
Resource Management for Rapid Application Turnaround
on Enterprise Desktop Grids

Derrick Kondo1 Andrew A. Chien1 Henri Casanova1,2

1Dept. of Computer Science and Engineering2 San Diego Supercomputer Center
University of California, San Diego

Abstract

Desktop grids are popular platforms for high through-
put applications, but due their inherent resource volatil-
ity it is difficult to exploit them for applications that re-
quire rapid turnaround. Efficient desktop grid execution
of short-lived applications is an attractive proposition and
we claim that it is achievable via intelligent resource se-
lection. We propose three general techniques for resource
selection: resource prioritization, resource exclusion,and
task duplication. We use these techniques to instantiate
several scheduling heuristics. We evaluate these heuristics
through trace-driven simulations of four representative
desktop grid configurations. We find that ranking desk-
top resources according to their clock rates, without tak-
ing into account their availability history, is surprisingly
effective in practice. Our main result is that a heuristic
that uses the appropriate combination of resource priori-
tization, resource exclusion, and task replication achieves
performance within a factor of 1.7 of optimal.

1 Introduction

Cycle stealing systems that harness the idle cycles
of desktop PCs and workstations date back to the
PARC Worm [25] and have shown widespread success
with popular projects such as SETI@home [43, 40],
the GIMPS [24], Folding@Home [41], FightAidsAtH-
ome [20], Computing Against Cancer [10], and others
sustaining the throughput of over one million CPU’s and
10’s of Teraflops/seconds [33]. These successes have in-
spired similar efforts in the enterprise as a way to maxi-
mize return on investment for desktop resources by har-

This material is based upon work supported by the National Science
Foundation under Grant ACI-0305390.

SC2004, Pittsburgh, Pennsylvania
0-7695-2153-3/04 $20.00 (c)2004 IEEE

nessing their cycles to service large computations. As
a result, numerous academic projects have explored de-
veloping a global computing infrastructure for the inter-
net [35, 38, 2, 11, 9, 5, 19] and local-area networks [28,
4, 23]. In addition, commercial products have also
emerged [18, 45, 44, 36]. We term such computing in-
frastructuresdesktop grids, and while these systems can
be used in a variety of environments, in this paper we fo-
cus on the enterprise setting (e.g., within an institution).

A challenge for the efficient utilization of desktop
grids for compute-intensive applications is that of re-
source management. While resource management and
application scheduling issues have been thoroughly stud-
ied in the areas of parallel and Grid computing, most of
this work considers resource failures as rare events. By
contrast, desktop grid resources are inherently volatile.
Due to the lack of resource management and application
scheduling techniques that account for resource volatility,
the traditional use of desktop grids has focused on high-
throughput applications that consist of large numbers (i.e.,
orders of magnitude larger than the number of available
resources) of independent tasks. The performance met-
ric used in this scenario is the asymptotic task completion
rate, that is the number of tasks that are completed per
time unit when the application execution is in steady-state.

In this paper we consider parallel applications that con-
sist of independent, nearly identical tasks that vary in size,
and we study these applications for numbers of tasks that
are relatively small, i.e., comparable to the number of
available resources. Numerous interactions with indus-
trial companies by one of the authors suggest that desktop
grids within the enterprise are often underutilized. Also,
applications in a company’s workload often require rela-
tively rapid turnaround (for example, within a day’s time).
As a result, applications often consist of a moderate num-
ber of individual tasks, so that a scenario in which the
number of resources is of an order of magnitude compa-
rable to the number of tasks is not uncommon. As such,

1

rather asymptotic work rate, application execution time is
an appropriate performance metric. This corresponds to
a different usage of desktop grids, in which users wish
to execute relatively small and/or short-lived applications
quickly, rather than achieve high throughput over a long
period of time.

Note that our work focuses on minimizing the overall
execution elapsed time, ormakespan, of a single paral-
lel application, rather than trying to optimize the perfor-
mance of multiple, competing jobs. While the design of
so-called “job scheduling” strategies that promote aver-
age job performance and fairness among jobs that belong
to different users is part of our larger goal in the con-
text of desktop grids, it is outside the scope of this paper
as we solely focus on application scheduling strategies.
Note however the heuristics we develop to schedule a sin-
gle application provide key elements for designing effec-
tive job scheduling strategies (e.g., for doing appropriate
space-sharing among jobs, for selecting which resources
are used for which job, for deciding the task duplication
level for each job).

Minimizing the makespan of a parallel application is
the objective of numerous research projects in parallel
computing; here we address the specific challenges posed
by resource selection for volatile resources. In particular,
we design various resource selection heuristics to support
rapid application turnaround. We evaluate these heuristics
via simulations based on traces of a real desktop grid run-
ning the Entropia commercial software at the San Diego
Supercomputer Center (SDSC) [27]. Also, we evaluate
the heuristics on three other representative desktop grid
configurations. More specifically, by transforming the En-
tropia desktop traces, we model a homogeneous cluster,
a multi-cluster grid, and a typical Internet-wide desktop
grid. To measure the performance of our heuristics, we
compare the resulting makespans to the optimal, which
we can compute using an omniscient scheduler that has
full knowledge of the traces.

Our heuristics are based on three scheduling tech-
niques, namelyresource prioritization, resource exclu-
sion, andtask replication. We find that simple prioritiza-
tion techniques perform poorly in most desktop grid con-
figurations. We also find that exclusion based on a fixed
threshold works well on platforms where the distribution
of clock rates is left heavy, in our case for the SDSC
and Internet-wide desktop grids. We develop an adap-
tive heuristic that uses a prediction of the application’s
makespan to exclude slow resources; using historical host
availability information, the makespan prediction is accu-
rate to within 10% on average. Moreover, the heuristic
based on makespan prediction usually outperforms sim-

ple resource exclusion techniques on multi-cluster and ho-
mogeneous grids. We then modify the heuristic to use
replication techniques, and the performance of the best
resulting method is less than a factor of 1.7 away from
the optimal schedule, and significantly better than first-
come-first-serve (FCFS), the default scheduling strategy
in current desktop grid systems.

The remainder of this paper is organized as follows. In
Section 2, we define the scheduling problem and outline
our approach. In Section 3, we describe our experimen-
tal methods, in particular, our simulation model, source of
our trace data, and performance metrics. In Section 4, we
evaluate resource prioritization heuristics. In Section 5,
we develop heuristics that filter resources using different
criteria. In Section 6, we augment our resource exclu-
sion heuristics to use replication. Finally, in sections 7
and 8, we discuss related work, summarize our contribu-
tions, and give future research directions.

