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Abstract nessing their cycles to service large computations. As
a result, numerous academic projects have explored de-
Desktop grids are popular platforms for high througieloping a global computing infrastructure for the inter-
put applications, but due their inherent resource volatiet [35, 38, 2, 11, 9, 5, 19] and local-area networks [28,
ity it is difficult to exploit them for applications that re-4, 23]. In addition, commercial products have also
quire rapid turnaround. Efficient desktop grid executiafmerged [18, 45, 44, 36]. We term such computing in-
of short-lived applications is an attractive propositionia frastructuresiesktop gridsand while these systems can
we claim that it is achievable via intelligent resource sge used in a variety of environments, in this paper we fo-
lection. We propose three general techniques for resougeg on the enterprise setting (e.g., within an institution)
selection: resource prioritization, resource exclusim A challenge for the efficient utilization of desktop
task duplication. We use these techniques to instantigpﬂjs for compute-intensive applications is that of re-
several scheduling heuristics. We evaluate these hasrisiiyrce management. While resource management and
through trace-driven simulations of four representati\é%pncation scheduling issues have been thoroughly stud-
desktop grid configurations. We find that ranking deslksq in the areas of parallel and Grid computing, most of
top resources according to their clock rates, without tajis work considers resource failures as rare events. By
ing into account their availability history, is surprisifg contrast, desktop grid resources are inherently volatile.
effective in practice. Our main result is that a heuristig e to the lack of resource management and application
that uses the appropriate combination of resource priafiheduling techniques that account for resource volatilit
tization, resource exclusion, and task replication a&sevne traditional use of desktop grids has focused on high-
performance within a factor of 1.7 of optimal. throughput applications that consist of large numbers (i.e
orders of magnitude larger than the number of available
resources) of independent tasks. The performance met-
ric used in this scenario is the asymptotic task completion
Cycle stealing systems that harness the idle cyc gée, th_at is the numbgr O.f tasks th‘f’lt are completed per
me unit when the application execution is in steady-state

of desktop PCs and workstations date back to t ) ) o
PARC Worm [25] and have shown widespread succes_é”th's paper we consider parallel applications that con-

with popular projects such as SETI@home [43 40?|st of independent, nearly identical tasks that vary in,siz
the GIMPS [24], Folding@Home [41] FightAidsAtH-ahd we study these applications for numbers of tasks that
ome [20], Computing Against Cancer [10], and othef4® relatively small, i.e., comparable to the number of
sustaining the throughput of over one million CPU’s aranilable resources. Numerous interactions with indus-
10's of Teraflops/seconds [33]. These successes have il companies by one of the authors suggest that desktop
spired similar efforts in the enterprise as a way to ma)g_rids within the enterprise are often underutilized. Also,

mize return on investment for desktop resources by hgRplications in a company’s workload often require rela-
tively rapid turnaround (for example, within a day’s time).

This material is based upon work supported by the Nation@®ei  As a result, applications often consist of a moderate num-
Foundation under Grant ACI-0305390. ber of individual tasks, so that a scenario in which the
SC2004, Pittsburgh, Pennsylvania number of resources is of an_order of magnitude compa-
0-7695-2153-3/04 $20.00 (¢)2004 |EEE rable to the number of tasks is not uncommon. As such,
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rather asymptotic work rate, application execution time jge resource exclusion techniques on multi-cluster and ho-
an appropriate performance metric. This correspondsntogeneous grids. We then modify the heuristic to use
a different usage of desktop grids, in which users wisaplication techniques, and the performance of the best
to execute relatively small and/or short-lived applicasio resulting method is less than a factor of 1.7 away from
quickly, rather than achieve high throughput over a lorlge optimal schedule, and significantly better than first-
period of time. come-first-serve (FCFS), the default scheduling strategy

Note that our work focuses on minimizing the overall! current desktop grid systems.
execution elapsed time, onakespanof a single paral- The remainder of this paper is organized as follows. In
lel application, rather than trying to optimize the perfoSection 2, we define the scheduling problem and outline
mance of multiple, competing jobs. While the design @ur approach. In Section 3, we describe our experimen-
so-called “job scheduling” strategies that promote avé@l methods, in particular, our simulation model, source of
age jOb performance and fairness among jobs that bekﬂﬂﬁ trace data, and performance metrics. In Section 4, we
to different users is part of our larger goal in the corgvaluate resource prioritization heuristics. In Section 5
text of desktop grids, it is outside the scope of this pap&f develop heuristics that filter resources using different
as we solely focus on application scheduling strategi€&iteria. In Section 6, we augment our resource exclu-
Note however the heuristics we develop to schedule a si#fn heuristics to use replication. Finally, in sections 7
gle application provide key elements for designing effe@nd 8, we discuss related work, summarize our contribu-
tive job scheduling strategies (e.g., for doing appropridions, and give future research directions.
space-sharing among jobs, for selecting which resources
are used for which job, for deciding the task duplication

level for each job). 2 Scheduling Short-lived Applica-

Minimizing the makespan of a parallel application is  tjons on Desktop Grids
the objective of numerous research projects in parallel

computing; here we address the specific challenges pose o
by resource selection for volatile resources. In particul f Problem Definition

