniform 
distribution. From these assumptions, we can formulate disk size 
of system as follows. 

)(
),( 2* base

base

yryr
yrtypeDiskDisk −=                           (7) 

where  represents the base size of a drive type at year 

; for EIDE, it is 120 at 2003 and for SCSI, 74 at 2003. We 
assume that the EIDE and SCSI are chosen with same probability. 
We get the release year and month information of a given system 
from the clock speed trend.  

),( baseyrtypeDisk

baseyr

2.7 Number of Nodes per Cluster 
Cluster users have a keen interest in the number of processors 
available for their parallel applications. Because of the increasing 
cost, there are fewer cluster systems with larger numbers of 
cluster nodes. This intuition suggests a power-law model. 
However, as shown in Figure 8, the distribution observed in our 
sample set is quite different. Actually, the distribution of the 
number of nodes in a log scale is close to a normal distribution 
and it can be modeled as follows: 

),(~)(log2 σµNCountnode
                              (8) 

This distribution supports the notion that cluster sizes that 
range from 8 to 64 nodes are preferred. The samples passed a 
normality test and showed a normal distribution in which the 

 



 

mean is 3.87 and the standard deviation is 2.13. According to our 
observation of the samples, there is no correlation between the 
number of nodes and the year of release even though the total 
number of processors increases. We believe that this model is 
robust and can be applied to future systems. 

2.8 System Area Network 
In addition to the computing power, another important attribute of 
clusters is their internal communication performance. Clusters 
with high performance communication often use specialized 
System Area Network (SAN) technology. In many parallel-
processing applications, latency is as important as bandwidth, so 
lightweight communication networks like Myrinet [25] and VIA 
[26] have been adopted. However, Gigabit Ethernet products are 
cheap and powerful, so many cluster systems are deployed with a 
single or even dual Gigabit Ethernet network. For simplicity, we 
categorize SANs into Ethernet and non-Ethernet network types 
and model them using a binomial distribution. However, SAN 
information is available in only 56 clusters in our sample set and 
more samples would be required to build a more rigorous model. 

To understand the current distribution, we calculated the ratio 
of Ethernet to non-Ethernet for our sample set. For 56 samples, 
Ethernet accounts for 46% and Myrinet for 54%. This result 

suggests that Ethernet and Myrinet evenly share the market. 
However, to build a model that can extrapolate future 
configurations, we need to know the trend over time. We count 
the number of systems released every two years and the results 
are shown in Figure 9. The graph says that the ratio of Fast 
Ethernet decreases and the ratio of Gigabit Ethernet increase. 
However, the ratio of Myrinet to Ethernet has been almost 
constant for the last four years. From this observation, we expect 
this trend to continue and the sample ratios can be used for the 
probabilities of a binomial distribution. 

3. MODEL VALIDATION 
We use a second sample set to validate our resource models. This 
second sample set is from NPACI Rocks clusters [27]. The Rocks 
software provides cluster configuration management. As of March 
2004, there were 191 registered Rocks clusters totaling 10,073 
processors.  Because of its recent release and popularity, the 
population of Rocks clusters is a good representative of recent 
cluster configurations.  Unfortunately, because the Rocks registry 
only includes a subset of modeled attributes (but arguably the 
most critical ones, at least for compute intensive applications), we 
can only validate our models for processor architecture, clock 
speed, and total number of nodes.  
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Table 3. Distribution of processor architectures in Rocks clusters and 1 year predicted samples (%) 

Pentium2 Celeron Pentium3 Pentium4 Itanium Athlon AthlonMP AthlonXP Opteron 

0.7 0.0 18.8 57.9 1.1 0.2 13.4 2.0 5.8 

0.0 0.5 15.1 53.5 6.3 0.0 19.4 2.1 3.2 
sor Architecture 
odels developed in this paper are dependent on the 

itecture distribution, an accurate model for it is 
 processor architecture distribution for Rocks 
n in the first row of Table 3. The major difference 

mple set (the “training samples”) used to develop 
 the Rocks cluster sample set is the proportions of 
 Pentium 4 processors. Pentium 3 and Pentium 4 
.3% and 34.6% in the training samples and they 
8% and 57.9% in Rocks clusters. The major cause 
ce is that most Rocks clusters were released in the 
 When the processors released in only the last two 
dered in our sample set, however, the extrapolated 
year is well matched to those derived from Rocks. 
e last row of Table 3, Pentium 3 and Pentium 4 