2 Scheduling Short-lived Applica-
tions on Desktop Grids

2.1 Problem Definition

We consider the problem of scheduling an application that
consists ofT independent, identical tasks onto a desktop
grid. The desktop grid comprisesN hosts that can execute
application tasks. These hosts are individually owned and
can only be used for running application tasks when up
and when their CPU is not used by their owners. Host and
CPU availability is assumed to be dynamic. The hosts are
managed by a master, which we will call the “server”, in
the following way. The server holds the input data neces-
sary for each of theT application tasks. When a host be-
comes available for executing an application task it sends
a notification to the server. The server maintains a queue
of available hosts, the “ready queue”, and may choose to
send a task to one of them at any given time. When a
host is executing an application task and its CPU becomes
unavailable (e.g., when the owner uses the mouse or the
keyboard, when the owner starts a CPU-intensive appli-
cation), the task is suspended and can be resumed on the
same host at a later time. When a host executing an appli-
cation becomes unavailable (e.g., due to a shutdown), the
application task fails and must be restarted from scratch
on another host. (We do not consider checkpointing in
this paper.) While an application task is running on a host,
the host sends a “heart-beat” to the server every minute;
in the worst case it takes 1 minute before a server deter-
mines that a task has been terminated. These assumptions

2

are representative of real-world desktop grid infrastruc-
tures (XtremWeb [19], Entropia [18], BOINC [21])l

Given the above platform model, we consider the prob-
lem of scheduling theT tasks onto theN hosts such
that the time in between the scheduling of the first tasks
and the completion of the last task, i.e. the application’s
makespan, is minimized. In the case whenT >> N , the
scheduling problem is almost equivalent to maximizing
the steady-state performance of the application (i.e., the
number of tasks completed per time unit in steady-state),
as the start-up and the wind-down phases of application
executions are negligible versus the steady-state phase. In
such a situation, a simple first-come first-server (FCFS)
strategy in which application tasks are assigned to hosts
in a greedy fashion is close to being optimal. In fact, this
is the strategy used by most existing desktop grid systems.

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

Time (minutes)

C
um

ul
at

iv
e

N
um

be
r

of
 T

as
ks

 C
om

pl
et

ed

100 tasks
200 tasks
400 tasks

Figure 1: Cumulative task completion vs. time.

In this paper we focus on “short-lived” applications, by
which we mean thatT is of the same order of magni-
tude asN . In this case FCFS is clearly suboptimal, as
seen in Figure 1. This figure plots the cumulative number
of completed tasks (or cumulative throughput) throughout
time observed for the FCFS strategy. These results are ob-
tained forT = 100, 200, 400 andN = 190, where each
task would execute in 15 minutes on a dedicated 1.5GHz
processor, and the hosts in the platforms are modeled af-
ter those in a real-world desktop grid (see Section 3 for
a detailed description of our simulation methodology). In
each of the three curves there is an initial hump as the sys-
tem reaches steady state, after which throughput increases
roughly linearly. The cumulative throughput then reaches
a plateau, which accounts for an increasingly large frac-
tion of application makespan asT decreases. For the ap-

plication withT = 100, 90% of the tasks are completed
in about 39 minutes, but the application does not finish
until 79 minutes have passed, which is almost identical
to the makespan for the caseT = 400. The plateau is
partly due to task failures near the end of the execution,
which forces these tasks to be restarted on a new host
late in the computation. The other cause for the plateau
is the well-known syndrome of waiting for the slowest
hosts to complete their tasks. We can see that asT gets
large when compared toN the plateau becomes less sig-
nificant, thus justifying the use of a FCFS strategy. How-
ever, for smaller values ofT , it is clear that some method
of resource selectioncould improve the performance of
short-lived applications significantly. In the next section
we outline different resource selection approaches, which
we evaluate and contrast in the rest of this paper.

2.2 Proposed Approaches

We consider four general resource selection approaches:
Resource Prioritization –One way to do resource selec-
tion is to sort hosts in the ready queue according to some
criteria (e.g., by clock rate, by the number of cycles de-
livered in the past) and to assign tasks to the “best” hosts
first. Such prioritization has no effect when the number of
tasks left to execute is greater than the number of hosts in
the ready queue. However, when there are fewer tasks to
execute than ready hosts, typically at the end of applica-
tion execution, prioritization is a simple way of avoiding
picking the “bad” hosts.
Resource Exclusion Using a Fixed Threshold –A sim-
ple way to select resources is to excluded some hosts and
never use them to run application tasks. Filtering can be
based on a simple criterion, such as hosts with clock rates
below some threshold. Often, the distribution of resource
clock rates is so skewed [24, 46] that the slowest hosts
significantly impede application completion, and so ex-
cluding them can potentially remove this bottleneck.
Resource Exclusion via Makespan Prediction –A more
sophisticated resource exclusion strategy consists in re-
moving hosts that would not complete a task, if assigned
to them, before some expected application completion
time. In other words, it may be possible to obtain an
estimate of when the application could reasonably com-
plete, and not use any host that would push the applica-
tion execution beyond this estimate. The advantage of this
method compared to blindly excluding resources with a
fixed threshold is that it should not be as sensitive to the
distribution of clock rates.
Task Replication –Task failures near the end of the appli-
cation, and unpredictably slow hosts can cause major de-

3

lays in application execution. This problem can be reme-
died by means of replicating tasks on multiple hosts, ei-
ther to reduce the probability of task failure or to schedule
the application on a faster host. This method has the draw-
back of wasting CPU cycles, which could be a problem if
the desktop grid is to be used by more than one applica-
tion.

We propose several instantiations of the above ap-
proaches and compare them in simulation. In the next
section we detail our simulation methodology.

3 Experimental Methodology

We use simulation for studying resource selection on
desktop grids as direct experimentation does not allow
controlled and thus repeatable experiments. However, our
approach is to use simulations driven by traces that were
collected from a real desktop grid platform. These traces
are time-series of CPU availability measurements (from
0% to 100%, including failure data) obtained over a 1-
month time period on a 220-host desktop grid running the
Entropia software infrastructure. Using these traces we
can simulate that same desktop grid, as well as 3 other rep-
resentative grid configurations with different host clock
rate probability distributions. Our simulations implement
the platform model described in Section 2.1. We simulate
the execution of task-parallel applications with different
numbers of tasks and different task durations. For each
simulated execution we compute the makespan achieved
when using different resource selection heuristics. Our
performance metric is the makespan relative to the opti-
mal makespan. We provide relevant details on the above
in the following four sections.

3.1 Availability Traces

We have conducted availability measurements over a
1 month period with a deployment of Entropia DC-
Grid™ [18] at the San Diego Supercomputer Center
(SDSC) over about 200 hosts. We continuously submitted
short tasks to the Entropia system so that its work queue
was never empty and each host was sent a task as soon as it
became available. Note that these tasks, because managed
by the Entropia virtual machine, did not interfere with the
work of the resource owners who were in fact unaware
of our measurement activities. Each compute-bound task
performed a mix of floating point and integer operations
and periodically (every 10 seconds) logged the computa-
tion rates to a file. A dedicated 1.5GHz Pentium proces-
sor can perform 37.5 million such operations per second.