we design various resource selection heuristics to SUPRRK consider the problem of scheduling an application that
rapid application turnaround. We evaluate these hewsisti¢,sists ofr” independent, identical tasks onto a desktop
vi.a simulations pased on trqces of a real desktop gridi "'Yhid. The desktop grid compris@é hosts that can execute
ning the Entropia commercial software at the San Dieg@yjication tasks. These hosts are individually owned and
Supercomputer Center (SDSC) [27]. Also, we evaluglgn only be used for running application tasks when up
the heuristics on three other representative desktop gfjch \when their CPU is not used by their owners. Host and
configurations. More specifically, by transforming the ERepy availability is assumed to be dynamic. The hosts are
tropia desktop traces, we model a homogeneous clusfginaged by a master, which we will call the “server”, in
a multi-cluster grid, and a typical Internet-wide desktope foliowing way. The server holds the input data neces-
grid. To measure the performance of our heuristics, W&y for each of the application tasks. When a host be-
compare the resulting makespans to the optimal, whighmes available for executing an application task it sends
we can compute using an omniscient scheduler that hagotification to the server. The server maintains a queue
full knowledge of the traces. of available hosts, the “ready queue”, and may choose to
Our heuristics are based on three scheduling tedend a task to one of them at any given time. When a
nigues, namelyresource prioritization resource exclu- hostis executing an application task and its CPU becomes
sion andtask replication We find that simple prioritiza- unavailable (e.g., when the owner uses the mouse or the
tion techniques perform poorly in most desktop grid cokeyboard, when the owner starts a CPU-intensive appli-
figurations. We also find that exclusion based on a fixedtion), the task is suspended and can be resumed on the
threshold works well on platforms where the distributiosame host at a later time. When a host executing an appli-
of clock rates is left heavy, in our case for the SDS€ation becomes unavailable (e.g., due to a shutdown), the
and Internet-wide desktop grids. We develop an adapplication task fails and must be restarted from scratch
tive heuristic that uses a prediction of the applicationt another host. (We do not consider checkpointing in
makespan to exclude slow resources; using historical hitss paper.) While an application task is running on a host,
availability information, the makespan prediction is accthe host sends a “heart-beat” to the server every minute;
rate to within 10% on average. Moreover, the heuristic the worst case it takes 1 minute before a server deter-
based on makespan prediction usually outperforms simines that a task has been terminated. These assumptions



are representative of real-world desktop grid infrastruphication with 7 = 100, 90% of the tasks are completed
tures (XtremWeb [19], Entropia [18], BOINC [21])] in about 39 minutes, but the application does not finish
Given the above platform model, we consider the prodntil 79 minutes have passed, which is almost identical
lem of scheduling thel” tasks onto theN hosts such to the makespan for the cage = 400. The plateau is
that the time in between the scheduling of the first tasRartly due to task failures near the end of the execution,
and the completion of the last task, i.e. the applicatiovdhich forces these tasks to be restarted on a new host
makespanis minimized. In the case wheéh >> N, the late in the computation. The other cause for the plateau
scheduling problem is almost equivalent to maximiziri§ the well-known syndrome of waiting for the slowest
the steady-state performance of the application (i.e., thests to complete their tasks. We can see thal aets
number of tasks completed per time unit in steady-statéyge when compared & the plateau becomes less sig-
as the start-up and the wind-down phases of applicatiificant, thus justifying the use of a FCFS strategy. How-
executions are negligible versus the steady-state phasever, for smaller values dF, it is clear that some method
such a situation, a simple first-come first-seryie€FS) of resource selectioould improve the performance of
strategy in which application tasks are assigned to hoskrt-lived applications significantly. In the next seatio
in a greedy fashion is close to being optimal. In fact, thy¥e outline different resource selection approaches, which
is the strategy used by most existing desktop grid systeiwé. evaluate and contrast in the rest of this paper.

40 q
. 2.2 Proposed Approaches
égso We consider four general resource selection approaches:
S 300- -= 100taskg 1  Resource Prioritization —One way to do resource selec-
2 T 200 tasks tion is to sort hosts in the ready queue according to some
=250 1 criteria (e.g., by clock rate, by the number of cycles de-
; 200 ‘ , livered in the past) and to assign tasks to the “best” hosts
§ / first. Such prioritization has no effect when the number of
Z150- ) 1 tasks left to execute is greater than the number of hosts in
= [ the ready queue. However, when there are fewer tasks to
ER [ e "7 execute than ready hosts, typically at the end of applica-
3l ST | tion execution, prioritization is a simple way of avoiding
= picking the “bad” hosts.
00‘ 0 20 30 20 =0 e 70 s Resource Exclusion Using a Fixed Threshold A sim-
Time (minutes) ple way to select resources is to excluded some hosts and

never use them to run application tasks. Filtering can be
Figure 1: Cumulative task completion vs. time.  based on a simple criterion, such as hosts with clock rates
below some threshold. Often, the distribution of resource
In this paper we focus on “short-lived” applications, bglock rates is so skewed [24, 46] that the slowest hosts
which we mean thaf’ is of the same order of magni-significantly impede application completion, and so ex-
tude asN. In this case FCFS is clearly suboptimal, aguding them can potentially remove this bottleneck.
seen in Figure 1. This figure plots the cumulative numbBesource Exclusion via Makespan Prediction A more
of completed tasks (or cumulative throughput) throughos@phisticated resource exclusion strategy consists in re-
time observed for the FCFS strategy. These results are @igving hosts that would not complete a task, if assigned
tained forT = 100, 200,400 and N = 190, where each to them, before some expected application completion
task would execute in 15 minutes on a dedicated 1.5Gtne. In other words, it may be possible to obtain an
processor, and the hosts in the platforms are modeledegtimate of when the application could reasonably com-
ter those in a real-world desktop grid (see Section 3 fplete, and not use any host that would push the applica-
a detailed description of our simulation methodology). ipn execution beyond this estimate. The advantage of this
each of the three curves there is an initial hump as the sissthod compared to blindly excluding resources with a
tem reaches steady state, after which throughput incredixgs threshold is that it should not be as sensitive to the
roughly linearly. The cumulative throughput then reachdéstribution of clock rates.
a plateau, which accounts for an increasingly large fratask Replication —Task failures near the end of the appli-
tion of application makespan dsdecreases. For the ap<ation, and unpredictably slow hosts can cause major de-