1% and 53.3% in the extrapolated samples. 
ere are discrepancies in the ratios for each 
verall trend is quite similar. Let’s look at the ratio 
ors to AMD processors first. The ratio of Intel to 

raining samples is 84 to 16 while that in Rocks 
 21. Roughly, we can say that the ratio of Intel to 

 in both sets. Another aspect is the ratio of 32-bit 
 64-bit architecture. The percentage of 64-bit 
 the training samples is about 6% while that in 
 is about 7%. When we consider the systems 
 past two years, the gap between two sample sets 
ficantly lower. In summary, the multinomial 
r processor architecture and the sample ratios 
e training samples are representative and form a 

 a model. 

sor Clock Speed 
usters were deployed recently, higher clock speed 
dominant. To understand the distribution of clock 
nted the number of Athlon MP/XP and Pentium 4 
ased in the last two years. Among 191 Rocks 
40 clusters have Athlon MP/XP processors and 
rs have Pentium 4 processor. The distribution is 

re 10. Athlon MP/XP processors at 1.6 Ghz and 
essors at 2.8 Ghz are responsible for the spikes. A 
 test using mean square error says that the error is 
tch this distribution to a uniform distribution. The 
f this discrepancy is that we oversimplified the 

 may still possibly be a uniform distribution. Since 
s are in production and new systems with higher 
ill be released continuously, we expect that the 

inish and the overall trend will be close to a 
ution. 

er of Processors per Cluster 
we developed a model for the number of nodes per 
er, only the number of processors per cluster is 
 Rocks cluster lists. As most systems have dual-

processor nodes and the number of nodes in a cluster follows a 
normal distribution, we can assume that the number of processors 
also follows a normal distribution. Figure 11 shows the 
distribution of the number of processors in a log scale for the 
training samples and the Rocks clusters. Each histogram can be 
fitted by a normal distribution and both passed a normality test. 
The number of processors for the training samples follows a 
normal distribution in which the mean is 4.86 and the standard 
deviation is 2.00 while the Rocks clusters follows a normal 
distribution in which the mean is 4.50 and the standard deviation 
is 1.78.  

To answer the question, “Is the training sample set equivalent 
to the Rocks cluster sample set?” we performed an independent 
sample t-test and an f-test. An f-test is used to test if the standard 
deviations of two groups are equal. The formula for f-test is a 
ratio between the standard deviations of the two groups. The test 
result at the 5% significance level indicates that there is no 
evidence that the deviations of the two sets are different. Then, we 
performed a t-test under the assumption that the standard 
deviations are equal. A t-test assesses whether the means of two 
groups are statistically different from each other. This analysis is 
appropriate whenever one want to compare the means of two 
groups. The formula for t-test is a ratio of the differences between 
two group means to variability of groups. The test result with the 
5% risk level also indicates that there is no evidence that the 
means are different. Even though these tests do not guarantee that 
both sets are same, the consistent results of two tests mean it is 
highly probable that two groups are statistically the same. 

4. IMPLEMENTATION 
In the previous sections, we developed resource models and 
validated them. In this section, we discuss the implementation of a 
resource generator that implements these models. The resource 
generator consists of three components: a processor architecture 
description file, a training sample file, and a modeler. The 
processor architecture description file contains the data available 
in processor datasheets, which include processor architecture 
name (e.g. Pentium 4, Itanium), processor clock speed, L2 cache 
size, and current availability. It is mainly used to determine the 
values of the model parameters for clock speed and cache size. In 
addition, it is used to check if the clock speed and cache size of 
the training samples and synthesized resource entities are valid. 
For instance, it can detect that Pentium 3 processor with 2.0 Ghz 
clock or Itanium 2 processor with 1 MB L2 cache are invalid. 
Users can add new processor data whenever they become 
available. 