Note that the Entropia virtual machine makes it possible
for a task to use only a fraction of a resource’s CPU.

With this procedure we were able to measure two kinds
of availability: (i) host availability, a binary value that
indicates whether a host is reachable and the desktop grid
software is up, which corresponds to the definition of
availability in [8, 1, 7, 14, 39]; and (ii)CPU availability ,
a percentage value that quantifies the fraction of the CPU
that can be exploited by a desktop grid application, which
corresponds to the definition in [3, 12, 42, 15, 47]. When
a host becomes unavailable (e.g., during a shutdown of
the O/S), no new task can be started, and any currently
executing task fails. When a CPU becomes unavailable
(that is with <1% CPU availability) but its host is still
available (e.g., when local processes use more than 99%
of the CPU, or there is keyboard/mouse activity from the
resource owner), then a running task is suspended and can
be resumed when the CPU becomes available again. Host
unavailability implies CPU unavailability. We call the in-
terval of time in between two host failures anavailability
interval.

This active but non-intrusive measurement methodol-
ogy made it possible to observe CPU availability just as
it would be experienced by a compute-intensive desktop
grid application. As a result, our method provides more
detailed information than just measuring host availabil-
ity [8, 1, 7, 14, 39]. Moreover, our traces are not sus-
ceptible to OS idiosyncrasies, and can directly measure
the effect of task failures (caused by mouse or keyboard
activity, for example). In contrast, lightweight CPU avail-
ability or load sensing techniques [15, 17, 47, 31] are vul-
nerable to artifacts of the OS, and inferring task failures
from traces obtained by passive sensors would be difficult.
A number of interesting features of this data are reported
in [27], but in this paper, we use our availability traces
solely to drive simulations. Let us note that our traces re-
vealed the overhead incurred by the Entropia system for
initiating a task on a host (on the order of 40 seconds),
which we take into account in our simulations.

3.2 Simulated Platform

We implemented the platform model described in Sec-
tion 2.1, with 220 hosts with the availability given by
the traces described in the previous section. All simula-
tions were performed using traces captured during busi-
ness hours from 9AM to 5PM. As shown in a number
of studies [1, 31], hosts during weekdays business hours
often exhibit higher user load, which in turn results in a
more challenging scheduling problem.

Given the diversity of desktop configurations, we com-

4

pare the performance of our heuristics on three other con-
figurations representative of Internet, single cluster, and
multi-cluster desktop grids. Internet desktop grids that
utilize machines both in the enterprise and home settings
usually have many more slow hosts than fast hosts, and so
its host speed distribution is left heavy. We used host CPU
statistics collected by the GIMPS Internet-wide project to
determine the distribution of clock rates, which ranged
from 25MHz to 3.4GHz. Other projects such as Fold-
ing@home and FightAids@home show similar distribu-
tions [46].

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Clock Rate (MHz)

C
um

ul
at

iv
e

P
er

ce
nt

SDSC
LRI−WISC
GIMPS
LOG

Figure 2: Cumulative clock rate distributions from real
systems used for our simulations.

For smaller projects [3, 19], desktop grids are often lim-
ited to machines within a student lab, for example, where
the distribution of CPU speeds is relatively homogeneous.
To model this scenario, we used the log of clock rates of
machines at SDSC, which yielded a narrow normal dis-
tribution with a mean speed of 3.2GHz and standard de-
viation of 170MHz. Much work [22, 19, 37] in desktop
grids has focused on using resources found in multiple
labs. Recently, [29] reports the use of XtremWeb [19]
at a student lab in LRI with nine 1.8GHz machines, and
a Condor cluster in WISC with fifty 600MHz machines
and seventy-three 900MHz machines. We use the config-
uration specified in that paper to model the multi-cluster
scenario. We plot the cumulative clock rate distribution
functions for our four platform scenarios in Figure 2. For
each of these distributions, we ran simulations using the
same traces described in Section 3.1 but transforming host
clock speeds accordingly.

3.3 Simulated Applications

We simulated applications that varied in both the num-
ber and size of tasks. Applications have 100, 200, or 400
tasks (which is roughly half, the same, and twice the num-
ber of hosts in our desktop grid, respectively) for reasons
discussed in Section 2.1. We experimented with tasks that
would exhibit 5, 15, and 35 minutes of execution time on
a dedicated 1.5GHz host. Each of these task sizes has a
corresponding failure rate when scheduled on the set of
resources during business hours. Previously, in [27], we
determined the failure rate of a task given its size using
random incidence over the entire trace period. That is, in
the collected traces, we chose many thousands of random
points to start the execution of a task and noted whether
the task would run to completion or would meet a host
failure. Task failure rate increases linearly with task size
from a minimum of 6.33% for a 5 minute task to a maxi-
mum of 22% for a 35 minute task. A maximum task size
of 35 minutes was chosen so that a significant number of
applications could complete when scheduled during the
business hours of a single weekday.

For each experiment (i.e., for a particular number of
tasks, and a task size), we simulated all our competing
scheduling strategies for applications starting at different
times during business hours. We ran each experiment for
over one-hundred such starting times to obtain statistically
significant results, and in true desktop grid fashion, an
XtremWeb [19] platform was used to run our simulations.

3.4 Performance metrics

While application makespan is a good metric to compare
results achieved with different scheduling heuristics, we
wish to compare it to the execution time that could be
achieved by an oracle that has full knowledge of future
host availabilities. Our oracle works as follows. First, it
determines the soonest time that each host would com-
plete a task, by looking at the future availability traces
and scheduling the task as soon as the host is available.
Then, it selects the host that completes the task the soon-
est, and it repeats this process until all tasks have been
completed. This greedy algorithm results in an optimal
schedule, which is easy to see intuitively but which we
nevertheless prove formally in [26]. We compare the per-
formance of our heuristics using the ratio of the makespan
for a particular heuristic to the optimal makespan that is
achieved by our oracle.

5

4 Resource Prioritization

We examine three methods for resource prioritization us-
ing different levels of information about the hosts, from
virtually no information to historical statistics derived
from our traces for each host, and we evaluate each
method on the SDSC grid using trace-driven simulation.
For thePRI-CR method, hosts in the server’s ready queue
are prioritized by their clock rates. Similarly to PRI-CR,
PRI-CR-WAIT sorts hosts by clock rates, but the sched-
uler waits for a fixed period of 10 minutes before assign-
ing tasks to hosts. The rationale is that collecting a pool of
ready hosts before making task assignments can improve
host selection. The scheduler stops waiting if the ratio of
ready hosts to tasks is above some threshold. A threshold
ratio of 10 to 1 was used in all our experiments. We ex-
perimented with other values for the fixed waiting period
and the above ratio, but obtained similar results.

