
Proceedings, International Parallel and Distributed Processing Symposium (IPDPS’03), April 2003, Nice, France. (c) 2003 IEEE. Personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective

works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Autonomous Protocols for Bandwidth-Centric Scheduling
of Independent-task Applications

Barbara Kreaseck1 Larry Carter1 Henri Casanova1,2 Jeanne Ferrante1

1 Department of Computer Science and Engineering2 San Diego Supercomputer Center
University of California at San Diego

{kreaseck, carter, casanova, ferrante}@cs.ucsd.edu

Abstract

In this paper we investigate protocols for scheduling ap-
plications that consist of large numbers of identical, in-
dependent tasks on large-scale computing platforms. By
imposing a tree structure on an overlay network of com-
puting nodes, our previous work showed that it is possi-
ble to compute the schedule which leads to the optimal
steady-state task completion rate. However, implement-
ing this optimal schedule in practice, without prohibitive
global coordination of all the computing nodes or unlim-
ited buffers, remained an open question. To address this
question, in this paper we developautonomousscheduling
protocols, i.e. distributed scheduling algorithms by which
each node makes scheduling decisions based solely on lo-
cally available information. Our protocols have two vari-
ants: with non-interruptible and with interruptible commu-
nications. Further, we evaluate both protocols using sim-
ulations on randomly generated trees. We show that the
non-interruptible communication version may need a pro-
hibitive number of buffers at each node. However, our au-
tonomous protocol with interruptible communication and
only 3 buffers per node reaches the optimal steady-state
performance in over 99.5% of our simulations. The au-
tonomous scheduling approach is inherently scalable and
adaptable, and thus ideally suited to currently emerging
computing platforms. In particular this work has direct im-
pact on the deployment of large applications on Grid, and
peer-to-peer computing platforms.

1. Introduction

Advances in network and middleware technologies have
brought computing with many widely-distributed and het-
erogeneous resources to the forefront, both in the con-
text of Grid Computing[14, 15] and ofInternet Comput-
ing [32, 12, 37]. These large distributed platforms allow

scientists to solve problems at unprecedented scales and/or
at greatly reduced cost.

Application domains that can readily benefit from such
platforms are many; they include computational neuro-
science [34], factoring large numbers [11], genomics [38],
volume rendering [31], protein docking [24], or even
searching for extra-terrestrial life [32]. Indeed, these ap-
plications are characterized by large numbers of indepen-
dent tasks, which makes it possible to deploy them on dis-
tributed platforms despite high network latencies. More
specifically, in this paper we assume that all application
data initially resides in a single repository, and that the
time required to transfer that data is a significant factor.
Efficiently managing the resulting computation is a dif-
ficult and challenging problem, given the heterogeneous
attributes of the underlying components. This problem
is well recognized [3, 18, 21, 16, 13, 26, 36, 23, 7, 2],
and there is a large body of applied research, see for in-
stance [5, 10, 1, 17, 33], providing various practical ap-
proaches toward a solution. An added complexity is that re-
sources in these environments exhibit dynamic performance
characteristics and availability, and a number of the afore-
mentioned works have taken first steps toward addressing
this issue.

Our previous work [3] differs in that we employ ahi-
erarchical model of the computing platform. The advan-
tage of such a model is thateachcomponent can makeau-
tonomous, local scheduling decisions, without costly global
communication or synchronization. The processor control-
ling the data repository decides how many tasks to execute
and how many to send to other processors; these proces-
sors in turn decide whether to execute tasks or to send them
down the hierarchy, and so on. This approach allows for
adaptivity and scalability, since decisions can be made lo-
cally. It is particularly effective for scheduling in environ-
ments that are heterogeneous and dynamic, such as global
and peer-to-peer computing platforms consisting mostly of
home PC’s, as well as emerging Grid platforms based on
distributed Web services.
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Figure 1. Underlying grid and tree overlay.

We showed in [3] that there is a simple algorithm for
determining the optimal steady-state task execution rate
in our hierarchical model. While we established a prov-
ably optimal bound on steady-state execution under ideal-
ized assumptions, we did not specify how to achieve this
optimal steady-state rate in practice. In this paper, we
present two autonomous bandwidth-centric scheduling pro-
tocols that address the practical problem of attaining the op-
timal steady-state rate after some startup and maintaining
that rate until wind-down. In simulation, one of these pro-
tocols achieves theprovably optimalsteady-state through-
put in over 99.5% of our test cases, and thus near-optimal
overall execution times.

In Section 2 we review the scheduling principle that
forms the basis for our protocols. In Section 3 we discuss
the details of our protocols. We present our experimental
results in Section 4 and related work in Section 5. Finally,
in Section 6 we discuss future work and conclude.