lays in application execution. This problem can be remiote that the Entropia virtual machine makes it possible
died by means of replicating tasks on multiple hosts, dér a task to use only a fraction of a resource’s CPU.

ther to reduce the probability of task failure or to schedule With this procedure we were able to measure two kinds
the application on a faster host. This method has the drayf-availability: (i) host availability, a binary value that
back of wasting CPU cycles, which could be a problemiiidicates whether a host is reachable and the desktop grid
the desktop grid is to be used by more than one appligaftware is up, which corresponds to the definition of
tion. availability in [8, 1, 7, 14, 39]; and (iiCPU availability,

We propose several instantiations of the above appercentage value that quantifies the fraction of the CPU
proaches and compare them in simulation. In the neRkat can be exploited by a desktop grid application, which
section we detail our simulation methodology. corresponds to the definition in [3, 12, 42, 15, 47]. When

a host becomes unavailable (e.g., during a shutdown of
the O/S), no new task can be started, and any currently
3 Experimental Methodology executing task fails. When a CPU becomes unavailable
(that is with <1% CPU availability) but its host is still
We use simulation for studying resource selection @yailable (e.g., when local processes use more than 99%
desktop grids as direct experimentation does not alléthe CPU, or there is keyboard/mouse activity from the
controlled and thus repeatable experiments. However, §gFOUrce owner), then a running task is suspended and can
approach is to use simulations driven by traces that wé@resumed when the CPU becomes available again. Host
collected from a real desktop grid platform. These tracdgavailability implies CPU unavailability. We call the in-
are time-series of CPU availability measurements (frof@fval of time in between two host failures amailability
0% to 100%, including failure data) obtained over a {nterval
month time period on a 220-host desktop grid running theThis active but non-intrusive measurement methodol-
Entropia software infrastructure. Using these traces @@y made it possible to observe CPU availability just as
can simulate that same desktop grid, as well as 3 other répvould be experienced by a compute-intensive desktop
resentative grid configurations with different host clocifid application. As a result, our method provides more
rate probability distributions. Our simulations implerherfletailed information than just measuring host availabil-
the platform model described in Section 2.1. We simuldi¥ [8, 1, 7, 14, 39]. Moreover, our traces are not sus-
the execution of task-parallel applications with differei¢eptible to OS idiosyncrasies, and can directly measure
numbers of tasks and different task durations. For edblg effect of task failures (caused by mouse or keyboard
simulated execution we compute the makespan achie@&dVity, for example). In contrast, lightweight CPU avail
when using different resource selection heuristics. Oility or load sensing techniques [15, 17, 47, 31] are vul-
performance metric is the makespan relative to the opierable to artifacts of the OS, and inferring task failures
mal makespan. We provide relevant details on the abdt@m traces obtained by passive sensors would be difficult.
in the following four sections. A number of interesting features of this data are reported
in [27], but in this paper, we use our availability traces
solely to drive simulations. Let us note that our traces re-
3.1 Availability Traces vealed the overhead incurred by the Entropia system for

o initiating a task on a host (on the order of 40 seconds),
We have conducted availability measurements over,fich we take into account in our simulations.

1 month period with a deployment of Entropia DC-

Grid™ [18] at the San Diego Supercomputer Center

(SDSC) over about 200 hosts. We continuously submitt8d?  Simulated Platform

short tasks to the Entropia system so that its work queue

was never empty and each host was sent a task as soon\&¢ iimplemented the platform model described in Sec-
became available. Note that these tasks, because man#iged2.1, with 220 hosts with the availability given by
by the Entropia virtual machine, did not interfere with ththe traces described in the previous section. All simula-
work of the resource owners who were in fact unawations were performed using traces captured during busi-
of our measurement activities. Each compute-bound tawss hours from 9AM to SPM. As shown in a number
performed a mix of floating point and integer operatior® studies [1, 31], hosts during weekdays business hours
and periodically (every 10 seconds) logged the compugiften exhibit higher user load, which in turn results in a
tion rates to a file. A dedicated 1.5GHz Pentium proce®ore challenging scheduling problem.