The method PRI-HISTORY uses a history of a
host’s past performance to predict its future performance.
Specifically, for each host, the scheduler calculates the
expected operations per availability interval (that is how
many operations can be executed in between two host fail-
ures) using the previous weekday’s trace. This value is
used to determine in which of two priority queues a host
is placed, as follows. If the expected number of operations
per intervals is greater than or equal to the number of op-
erations of an application task, then the host is placed in
the higher of two priority queues. Otherwise, the request
is put in the low priority queue. Within each queue, the
hosts are prioritized according to the expected operations
per interval divided by expected operations per second. In
this way, hosts in each queue are prioritized according to
their speed.

Figure 3 shows the average makespan of these three al-
gorithms and of the FCFS strategy normalized to the mean
optimal execution time (labeledOPTIMAL) for applica-
tions with 100, 200, and 400 tasks. Recall that these av-
erages are obtained for over one-hundred distinct experi-
ments. The general trend is that the larger the number of
tasks in the application the closer the achieved makespans
to the optimal, which is expected since for larger num-
ber of tasks resource selection is not as critical to perfor-
mance and a greedy method approaches the optimal one.
In Figure 3, we also see that PRI-CR has considerably
better performance than FCFS for applications with 100
tasks. Since the number of tasks is less than the num-
ber of available hosts, the slowest hosts are guaranteed to
be excluded from the computation, whereas FCFS might
have used some of these slow hosts.

PRI-CR-WAIT performs poorly for small 5 minutes
tasks and improves thereafter, but never surpasses PRI-

CR. The initial waiting period of 10 minutes is costly
for the 100 task / 5min application, which takes about
6 minutes to complete in the optimal case. As the task
size increases (along with application execution time), the
penalty incurred by waiting for client requests is less-
ened, but since most hosts are already in the request queue
when the application is first submitted, the PRI-CR-WAIT
performs almost identically to PRI-CR and is no better.
Figure 4 provides additional insights as to why PRI-CR-
WAIT is largely ineffectual. This figure shows the number
of available hosts and the number of tasks that are yet to
be scheduled throughout time for a typical execution. Ini-
tially, there are about 150 hosts available and 400 tasks
to do, and this immediately drops to 0 hosts and about
250 tasks as each available host gets assigned a task. One
can see that it is usually the case that either there are far
more tasks to schedule than ready hosts or far more ready
hosts than tasks to schedule. In the former scenario, PRI-
CR-WAIT performs exactly as PRI-CR. In the latter case,
waiting does not give the algorithm more choice in select-
ing resources.

5 15 35 5 15 35 5 15 35
0

1

2

3

4

5

6

Task length (minutes on a dedicated 1.5GHz host)

A
ve

ra
ge

 m
ak

es
pa

n
re

la
tiv

e
to

 o
pt

im
al

OPTIMAL
FCFS
EXCL−PRED
EXCL−PRED−DUP
EXCL−PRED−TO

5 15 35 5 15 35 5 15 35
0

1

2

3

4

5

6

Task length (minutes on a dedicated 1.5GHz host)

A
ve

ra
ge

 m
ak

es
pa

n
re

la
tiv

e
to

 o
pt

im
al

OPTIMAL
FCFS
PRI−CR
PRI−HISTORY
PRI−CR−WAIT

100 200 400

0

1

2

3

4

5

6

Number of tasks per application

Figure 3: Performance of resource prioritization heuris-
tics on the SDSC grid.

Perhaps unexpectedly, PRI-HISTORY achieves poor
performance. We found that the availability interval size,
both in terms of time and in terms of operations, was not
stationary across weekdays. We determined the error from
one day to the next as follows. For each host we calculated
the mean number of operations per interval on a given
weekday during business hours. We then took the abso-
lute value of the difference between a host’s mean on one

6

particular day and next. Then, we took the mean over all
hosts and over all pairs of days and found that the average
prediction error when using the previous day as a predic-
tor was 110 minutes on a dedicated 1.5GHz host. (The
host speed is chosen arbitrarily to give a human readable
number instead of the number of operations.) The same
process was done for predicting availability intervals in
terms of time from one day to the next, and we found that
the average error was 108 minutes. Given that most tasks
in our experiments are less then 2 hours in length, these
prediction errors show that using the expected value for
operations per interval or time per interval is a poor pre-
dictor, which is also supported by the findings in [48].

In summary, we see that although PRI-CR outperforms
FCFS consistently, resource prioritization still leads to
performance that is far from the optimal (by more than a
factor of 4 for 100 5-minute tasks). Looking at the sched-
ules in detail, we noticed that using the slowest hosts sig-
nificantly limited performance, and we address this issue
through heuristics described in the next section.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

N
um

be
r

of
 T

as
ks

 to
 b

e
S

ch
ed

ul
ed

Time (minutes)

Number of tasks
Number of ready hosts

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

N
um

be
r

of
 R

ea
dy

 H
os

ts

Figure 4: Number of tasks to be scheduled (left y-axis)
and hosts available (right y-axis).

5 Resource Exclusion

To prevent slower hosts from delaying application com-
pletion, we developed several heuristics that excluded
hosts from the computation using a variety of criteria. All
these heuristics use only host clock rates to obtain lower
bounds on task completion time (as we have seen that past
availability is not a good predictor of future availability).

5.1 Excluding Resources By Clock Rate

Our first group of heuristics excludes hosts whose clock
rates are lower than the mean clock rate over all hosts
(1.2GHz for the SDSC platform) minus some factor of
the standard deviation of clock rates (730MHz for the
SDSC platform). The heuristicsEXCL-S1.5, EXCL-S1,
EXCL-S.5, andEXCL-S.25 exclude those hosts that are
1.5, 1, .5, and .25 standard deviations below the mean
clock rate. We can see in Figure 5 that excluding hosts
1 or .5 standard deviations below the mean can bring sub-
stantial benefits relative to FCFS and PRI-CR. Usually,
EXCL-S.25 excludes so many hosts that it not only re-
moves the “slow” hosts but also excludes the useful ones;
the exception is the application with 100 tasks, which is
equal to roughly half the number of hosts and so excluding
those hosts with speeds 25% below the mean will leave
slightly more than half of the hosts and thus filtering in
this case does not hurt performance. EXCL-S1.5 excludes
too few hosts, and the remaining “slow” hosts hurt the ap-
plication makespan.