To build models for resource entities, the resource generator 
reads representative data for clusters.  This training sample file 
contains the configurations of our sample clusters (over 10,000 
processors).  This architecture allows the models to be updated 
seamlessly as more cluster data becomes available. Finally, the 
modeler implements the models for each resource attribute as we 
have described at length and determines the model parameters by 



 

referencing the architecture description and the training sample 
file. It performs a linear regression analysis, implements the 
uniform and normal distribution models, and determines the 
model parameters for the resource entities. 

5. RELATED WORK 
Most closely related to ours is the work by Lu and Dinda’s grid 
resource generator, GridG [21]. GridG synthesizes resource 
information through two steps: topology generation and node 
annotation. In the topology generation step, GridG produces 
structured network topologies obeying Internet power laws using 
Tier.  Our model presumes a similar technique.   GridG then 
annotates the nodes in the network with the attributes of 
computing resource entities according to the user supplied rules 
and empirical resource distribution information. In the annotation 
step, they captured two correlations between computing resource 
entities. The first correlation can be used to capture dependencies 
between  number of processors, clock speed, memory size, and 
disk size. The second correlation, which the authors call the OS 
concentration, can be used to model the typical phenomenon of a 
dominant operating system in a local area network.  

Their observation of these correlations is valuable to 
understand the characteristics of computing resources in the 
computational Grid environment. However, they focus only on 
the procedure of resource synthesis and do not evaluate the 
accuracy of their rules. Hence, there is little evidence that the 
synthesized resource configurations are representative; only that 
impossible configurations are eliminated. For example, our study 
shows that their argument that the memory size is proportional to 
the number of processors is correct, but they missed another 
factor of processor performance. In addition, OS concentration 
does not fully capture the fact that the Grid consists primarily of 
clusters, not individual hosts. Finally, GridG does not support any 
way to predict configurations for future grid systems. 

Our resource generator focuses on clusters as the dominant 
resource type in Grids.  In contrast to GridG, our resource 
generator uses a general statistical framework for modeling 
resource attributes, allowing uniform treatment of a wide range of 
attributes and easy addition of future ones.  In addition, the 
statistical approach allows automatic parameter tuning through 

the incorporation of new cluster data as well as extrapolation for 
future cluster configurations. 

6. SUMMARY & FUTURE WORK 
We have discussed models for the resources in computational 
Grids and a novel resource generator for the dominant resource in 
Grids, commodity clusters. Our major contributions are the 
development of realistic models for the resource entities in a 
computational Grid.  Using a statistical approach, we capture the 
characteristics of a sample data set automatically and generate 
models that enable representative resource generation for 
contemporary and future clusters (and thereby grids).  Using a 
second sample set for validation, we demonstrate that the models 
capture the distributions of current systems. 

Some attributes of our models include the number of processors 
in a node, memory size per node, and the number of nodes per 
cluster. These follow a normal distribution. Meanwhile, processor 
architecture follows a multinomial distribution, clock speed 
follows a uniform distribution, cache size follows a step function, 
and intra-cluster networking is split evenly between Ethernet and 
Myrinet. 

Due to the a paucity of data, however, our models for disk size 
per node and SAN type are not yet complete. In addition, we need 
more study about the distribution of clock speed. To develop 
more realistic and accurate models, we need more sample data. 
This is certainly an area of active continuing work, and we are 
now accumulating cluster configurations from various sources. 

To evaluate the robustness of our models more deeply, it would 
be good to evaluate the models using a bootstrapping technique.  
This deeper validation would build on the work we have 
presented here, which validates the models using two disjoint, 
independent sample sets. As we collect more sample data, we 
pursue these further experiments. 

Our resource generator has been fully implemented and is 
being used to develop a resource discovery system for a range of 
projects – the OptIPuter’s DVC [28] and the VGrADS project. 
Moreover, it will be integrated with a variant of Brite network 
topology generator in MicroGrid [29] to perform various 
experiments in a virtual grid environment with respect to 
scalability, resource optimization, and performance prediction. 
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