sor can perform 37.5 million such operations per secondGiven the diversity of desktop configurations, we com-



pare the performance of our heuristics on three other céh3d Simulated Applications

figurations representative of Internet, single clusted an

multi-cluster desktop grids. Internet desktop grids thgfe gimylated applications that varied in both the num-
utilize machines both in the enterprise and home settihtgéar and size of tasks. Applications have 100, 200, or 400
ysually have many more s_Iow hosts than fast hosts, anq.8g.q (which is roughly half, the same, and twice the num-
its host speed distribution is left heavy. We used host Clldy ot hosts in our desktop grid, respectively) for reasons
statistics collected by the GIMPS Internet-wide project {fs;ssed in Section 2.1. We experimented with tasks that
determine the distribution of clock rates, which rang&g, 14 exhibit 5, 15, and 35 minutes of execution time on
from 25MHz to 3.4GHz. Other projects such as Fold; e icated 1.5GHz host. Each of these task sizes has a
ing@home and FightAids@home show similar distriby, esnonding failure rate when scheduled on the set of
tions [46]. resources during business hours. Previously, in [27], we
determined the failure rate of a task given its size using
random incidence over the entire trace period. That s, in
the collected traces, we chose many thousands of random
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g points to start the execution of a task and noted whether
0.9r ot 4 .
e the task would run to completion or would meet a host
0.8 Rkl i 1 failure. Task failure rate increases linearly with taslesiz
0.7k H 1 from a minimum of 6.33% for a 5 minute task to a maxi-
L mum of 22% for a 35 minute task. A maximum task size

£
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e ' of 35 minutes was chosen so that a significant number of
{ " . . -
205 R 7 applications could complete when scheduled during the
g 1 - [--spbsc ) .
o4 e LRIFwisC | business hours of a single weekday.
3 3 GIMPS . . .
0.3 . LOG . For each experiment (i.e., for a particular number of

| tasks, and a task size), we simulated all our competing
- scheduling strategies for applications starting at dififier

: 1 times during business hours. We ran each experiment for
0 ™ 500 1000 1500 2000 2500 3000 3200 4000 o_ver_(_)ne-hundred such s_tartlng timesto obt_aln stat_li;pcal
Clock Rate (MHz) significant results, and in true desktop grid fashion, an

XtremWeb [19] platform was used to run our simulations.
Figure 2: Cumulative clock rate distributions from real
systems used for our simulations.
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For smaller projects [3, 19], desktop grids are often Iirr‘?!'4 Performance metrics

ited to machines within a student lab, for example, where

the distribution of CPU speeds is relatively homogeneoWhile application makespan is a good metric to compare
To model this scenario, we used the log of clock rates m&sults achieved with different scheduling heuristics, we
machines at SDSC, which yielded a narrow normal digish to compare it to the execution time that could be
tribution with a mean speed of 3.2GHz and standard deehieved by an oracle that has full knowledge of future
viation of 170MHz. Much work [22, 19, 37] in desktophost availabilities. Our oracle works as follows. First, it
grids has focused on using resources found in multigletermines the soonest time that each host would com-
labs. Recently, [29] reports the use of XtremWeb [1@]ete a task, by looking at the future availability traces
at a student lab in LRI with nine 1.8GHz machines, arahd scheduling the task as soon as the host is available.
a Condor cluster in WISC with fifty 600MHz machine§ hen, it selects the host that completes the task the soon-
and seventy-three 900MHz machines. We use the configt, and it repeats this process until all tasks have been
uration specified in that paper to model the multi-clusteompleted. This greedy algorithm results in an optimal
scenario. We plot the cumulative clock rate distributiosschedule, which is easy to see intuitively but which we
functions for our four platform scenarios in Figure 2. Farevertheless prove formally in [26]. We compare the per-
each of these distributions, we ran simulations using tftiemance of our heuristics using the ratio of the makespan
same traces described in Section 3.1 but transforming himsta particular heuristic to the optimal makespan that is

clock speeds accordingly. achieved by our oracle.



4 Resource Prioritization CR. The initial waiting period of 10 minutes is costly
for the 100 task / 5min application, which takes about
We examine three methods for resource prioritization Usminutes to complete in the optimal case. As the task
ing different levels of information about the hosts, fromize increases (along with application execution time, th
virtually no information to historical statistics deriveghenalty incurred by waiting for client requests is less-
from our traces for each host, and we evaluate eaghed, but since most hosts are already in the request queue
method on the SDSC grid using trace-driven simulatiofghen the application is first submitted, the PRI-CR-WAIT
For thePRI-CR method, hosts in the server’s ready queygerforms almost identically to PRI-CR and is no better.
are prioritized by their clock rates. Similarly to PRI-CRFigure 4 provides additional insights as to why PRI-CR-
PRI-CR-WAIT sorts hosts by clock rates, but the sche@vAIT is largely ineffectual. This figure shows the number
uler waits for a fixed period of 10 minutes before assigaf available hosts and the number of tasks that are yet to
ing tasks to hosts. The rationale is that collecting a pooligé scheduled throughout time for a typical execution. Ini-
ready hosts before making task assignments can impreggy, there are about 150 hosts available and 400 tasks
host selection. The scheduler stops waiting if the ratio ®f do, and this immediately drops to 0 hosts and about
ready hosts to tasks is above some threshold. A threshpid) tasks as each available host gets assigned a task. One
ratio of 10 to 1 was used in all our experiments. We exan see that it is usually the case that either there are far
perimented with other values for the fixed waiting perioghore tasks to schedule than ready hosts or far more ready
and the above ratio, but obtained similar results. hosts than tasks to schedule. In the former scenario, PRI-
The method PRI-HISTORY uses a history of a CR-WAIT performs exactly as PRI-CR. In the latter case,

host's past performance to predict its future performanggaiting does not give the algorithm more choice in select-
Specifically, for each host, the scheduler calculates tiag resources.