5 15 35 5 15 35 5 15 35
0

1

2

3

4

5

6

Task length (minutes on a dedicated 1.5GHz host)

A
ve

ra
ge

 m
ak

es
pa

n
re

la
tiv

e
to

 o
pt

im
al

OPTIMAL
FCFS
PRI−CR
EXCL−S1.5
EXCL−S1
EXCL−S.5
EXCL−S.25

100 200 400

0

1

2

3

4

5

6

Number of Tasks Per Application

Figure 5: Performance of heuristics using thresholds on
SDSC grid

For the SDSC platform, EXCL-S.5 has the particular
threshold that yields the best performance; on average,
EXCL-S.5 performs 8%, 30%, and 6% better than PRI-
CR for applications with 100, 200, and 400 tasks respec-
tively. However, it may be that useful hosts are excluded
when they should not be, and that the .5 threshold is not
appropriate for different clock rate distributions of hosts
in the desktop grid. In the next section, we propose strate-
gies that use a sophisticated makespan prediction as a way

7

to filter hosts, and evaluate it and compare it to EXCL-S.5
for different desktop grid configurations.

5.2 Using Makespan Predictions

To avoid the pitfalls of using a fixed threshold such as
a particular clock rate 50% of the standard deviation be-
low the mean in the case of PRI-S.5, we develop a heuris-
tic where the scheduler makes a prediction of application
makespan, and then excludes those resources that cannot
complete a task by the projected completion time. To pre-
dict the makespan, we compute the average operations
completed per second for each host from our traces and
then compute the average over all hosts (call this aver-
ager). If N is the number of hosts in the desktop grid,
we then assume we haveN hosts of speedr. If T is the
number of tasks ands is the size of the task in operations,
the optimal execution time of the entire application is esti-
mated withwr = dT/Ne(s/r). The rationale behind this
prediction method is that the optimal schedule will never
encounter task failures. So host unavailability and CPU
speed are the two main factors influencing application ex-
ecution time, and these factors are accounted for byr. In
addition, we account for the granularity by which tasks
can be completed withdT/Ne.

To assess the quality of our predictorwr, we compared
the optimal execution time with the predicted time for
tasks 5, 15, and 35 minutes in size and applications with
100, 200, and 400 tasks. The average error over 1,400
experiments is 7.0% with a maximum of 10%.

The satisfactory accuracy of the prediction can be ex-
plained by the fact that the total computation power of the
grid remains relatively constant, although the individual
resources may have unpredictable availability intervals as
discussed previously in Section 4. To show this, we com-
puted the number of operations delivered during weekday
business hours in 5 minute increments, aggregated over
all hosts. We found that the coefficient of variation of the
operations available per 5 minute interval was 13%. This
relatively low variation in aggregate computational power
makes the accurate predictions ofwr possible.

The heuristicEXCL-PRED uses the makespan predic-
tion, and also adaptively changes the prediction as appli-
cation execution progresses. In particular, the heuristic
starts off with a makespan computed withwr, and then
after everyN tasks are completed, it recomputes the pro-
jected makespan. We choose to recompute the prediction
after N tasks are completed for the following reasons. On
one extreme, a static prediction computed only once in the
beginning is prone to errors due to resource availability
variations. At the other extreme, recomputing the predic-

tion every second would not be beneficial since it would
create a moving target and slide the prediction back (until
a factor of N tasks are completed).

If the application is near completion and the predicted
completion time is too early, then there is a risk that al-
most all hosts get excluded. So, if there are still tasks
remaining at timepred − .95 ∗ meanops, wherepred is
the predicted application completion time andmeanops
is the mean clock rate over all hosts, the EXCL-PRED
heuristic reverts to PRI-CR at that time. This ensures that
EXCL-PRED switches to PRI-CR when it is clear that
most hosts will not complete a task by the predicted com-
pletion time. Note that if the heuristic waited until time
pred (versuspred − .95 ∗ meanops) before switching
to PRI-CR, it would result in poor resource utilization as
seen in some of our early simulations, since most hosts
are available and excluded by timepred. Therefore, wait-
ing until time pred before making task assignments via
PRI-CR would cause most hosts to sit needlessly idle.

5.2.1 Evaluation on Different Desktop Grids

5 15 35 5 15 35 5 15 35
0

1

2

3

4

5

6

Task length (minutes on a dedicated 1.5GHz host)

A
ve

ra
ge

 m
ak

es
pa

n
re

la
tiv

e
to

 o
pt

im
al

OPTIMAL
FCFS
EXCL−S.5
EXCL−PRED

100 200 400

0

1

2

3

4

5

6

Number of tasks per application

Figure 6: Heuristic performance on the SDSC grid

Figure 6 shows that EXCL-PRED usually performs as
well as EXCL-S.5 on the machines at SDSC, but there is
no clear advantage for using EXCL-PRED. For the par-
ticular distribution of clock rates in the SDSC desktop
grid, EXCL-S.5 appears to have the particular threshold
that yields the best performance. EXCL-PRED performs
more poorly than EXCL-S.5 for the application with two-
hundred 15-minute tasks. We have found after close in-

8

spection of our traces that this is because of a handful un-
predictably slow hosts that finish execution past the pro-
jected makespan and/or task failures on these slow hosts
occurring near the end of the application. For the appli-
cation with 400 tasks, the delay is hidden as there are
enough tasks to keep other hosts busy until the slow hosts
can finish task execution. For the application with 100
tasks, the unpredictably slow and unstable hosts get fil-
tered out automatically as there are fewer tasks than hosts
and the heuristic prioritizes resources by clock rate. The
same reasoning can explain why EXCL-S.5 outperforms
EXCL-PRED for the GIMPS desktop grid(see Figure 7),
which like the SDSC grid has a left heavy distribution of
resource clock rates. On the GIMPS resources, applica-
tions scheduled with FCFS invariably cannot finish during
the weekday business hours period , i.e., have application
completion times greater than 8 hours, because of the use
of the extremely slow resources .