expected operations per availability interval (that is how

many operations can be executed in between two hostf. Number of tasks per application

ures) using the previous weekday’s trace. This value g6 — 100 ~200 400

used to determine in which of two priority queues a ho% Hl OPTIMAL

is placed, as follows. If the expected number of operatio 3 | 5 RS |
per intervals is greater than or equal to the number of c o PRI-HISTORY
erations of an application task, then the host is placed & PRI-CR-WAIT

the higher of two priority queues. Otherwise, the reque 34’
is put in the low priority queue. Within each queue, th%
hosts are prioritized according to the expected operatic%s
per interval divided by expected operations per second. E
this way, hosts in each queue are prioritized according 327
their speed. 2

Figure 3 shows the average makespan of these three
gorithms and of the FCFS strategy normalized to the me 1
optimal execution time (labele@PTIMAL ) for applica-
tions with 100, 200, and 400 tasks. Recall that these ¢ o

. _ 5 15 3 5 15 3 5 15 35

erages are obtained for over one-hundred distinct expt Task length (minutes on a dedicated 1.5GHz host)
ments. The general trend is that the larger the number of
tasks in the application the closer the achieved makespgftfure 3: Performance of resource prioritization heuris-
to the optimal, which is expected since for larger nunics on the SDSC grid.
ber of tasks resource selection is not as critical to perfor-
mance and a greedy method approaches the optimal one.
In Figure 3, we also see that PRI-CR has considerablyPerhaps unexpectedly, PRI-HISTORY achieves poor
better performance than FCFS for applications with 1@@rformance. We found that the availability interval size,
tasks. Since the number of tasks is less than the numth in terms of time and in terms of operations, was not
ber of available hosts, the slowest hosts are guaranteedtationary across weekdays. We determined the error from
be excluded from the computation, whereas FCFS migirte day to the next as follows. For each host we calculated
have used some of these slow hosts. the mean number of operations per interval on a given

PRI-CR-WAIT performs poorly for small 5 minutesweekday during business hours. We then took the abso-
tasks and improves thereafter, but never surpasses RRE value of the difference between a host's mean on one




particular day and next. Then, we took the mean over 8ll1  Excluding Resources By Clock Rate

hosts and over all pairs of days and found that the average o

prediction error when using the previous day as a pred ur first group of heuristics excludes hosts whose clock
tor was 110 minutes on a dedicated 1.5GHz host. (Tﬁaées are lower than the mean cloqk rate over all hosts
host speed is chosen arbitrarily to give a human readabte?GHz for the SDSC platform) minus some factor of
number instead of the number of operations.) The safi§ Standard deviation of clock rates (730MHz for the
process was done for predicting availability intervals RP>C Platform). The heuristid&SXCL-S1.5, EXCL-S1,
terms of time from one day to the next, and we found thaCL-S-5, andEXCL-S.25 exclude those hosts that are
the average error was 108 minutes. Given that most tadkd 1. -5, and .25 standard deviations below the mean
in our experiments are less then 2 hours in length, th&3@Ck rate. We can see in Figure 5 that excluding hosts
prediction errors show that using the expected value fbP" -5 Standard deviations below the mean can bring sub-
operations per interval or time per interval is a poor pré'gantlal benefits relative to FCFS and PRI-CR. Usually,

dictor, which is also Supported by the findings in [48] EXCL-S.25 excludes so many hosts that it not only re-
moves the “slow” hosts but also excludes the useful ones;

In summary, we see that although PRI-CR outperforrﬂ?e exception is the application with 100 tasks, which is

FCFS consistently, resource priorit_ization still leads E’qual to roughly half the number of hosts and so excluding
performance that is far from the optimal (by more thant ose hosts with speeds 25% below the mean will leave

factor of 4 for 100 5-minute tasks). Looking at the sche lightly more than half of the hosts and thus filtering in

ules in detall, we noticed that using the slowest hosts sigiig .»qe does not hurt performance. EXCL-S1.5 excludes

nificantly limited performance, and we address this issi,beo few hosts, and the remaining “slow” hosts hurt the ap-

through heuristics described in the next section. plication makespan.
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Figure 4: Number of tasks to be scheduled (left y-axi | Task length (minutes on a dedicated 1.5GHz host)

and hosts available (right y-axis).
Figure 5: Performance of heuristics using thresholds on
SDSC grid

For the SDSC platform, EXCL-S.5 has the particular
threshold that yields the best performance; on average,
EXCL-S.5 performs 8%, 30%, and 6% better than PRI-
To prevent slower hosts from delaying application con©R for applications with 100, 200, and 400 tasks respec-
pletion, we developed several heuristics that excludiégely. However, it may be that useful hosts are excluded
hosts from the computation using a variety of criteria. Alvhen they should not be, and that the .5 threshold is not
these heuristics use only host clock rates to obtain lovagpropriate for different clock rate distributions of host
bounds on task completion time (as we have seen that pashe desktop grid. In the next section, we propose strate-
availability is not a good predictor of future availability gies that use a sophisticated makespan prediction as a way

5 Resource Exclusion



to filter hosts, and evaluate it and compare it to EXCL-Sti®n every second would not be beneficial since it would

for different desktop grid configurations. create a moving target and slide the prediction back (until
a factor of N tasks are completed).

) o If the application is near completion and the predicted

5.2 Using Makespan Predictions completion time is too early, then there is a risk that al-

most all hosts get excluded. So, if there are still tasks

To avoid the pitfalls of using a fixed threshold such R maini : .
X L maining at timepred — .95 , Wherepred is
a particular clock rate 50% of the standard deviation bﬁ] g Pre * Imeanops pre

. e predicted application completion time am#anops
low the mean in the case of PRI-S.5, we develop a heufisyn. mean clock rate over all hosts, the EXCL-PRED

tic where the scheduler makes a prediction of appl'C""t'ﬂguristic reverts to PRI-CR at that time. This ensures that
makespan, and then excludes those resources that capiol, 5eED switches to PRI-CR when it is clear that

gprp[t)rllete a tlf‘Sk by the prOJectec: cc:rr]npletmn time. To ‘t).rr?]bst hosts will not complete a task by the predicted com-
It the makespan, we compute the average operaligg;,, time. Note that if the heuristic waited until time

completed per second for each host from our traces I’}%d (versuspred — .95  meanops) before switching

then comput_e the average over all .hOStS (call this a J'PRI-CR, it would result in poor resource utilization as
ager). If N is the number of hosts in the desk_top 9"%een in some of our early simulations, since most hosts
we then assume We.ha\?é h.OStS of speed.. It T'is the are available and excluded by timpeed. Therefore, wait-
e cnan v o g Ul i beore aking e zssignments v
mated withwr — [T/N1(s/r). The rationale behind this RI-CR would cause most hosts to sit needlessly idle.
prediction method is that the optimal schedule will never
encounter task failures. So host unavailability and CF2.1  Evaluation on Different Desktop Grids
speed are the two main factors influencing application ex-
ecution time, and these factors are accounted for. ip Number of tasks per application
addition, we account for the granularity by which task_, 100 200 400
can be completed witfl’/NT. El OPTIMAL
To assess the quality of our predictor, we compared - EiEE—S.S
the optimal execution time with the predicted time fc§ EXCL-PRED
tasks 5, 15, and 35 minutes in size and applications w#
100, 200, and 400 tasks. The average error over 1,”;’4*
experiments is 7.0% with a maximum of 10%.
The satisfactory accuracy of the prediction can be e% 3L
plained by the fact that the total computation power of tt §
grid remains relatively constant, although the individui g |
resources may have unpredictable availability intervals :>(’
discussed previously in Section 4. To show this, we col
puted the number of operations delivered during weekd 1J

0 optimal

5-

spa

business hours in 5 minute increments, aggregated o

all hosts. We found that the coefficient of variation of th ¢

operations available per 5 minute interval was 13%. Tt 5 Taﬁ;’ |eng3t?, (mi,?utes éﬁ a dggicate% 1_535?_,2 hg’g)

relatively low variation in aggregate computational power

makes the accurate predictionswaf possible. Figure 6: Heuristic performance on the SDSC grid
The heuristiEXCL-PRED uses the makespan predic-

tion, and also adaptively changes the prediction as appli-

cation execution progresses. In particular, the heuristicFigure 6 shows that EXCL-PRED usually performs as

starts off with a makespan computed with, and then well as EXCL-S.5 on the machines at SDSC, but there is

after everyN tasks are completed, it recomputes the proe clear advantage for using EXCL-PRED. For the par-

jected makespan. We choose to recompute the predicticalar distribution of clock rates in the SDSC desktop

after N tasks are completed for the following reasons. @nid, EXCL-S.5 appears to have the particular threshold

one extreme, a static prediction computed only once in ttiat yields the best performance. EXCL-PRED performs

beginning is prone to errors due to resource availabilityore poorly than EXCL-S.5 for the application with two-

variations. At the other extreme, recomputing the predictindred 15-minute tasks. We have found after close in-




spection of our traces that this is because of a handful uwerall computing power. In the relatively homogeneous
predictably slow hosts that finish execution past the prdesktop grid, EXCL-S.5 unnecessarily filters about 10%
jected makespan and/or task failures on these slow hastthe total computing power when in fact these resources
occurring near the end of the application. For the appére running at speeds close to the mean and so would not
cation with 400 tasks, the delay is hidden as there aignificantly delay application completion. Although the
enough tasks to keep other hosts busy until the slow hdststs excluded by EXCL-S.5 are relatively slow, their ab-
can finish task execution. For the application with 108blute speeds are still close to the faster hosts and thus
tasks, the unpredictably slow and unstable hosts get €ibntribute significantly to progress in application execu-
tered out automatically as there are fewer tasks than hdgis. In general, the longer the steady state phase of the
and the heuristic prioritizes resources by clock rate. Thpplication, the better EXCL-PRED performs with re-
same reasoning can explain why EXCL-S.5 outperforrapect to EXCL-S.5, since EXCL-S.5 excludes useful re-
EXCL-PRED for the GIMPS desktop grid(see Figure 73ources some of which are utilized by EXCL-PRED. This
which like the SDSC grid has a left heavy distribution a#xplains why EXCL-PRED performs better than EXCL-
resource clock rates. On the GIMPS resources, appli&5 for applications with more tasks and larger task sizes,
tions scheduled with FCFS invariably cannot finish duriras seen in Figures 8 and 9.

the weekday business hours period , i.e., have application

completion times greater than 8 hours, because of the Number of tasks per application

of the extremely slow resources . S0 200 400

[e]