5 15 35 5 15 35 5 15 35
0

1

2

3

4

5

6

Task length (minutes on a dedicated 1.5GHz host)

A
ve

ra
ge

 m
ak

es
pa

n
re

la
tiv

e
to

 o
pt

im
al

OPTIMAL
Lower Bound FCFS
EXCL−S.5
EXCL−PRED

100 200 400

0

1

2

3

4

5

6

Number of tasks per application

Figure 7: Heuristic performance the GIMPS grid

Although EXCL-S.5 performs the best for the SDSC
and GIMPS desktop grids, the threshold used by EXCL-
S.5 is inadequate for different desktop grid platforms, and
the filtering criteria and adaptiveness of EXCL-PRED is
advantageous in the other scenarios. In particular, EXCL-
PRED either performs the same as or outperforms EXCL-
S.5 for the multi-cluster case and homogeneous cluster.
EXCL-PRED outperforms EXCL-S.5 in the case of the
LRI and log distributions by 17% and 12% respectively
for the application with 400 tasks (see Figures 8 and 9).
EXCL-S.5 in the LRI desktop grid excludes all 600MHz
hosts, which contribute significantly to the platform’s

overall computing power. In the relatively homogeneous
desktop grid, EXCL-S.5 unnecessarily filters about 10%
of the total computing power when in fact these resources
are running at speeds close to the mean and so would not
significantly delay application completion. Although the
hosts excluded by EXCL-S.5 are relatively slow, their ab-
solute speeds are still close to the faster hosts and thus
contribute significantly to progress in application execu-
tion. In general, the longer the steady state phase of the
application, the better EXCL-PRED performs with re-
spect to EXCL-S.5, since EXCL-S.5 excludes useful re-
sources some of which are utilized by EXCL-PRED. This
explains why EXCL-PRED performs better than EXCL-
S.5 for applications with more tasks and larger task sizes,
as seen in Figures 8 and 9.

5 15 35 5 15 35 5 15 35
0

1

2

3

4

5

6

Task length (minutes on a dedicated 1.5GHz host)

A
ve

ra
ge

 m
ak

es
pa

n
re

la
tiv

e
to

 o
pt

im
al

OPTIMAL
FCFS
EXCL−S.5
EXCL−PRED

100 200 400

0

1

2

3

4

5

6

Number of tasks per application

Figure 8: Heuristic performance on the LRI-WISC grid

6 Task Replication

An approach to reduce application completion delays
caused by failures and loaded hosts is to extend EXCL-
PRED to use task replication. One method, which we
call EXCL-PRED-DUP, uses EXCL-PRED but repli-
cates each task when the number of ready hosts is greater
than the number of tasks to schedule. Replicating any-
time sooner could cause a host to do redundant work when
there are more unscheduled tasks than hosts, and thereby
cause a delay in application completion. We refer to the
original task being replicated as aprimary task, and the
replicas are calledduplicates. Primary tasks are always

9

5 15 35 5 15 35 5 15 35
0

1

2

3

4

5

6

Task length (minutes on a dedicated 1.5GHz host)

A
ve

ra
ge

 m
ak

es
pa

n
re

la
tiv

e
to

 o
pt

im
al

OPTIMAL
FCFS
EXCL−S.5
EXCL−PRED

100 200 400

0

1

2

3

4

5

6

Number of tasks per application

Figure 9: Heuristic performance on the homogeneous grid

scheduled before duplicates, which reduces the chance
that a high number of duplicates ahead in the work queue
prevent a primary task from being scheduled. The du-
plicates themselves are sorted in increasing order by the
clock rate of the host that the primary task was first as-
signed to so that replicas of tasks that were originally as-
signed to slower hosts are scheduled earlier.

In addition to failures near the end of application exe-
cution, delays can be caused by hosts that run unexpect-
edly slow; since EXCL-PRED filters resources by clock
rate, the heuristic is susceptible to such slow hosts. (Nev-
ertheless, most hosts, when available, have completely
unloaded CPU’s most of the time [27], which was our
justification for using clock rate as a predictor of execu-
tion time in EXCL-PRED.) To deal with such delays, an-
other heuristicEXCL-PRED-TO based on EXCL-PRED
uses a timeout for each task to determine when replica-
tion should occur. That is, whenever a task is scheduled,
a timeout occurs if the task has not been completed by
the predicted makespan. Upon timeout, the task is repli-
cated, and the primary and duplicate tasks are prioritized
similarly to EXCL-PRED-DUP.

Figure 10 shows that the runtime improvement due to
EXCL-PRED-TO is most dramatic for smaller applica-
tions, where much of the execution time is spent near
the end as unpredictably slow hosts complete tasks and
failed tasks are successfully finished. As shown from
our simulation logs, timeouts can effectively reschedule
tasks that are assigned to unpredictably slow and un-
stable hosts. EXCL-PRED-TO does 13% better than

EXCL-S.5 in almost all cases except the application with
two-hundred, 35-minute tasks; for that particular applica-
tion size, EXCL-PRED-TO does equally well. EXCL-
PRED-TO usually performs similarly to EXCL-S.5 be-
cause replicating only those tasks at the end of the appli-
cation does not effectively deal with straggling or unstable
hosts that began execution earlier.

EXCL-PRED-DUP shows little improvement over
EXCL-PRED because the failures that occur near the end
of the application are due to relatively slow hosts, many
of which began task execution before the point at which
there are more ready hosts than tasks. EXCL-PRED-DUP
does too much replication too late in the application’s
lifespan. In contrast to EXCL-PRED-DUP, the EXCL-
PRED-TO heuristic is able to deal with these failures in
addition to unpredictably slow hosts by means of time-
outs, and as such, performs remarkably well as all execu-
tion times are within a factor of 1.7 or less with respect
to the optimal. For the desktop configurations other than
SDSC, the degree of improvement for the heuristic is sim-
ilar.

5 15 35 5 15 35 5 15 35
0

1

2

3

4

5

6

Task length (minutes on a dedicated 1.5GHz host)

A
ve

ra
ge

 m
ak

es
pa

n
re

la
tiv

e
to

 o
pt

im
al

OPTIMAL
FCFS
EXCL−S.5
EXCL−PRED
EXCL−PRED−DUP
EXCL−PRED−TO

100 200 400

0

1

2

3

4

5

6

Number of tasks per application

Figure 10: Heuristic performance using replication on
SDSC grid

Surprisingly, the gain in performance due to replication
in EXCL-PRED-TO comes at little expense of resource
utilization. That is, the improved performance is obtained
is obtained through relatively little replication. The bar
labeled as ’Waste’ in Figure 11 shows that the percent of
replicated tasks (relative to the total and including repli-
cated tasks that fail to complete) for EXCL-PRED-TO is
less than about 12% for each application size. The low

10

amount of replication required is due to the fact that only
the relatively few tasks uncompleted near the end of the
application need to be replicated. Moreover, by the end of
the application, the number of available hosts compared
to the number of tasks is quite high and so, the chance of
selecting a relatively fast host is high.

Figure 11 also compare the performance of EXCL-
PRED-DUP with EXCL-PRED-TO where EXCL-PRED-
DUP uses the same number of replicated tasks as EXCL-
PRED-TO (denoted by ’EXCL-PRED-DUP*’). For ex-
ample, for an application consisting of one-hundred 5-
minute tasks, EXCL-PRED-TO replicates 12 tasks, which
corresponds to a 12% waste. We then modified EXCL-
PRED-DUP to replicate each task a fixed number of times
so that in the end, 12 tasks are also replicated, and so the
percentage of waste is equivalent to that of EXCL-PRED-
TO.