(_5 T T T T T
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L Q. [ FCFS
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5 15 35 5 15 35 5 15 35 Figure 8: Heuristic performance on the LRI-WISC grid

Task length (minutes on a dedicated 1.5GHz host)
Figure 7: Heuristic performance the GIMPS grid

6 Task Replication

Although EXCL-S.5 performs the best for the SDSC
and GIMPS desktop grids, the threshold used by EXCAn approach to reduce application completion delays
S.5is inadequate for different desktop grid platforms, asdused by failures and loaded hosts is to extend EXCL-
the filtering criteria and adaptiveness of EXCL-PRED BRED to use task replication. One method, which we
advantageous in the other scenarios. In particular, EXQiall EXCL-PRED-DUP, uses EXCL-PRED but repli-
PRED either performs the same as or outperforms EXCtates each task when the number of ready hosts is greater
S.5 for the multi-cluster case and homogeneous clustban the number of tasks to schedule. Replicating any-
EXCL-PRED outperforms EXCL-S.5 in the case of théme sooner could cause a host to do redundant work when
LRI and log distributions by 17% and 12% respectivelhere are more unscheduled tasks than hosts, and thereby
for the application with 400 tasks (see Figures 8 and @ause a delay in application completion. We refer to the
EXCL-S.5 in the LRI desktop grid excludes all 600MHpriginal task being replicated aspaimary task, and the
hosts, which contribute significantly to the platform’seplicas are calleduplicates Primary tasks are always



Number of tasks per application EXCL-S.5 in almost all cases except the application with

6 100 20400, two-hundred, 35-minute tasks; for that particular applica

5 SE,IISMAL tion size, EXCL-PRED-TO does equally well. EXCL-

5l B EXCL-S.5 | PRED-TO usually performs similarly to EXCL-S.5 be-
EXCL-PRED cause replicating only those tasks at the end of the appli-

cation does not effectively deal with straggling or unstabl
hosts that began execution earlier.
EXCL-PRED-DUP shows little improvement over
1 EXCL-PRED because the failures that occur near the end
of the application are due to relatively slow hosts, many
| of which began task execution before the point at which
there are more ready hosts than tasks. EXCL-PRED-DUP
does too much replication too late in the application’s
lifespan. In contrast to EXCL-PRED-DUP, the EXCL-
PRED-TO heuristic is able to deal with these failures in
5 15 5 15 35 15 35 addition to unpredictably slow hosts by means of time-
Task length (minutes on a dedlcated 1.5GHz host) outs, and as such, performs remarkably well as all execu-
tion times are within a factor of 1.7 or less with respect
Figure 9: Heuristic performance on the homogeneous gidthe optimal. For the desktop configurations other than
SDSC, the degree of improvement for the heuristic is sim-
ilar.

w »
T T

Average makespan relative to optimal
N

-

scheduled before duplicates, which reduces the char - Number of tasks per application
that a high number of duplicates ahead in the work quez— 4 20 400
prevent a primary task from being scheduled. The d£ |

plicates themselves are sorted in increasing order by s Bl OPTIMAL
lock rate of the host that the pri k was first ag | W £CFS ’
clock rate of the host that the primary task was first a g 1 EXCL-S5

] EXCL-PRED
Il EXCL-PRED-DUP|
Bl EXCL-PRED-TO

signed to so that replicas of tasks that were originally ¢ &
signed to slower hosts are scheduled earlier.

In addition to failures near the end of application ext2
cution, delays can be caused by hosts that run unexp«—%
edly slow; since EXCL-PRED filters resources by cloc
rate, the heuristic is susceptible to such slow hosts. (N:
ertheless, most hosts, when available, have complet 2 32
unloaded CPU’s most of the time [27], which was oL
justification for using clock rate as a predictor of execi
tion time in EXCL-PRED.) To deal with such delays, ar
other heuristi€ XCL-PRED-TO based on EXCL-PRED o

X . : 5 15 3 5 15 35 15 35
uses a timeout for each task to determine when replic Task length (minutes on aded|cated 1.5GHz host)
tion should occur. That is, whenever a task is scheduled,
a timeout occurs if the task has not been completed bBigure 10: Heuristic performance using replication on
the predicted makespan. Upon timeout, the task is re@bSC grid
cated, and the primary and duplicate tasks are prioritized
similarly to EXCL-PRED-DUP.

Figure 10 shows that the runtime improvement due toSurprisingly, the gain in performance due to replication
EXCL-PRED-TO is most dramatic for smaller applicain EXCL-PRED-TO comes at little expense of resource
tions, where much of the execution time is spent neatilization. That is, the improved performance is obtained
the end as unpredictably slow hosts complete tasks amabtained through relatively little replication. The bar
failed tasks are successfully finished. As shown frolabeled as 'Waste’ in Figure 11 shows that the percent of
our simulation logs, timeouts can effectively rescheduleplicated tasks (relative to the total and including repli
tasks that are assigned to unpredictably slow and wated tasks that fail to complete) for EXCL-PRED-TO is
stable hosts. EXCL-PRED-TO does 13% better théass than about 12% for each application size. The low