The corresponding bars in Figure 11 shows that for the
same level of replication, EXCL-PRED-TO is far more
effective is reducing application makespan.

5 15 35 5 15 35 5 15 35
0

0.5

1

1.5

2

2.5

3

Task length (minutes on a dedicated 1.5GHz host)

A
ve

ra
ge

 m
ak

es
pa

n
re

la
tiv

e
to

 o
pt

im
al

OPTIMAL
EXCL−PRED−TO
EXCL−PRED−DUP*
Waste

100 200 400

0

0.5

1

1.5

2

2.5

3

Number of tasks per application

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 T
as

ks
 W

as
te

d

Figure 11: Performance of replication algorithm on SDSC
grid for a particular level of replication

Of all the heuristics evaluated, EXCL-PRED-TO per-
forms closest to the optimal without significantly nega-
tively affecting resource utilization. We obtained confi-
dence intervals for application completion time when us-
ing EXCL-PRED-TO by scheduling more than 1000 ap-
plications for a given size through trace driven simula-
tion, and then used the empirical CDF to determine confi-
dence intervals for application makespans. For example,
the lower 95% confidence intervals for an application with
four-hundred tasks are [24, 36], [70, 92], and [161, 205]
minutes for 5-minute, 15-minute, 60-minute tasks respec-

tively, where the mean application completion times are
30, 81, and 182 minutes. With these confidence intervals,
a user could get a reasonable estimate of when her appli-
cation would complete.

7 Related Work

Although many desktop systems exist, none have sched-
ulers that promote rapid application turnaround as most
are geared toward high throughput applications only.
XtremWeb uses a FCFS to schedule tasks to re-
sources [19]. In Entropia [13, 32], the scheduler maintains
several priority queues and allows applications to specify
constraints on resources used (such as CPU speed), and
as such, would be able to support many of the mecha-
nisms describe previously. However, the method by which
to achieve rapid application turnaround has been unclear.
BOINC [21] and Condor [28] also lack schedulers for
short-lived jobs.

Much scheduling research has been done with the pre-
diction of host load for resource selection [16, 6]. How-
ever, as discussed in Section 3.1, these studies do not take
into account task failures (caused by a user reclaiming her
machine during task execution), which can significantly
delay application completion. (For example, the failure
rate for a 35 minute task during business hours is 22%.)
Moreover, the studies that are based on host load traces
are susceptible to OS idiosyncrasies.

Batch resource management systems such as the Maui
Scheduler [30] and PBS [34] assume a relatively dedi-
cated and stable computing environment, and are inad-
equate for scheduling applications on desktop grids be-
cause they lack extensive mechanisms to deal with task
failures. As such, scheduling features that are normally
available in these batch systems (such as backfilling, ad-
vance reservation, or mechanisms for fairness) are not
supported on desktop grids.

8 Conclusion

We have developed resource selection heuristics that can
achieve good performance for short-lived, task-parallel
applications on desktop grids. The heuristics used three
techniques, namely resource prioritization, resource ex-
clusion, and task replication, and were evaluated using
trace-driven simulation of four grid configurations.

We found that simple prioritization of resources was
usually ineffective, and that utilizing all hosts in desk-
top grid can prove detrimental to application completion
time. Consequently, we investigated methods for exclud-

11

ing hosts by using a fixed threshold, or an adaptive thresh-
old based on a prediction of application makespan. Al-
though using a fixed threshold to excluded certain hosts is
beneficial for desktop grids with a left-heavy distribution
of clock rates, the adaptive makespan heuristic performs
as well or better for other configurations, such as multi-
cluster or homogeneous desktop grids. Then, we adapted
the makespan prediction heuristic to use replication as a
means to deal with task failures and unreliable hosts that
often delayed application completion. With little waste
caused by replicated tasks, the new heuristic brings appli-
cation completion to within a factor of 1.7 of the optimal
for all application sizes in our experiments.

Surprisingly, using minimal information, i.e., clock
rates, about the hosts, our heuristics were able to im-
prove application makespan drastically. Given that both
Internet and Enterprise desktop grids [21, 19, 18] collect
and store clock rate information, the scheduling heuris-
tics could easily be implemented and integrated with cur-
rent systems. We plan to implement these heuristics in the
XtremWeb software [19].

For future work, we will evaluate our heuristics for a
system such as Condor [28] or MOSIX [4] that enables
checkpointing and migration of tasks. Checkpointing and
process migration are two methods that deal with host
volatility, and we will investigate how these methods com-
plement resource prioritization, resource exclusion, and
task replication.

We will also design scheduling heuristics for the sce-
nario where multiple applications are submitted over time.
With the understanding how our heuristics affect the ex-
ecution of a single application, the results can be used as
the basis for supporting a multi-application online work-
load, consisting of both short-lived and high throughput
applications. In addition to application makespan, met-
rics for system performance and fairness will have to be
considered.

Acknowledgments

The authors wish to thanks Gilles Fedak for his invaluable
assistance with the XtremWeb system used to conduct our
simulation experiments.

References

[1] A. Acharya, G. Edjlali, and J. Saltz. The Utility of
Exploiting Idle Workstations for Parallel Computa-
tion. In Proceedings of the 1997 ACM SIGMET-
RICS International Conference on Measurement and

Modeling of Computer Systems, pages 225–234,
1997.

[2] A. D. Alexandrov, M. Ibel, K. E. Schauser, and
C.J. Scheiman. SuperWeb: Towards a Global Web-
Based Parallel Computing Infrastructure. InProc.
of the 11th IEEE International Parallel Processing
Symposium (IPPS), April 1997.

[3] R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu,
T.E. Anderson, and D.A." Patterson. The Interac-
tion of Parallel and Sequential Workloads on a Net-
work of Workstations. InProceedings of SIGMET-
RICS’95, pages 267–278, May 1995.

[4] A. Barak, S. Guday, and Wheeler R.The MOSIX
Distributed Operating System, Load Balancing for
UNIX, volume 672 ofLecture Notes in Computer
Science. Springer-Verlag, 1993.

[5] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyck-
off. Charlotte: Metacomputing on the Web. InProc.
of the 9th International Conference on Parallel and
Distributed Computing Systems (PDCS-96), 1996.

[6] A. Bestavros. Load Profiling In Distributed Real-
Time Systems. InThe 17th International Conference
on Distributed Computer Systems, May 1997.

[7] R. Bhagwan, S. Savage, and G. Voelker. Un-
derstanding Availability. InIn Proceedings of
IPTPS’03, 2003.

[8] W. Bolosky, J. Douceur, D. Ely, and M. Theimer.
Feasibility of a Serverless Distributed file System
Deployed on an Existing Set of Desktop PCs. In
Proceedings of SIGMETRICS, 2000.