pan reI

l,

10



amount of replication required is due to the fact that ontively, where the mean application completion times are
the relatively few tasks uncompleted near the end of tB88, 81, and 182 minutes. With these confidence intervals,
application need to be replicated. Moreover, by the endafiser could get a reasonable estimate of when her appli-
the application, the number of available hosts compareation would complete.
to the number of tasks is quite high and so, the chance of
selecting a relatively fast host is high.
Figure 11 also compare the performance of Excl{ ~Related Work
PRED-DUP with EXCL-PRED-TO where EXCL-PRED-
DUP uses the same number of replicated tasks as EXc{lthough many desktop systems exist, none have sched-
PRED-TO (denoted by 'EXCL-PRED-DUP*). For ex-ulers that promote rapid application turnaround as most
ample, for an application consisting of one-hundred 8te¢ geared toward high throughput applications only.
minute tasks, EXCL-PRED-TO replicates 12 tasks, whiclfremWeb uses a FCFS to schedule tasks to re-
corresponds to a 12% waste. We then modified EXCgources [19]. In Entropia [13, 32], the scheduler maintains
PRED-DUP to replicate each task a fixed number of tim&gveral priority queues and allows applications to specify
so that in the end, 12 tasks are also replicated, and sofBstraints on resources used (such as CPU speed), and
percentage of waste is equivalent to that of EXCL-PREBS such, would be able to support many of the mecha-
TO. nisms describe previously. However, the method by which
The corresponding bars in Figure 11 shows that for ifxachieve rapid application turnaround has been unclear.

same level of replication, EXCL-PRED-TO is far mor&OINC [21] and Condor [28] also lack schedulers for

effective is reducing application makespan. short-lived jobs. _
Much scheduling research has been done with the pre-

Number of tasks per application diction of host load for resource selection [16, 6]. How-
3 [0 200 400 ever, as discussed in Section 3.1, these studies do not take
Il QPTIMAL into account task failures (caused by a user reclaiming her
[ EXCL-PRED-TO 10.9 . . . . . .
25 _ [_] EXCL-PRED-DUP*| | machine during task execution), which can significantly
Bl Waste 198 delay application completion. (For example, the failure
Al I ) :0.75 rate for a 35 minute task during business hours is 22%.)

losws Moreover, the studies that are based on host load traces
are susceptible to OS idiosyncrasies.

8 m [

L3 0'5‘2 Batch resource management systems such as the Maui
1942 Scheduler [30] and PBS [34] assume a relatively dedi-

ol lo3f cated and stable computing environment, and are inad-

Average makespan relative to optimal

lo2 equate for scheduling applications on desktop grids be-
cause they lack extensive mechanisms to deal with task

o
n

failures. As such, scheduling features that are normally
5 15 3 5 15 3 5 15 35 ° available in these batch systems (such as backfilling, ad-
Task length (minutes on a dedicated 1.5GHz host) vance reservation, or mechanisms for fairness) are not

. L . supported on desktop grids.
Figure 11: Performance of replication algorithm on SDSC

grid for a particular level of replication

8 Conclusion

Of all the heuristics evaluated, EXCL-PRED-TO per-
forms closest to the optimal without significantly negaA/e have developed resource selection heuristics that can
tively affecting resource utilization. We obtained confiachieve good performance for short-lived, task-parallel
dence intervals for application completion time when uapplications on desktop grids. The heuristics used three
ing EXCL-PRED-TO by scheduling more than 1000 apechniques, namely resource prioritization, resource ex-
plications for a given size through trace driven simul&iusion, and task replication, and were evaluated using
tion, and then used the empirical CDF to determine cortfiace-driven simulation of four grid configurations.
dence intervals for application makespans. For exampleWe found that simple prioritization of resources was
the lower 95% confidence intervals for an application witlsually ineffective, and that utilizing all hosts in desk-
four-hundred tasks are [24, 36], [70, 92], and [161, 20&]p grid can prove detrimental to application completion
minutes for 5-minute, 15-minute, 60-minute tasks respditne. Consequently, we investigated methods for exclud-
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ing hosts by using a fixed threshold, or an adaptive thresh-
old based on a prediction of application makespan. Al-
though using a fixed threshold to excluded certain hosts E]
beneficial for desktop grids with a left-heavy distribution
of clock rates, the adaptive makespan heuristic performs
as well or better for other configurations, such as multi-
cluster or homogeneous desktop grids. Then, we adapted
the makespan prediction heuristic to use replication as a
means to deal with task failures and unreliable hosts th§g]
often delayed application completion. With little waste
caused by replicated tasks, the new heuristic brings appli-
cation completion to within a factor of 1.7 of the optimal
for all application sizes in our experiments.

Surprisingly, using minimal information, i.e., clock
rates, about the hosts, our heuristics were able to inl;‘-l]
prove application makespan drastically. Given that both
Internet and Enterprise desktop grids [21, 19, 18] collect
and store clock rate information, the scheduling heuris-
tics could easily be implemented and integrated with cuigs]
rent systems. We plan to implement these heuristics in the
XtremWeb software [19].

For future work, we will evaluate our heuristics for a
system such as Condor [28] or MOSIX [4] that enable
checkpointing and migration of tasks. Checkpointing anzﬁ]
process migration are two methods that deal with host
volatility, and we will investigate how these methods com-
plement resource prioritization, resource exclusion, ang]
task replication.

We will also design scheduling heuristics for the sce-
nario where multiple applications are submitted over time.
With the understanding how our heuristics affect the ext8l
ecution of a single application, the results can be used as
the basis for supporting a multi-application online work-
load, consisting of both short-lived and high throughput
applications. In addition to application makespan, metg]
rics for system performance and fairness will have to be
considered.
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