[9] N. Camiel, S. London, N. Nisan, and O. Regev. The
PopCorn Project: Distributed Computation over the
Internet in Java. InProc. of the 6th International
World Wide Web Conference, April 1997.

[10] The Compute Against Cancer project.http://
www.computeagainstcancer.org/.

[11] P. Cappello, B. Christiansen, M. Ionescu, M. Neary,
K. Schauser, and D. Wu. Javelin: Internet-Based
Parallel Computing Using Java. InProceedings of
the Sixth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 1997.

[12] H. Casanova, A. Legrand, D. Zagorodnov, and
F. Berman. Heuristics for Scheduling Parameter
Sweep Applications in Grid Environments. InPro-
ceedings of the 9th Heterogeneous Computing Work-
shop (HCW’00), pages 349–363, May 2000.

12

[13] A. Chien, B. Calder, S. Elbert, and K. Bhatia. En-
tropia: Architecture and Performance of an Enter-
prise Desktop Grid System.Journal of Parallel and
Distributed Computing, 63:597–610, 2003.

[14] J. Chu, K. Labonte, and B. Levine. Availability and
locality measurements of peer-to-peer file systems.
In Proceedings of ITCom: Scalability and Traffic
Control in IP Networks, July 2003.

[15] P. Dinda. The Statistical Properties of Host Load.
Scientific Programming, 7(3–4), 1999.

[16] P. Dinda. A Prediction-Based Real-Time Schedul-
ing Advisor. In Proceedings of the International
Parallel and Distributed Processing Symposium
(IPDPS’02), April 2002.

[17] P. Dinda. Online Prediction of the Running Time of
Tasks.Cluster Computing, 5(3):225–236, July 2002.

[18] Entropia, Inc.http://www.entropia.com.

[19] G. Fedak, C. Germain, V. N’eri, and F. Cappello.
XtremWeb: A Generic Global Computing System.
In Proceedings of the IEEE International Sympo-
sium on Cluster Computing and the Grid (CC-
GRID’01), May 2001.

[20] The Fight Aids At Home project.http://www.
fightaidsathome.org/.

[21] The Berkeley Open Infrastructure for Network Com-
puting.http://boinc.berkeley.edu/.

[22] James Frey, Todd Tannenbaum, Miron Livny, Ian
Foster, and Steven Tuecke. Condor-g: A computa-
tion management agent for multi-institutional grids.
Cluster Computing, 5(3):237–246, 2002.

[23] D. Ghormley, D. Petrou, S. Rodrigues, A. Vahdat,
and T. Anderson. GLUnix: a Global Layer Unix for
a Network of Workstations.Software-Practice and
Experience, 28(9), July 1998.

[24] The great internet mersene prime search (gimps).
http://www.mersenne.org/.

[25] S.A. Hupp. The “Worm” Programs – Early Expe-
rience with Distributed Computation.Communica-
tions of the ACM, 3(25), 1982.

[26] D. Kondo and H. Casanova. Computing the Optimal
Makespan for Jobs with Identical and Independent
Tasks Scheduled on Volatile Hosts. Technical Re-
port CS2004-0796, Dept. of Computer Science and

Engineering, University of California at San Diego,
July 2004.

[27] D. Kondo, M. Taufer, , C. Brooks, H. Casanova,
and A. Chien. Characterizing and Evaluating Desk-
top Grids: An Empirical Study. InProceedings of
the International Parallel and Distributed Process-
ing Symposium (IPDPS’04), April 2004.

[28] M. Litzkow, M. Livny, and M. Mutka. Condor - A
Hunter of Idle Workstations. InProceedings of the
8th International Conference of Distributed Com-
puting Systems (ICDCS), 1988.

[29] O. Lodygensky, G. Fedak, V. Neri, F. Cappello,
D. Thain, and M. Livny. XtremWeb and Con-
dor: Sharing Resources Between Internet Connected
Condor Pool. InProceedings of the IEEE Inter-
national Symposium on Cluster Computing and the
Grid (CCGRID’03) Workshop on Global Computing
on Personal Devices, May 2003.

[30] Maui Scheduler. http://www.
supercluster.org/maui.

[31] M. Mutka and M. Livny. The available capacity of a
privately owned workstation environment .Perfor-
mance Evaluation, 4(12), July 1991.

[32] J. Nabrzyski, J. Schopf, and J. Weglarz, editors.Grid
Resource Management, chapter 26. Kluwer Press,
2003.

[33] Andy Oram, editor.Peer-To-Peer: Harnessing the
Power of Disruptive Technologies. O’Reilly & As-
sociates, Inc., Sebastopol, CA, USA, 2001.

[34] The Portable Batch System Webpage.http://
www.openpbs.com.

[35] J. Pedroso, L.M. Silva, and J.G. Silva. Web-based
metacomputing with JET. InProc. of the ACM
PPoPP Workshop on Java for Science and Engineer-
ing Computation, June 1997.

[36] Platform Computing Inc. http://www.
platform.com/.

[37] J. Pruyne and M. Livny. A Worldwide Flock of
Condors : Load Sharing among Workstation Clus-
ters . Journal on Future Generations of Computer
Systems, 12, 1996.

[38] L. Sarmenta and S. Hirano. Bayanihan: Building
and Studying Web-Based Volunteer Computing Sys-
tems Using Java.Future Generation Computer Sys-
tems, 15(5-6):675–686, 1999.

13

[39] S. Saroiu, P.K. Gummadi, and S.D. Gribble. A mea-
surement study of peer-to-peer file sharing systems.
In Proceedinsg of MMCN, January 2002.

[40] The seti@home project.http://setiathome.
ssl.berkeley.edu/.

[41] M.R. Shirts and V.S. Pande. Screen Savers of the
World, Unite! Science, 290:1903–1904, 2000.

[42] S. Smallen, H. Casanova, and F. Berman. Tunable
On-line Parallel Tomography. InProceedings of Su-
perComputing’01, Denver, Colorado, Nov. 2001.

[43] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb,
G. Gedye, and D. Anderson. A new major SETI
project based on Project Serendip data and 100,000
personal computers. InProc. of the Fifth Intl. Conf.
on Bioastronomy, 1997.

[44] DataSynapse Inc. http://www.
datasynapse.com/.

[45] United Devices Inc.http://www.ud.com/.

[46] Vijay Pande. Private communication, 2004.

[47] R. Wolski, N. Spring, and J. Hayes. Predicting the
CPU Availability of Time-shared Unix Systems. In
Peoceedings of 8th IEEE High Performance Dis-
tributed Computing Conference (HPDC8), August
1999.

[48] P. Wyckoff, T. Johnson, and K. Jeong. Finding Idle
Periods on Networks of Workstations. Technical Re-
port CS761, Dept. of Computer Science, New York
University, March 1998.

14