2. Background

2.1. The Bandwidth-centric Principle

In all that follows we target applications that consist of
large numbers ofindependentand identical tasks. That is,
application tasks have no ordering or synchronization, and
the computational cost and amount of input/output data re-
quired for each task is identical. We model a heterogeneous
platform as a tree in which the nodes correspond to compute
resources and edges to network connections (see Figure 1).
We use weights for nodes and edges to denote computation
and communication costs, respectively. The work in [3] also
considered several other models for compute node capabil-
ities. In this work we use only the “base model”, i.e. a node
can simultaneously receive data from its parent, send data
to one of its children, and compute a task. A number of

relevant models were shown to reduce to the base model.
Finally, each node has a number of local buffers that can be
used to hold data for one application task.

Somewhat to our surprise, since almost all scheduling
problems are NP-complete, we were able to show in [3]
that there is a simple algorithm for determining the opti-
mal steady-state task execution rate. Consequently, we can
create a schedule that can process a fixed number of tasks
within an additive constant of the optimal schedule.

Assume each node has a finite number of buffers to hold
tasks that it receives from its parent in the tree. Here is an
intuitive description of the scheduling algorithm in [3]:

Each parent node prioritizes its children accord-
ing to the time it takes the node to communicate
a task to the child. Each parent delegates the next
task in its buffers to the highest-priority child that
has an empty buffer to receive it.

We call a scheduling algorithm that follows this princi-
ple bandwidth-centricbecause the priorities do not depend
on the descendent’s’ computation capabilities, only on their
communication capabilities. (Of course, the computation
time will affect how frequently a descendent’s buffers be-
come available.) We showed in [3] that if each node in the
tree hassufficientbuffers, then bandwidth-centric schedul-
ing results in the optimal steady-state (i.e. asymptotic) exe-
cution rate.

Figure 1(a) illustrates a model of a small heterogeneous
system spanning resources at three sites. The root node is
the source and sink of all application data and tasks. It is
connected to other nodes at site 1, one of which is connected
to nodes in site 2. The root node also has a connection to
a node at site 3, which is connected to two other nodes at
that site. In effect, this is a treeoverlay networkthat is
built on top of the physical network topology among these
hosts. It is possible to configure the tree differently, and
some configurations are certainly better than others. We
leave the question of which tree is the most effective for
future work.

The formal tree model is a node-weighted, edge-
weighted treeT = (V, E, w, c), as shown in Figure 1(b).
Since we assume that the target application is a collection
of independent fixed-size tasks, we can let the node weight
wi denote the computation time of a single task at nodei.
Similarly, the edge weightci denotes the sum of the time to
send a task’s data to nodei from its parent and to return the
results. Larger values ofwi indicate slower nodes and larger
values ofci indicate slower communication. We use a sin-
gle communication weight since for steady-state execution,
it does not matter what fraction of time is spent sending the
task’s input data and what fraction of time is spent returning
the output. We will return to this model later.

Often, the complete schedule for an application consists
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of a startupinterval where some nodes are not yet running
at “full speed”, then a periodicsteady-stateinterval where
b tasks are executed everyt time units, and finally awind-
down interval where some but not all nodes are finished.
We can determine the optimalsteady-stateexecution rate
R = b

t
that can be sustained on the tree. Equivalently,

we can minimizewtree = t
b
, the computational weight of

the tree. If enough bandwidth is available, then the optimal
steady-state schedule is to keep all nodes busy. If bandwidth
is limited, then thebandwidth-centricscheduling strategy,
where tasks are allocated only to the children which have
sufficiently small communication times, is optimal.

We now formally state the result on which [3] is based.
Consider a single-levelfork graph, consisting of a nodeP0

and childrenP1...Pk, with time ci needed to communicate
a task to childPi, and timec0 for P0 to receive a task from
its parent. Then:

Theorem 1 With the above notation, the minimal value for
wtree is obtained as follows:

1. Sort thek children by increasing communication times.
Renumber them so thatc1 ≤ c2 ≤ ... ≤ ck.

2. Let p be the largest index so that
∑p

i=1

ci

wi
≤ 1. If

p < k let ε = 1 −
∑p

i=1

ci

wi
, otherwise letε = 0.

3. Then

wtree = max(c0,
1

1

w0
+

∑p

i=1

1

wi
+ ε

cp+1

)

Intuitively, this theorem says that for optimal steady
state, a node cannot consume more tasks than it receives
from its parent, hence the first term,c0, of the maximum.
For the second term, the firstp children can be fed fast
enough by the parent to be kept completely busy, but when
k > p, those children with slower communication rates will
either partially or totally starve, independent of their execu-
tion speeds.

This theorem allows us to generate the optimal steady-
state scheduling policy for all nodes in a heterogeneous
tree. A bottom-up traversal of the tree determines the rate
(or equivalently, the computational weightwtree) at which
tasks can be processed by each subtree of the full tree.

2.2. Practical Limitations

There are two major practical problems with using The-
orem 1:

1. The proof of the theorem assumes that each node has
enough buffers to queue the tasks that it has received
but not yet processed. The number of buffers can be
bounded by the least common multiple of all the node

and edge weights of the entire tree. However, this
bound is very large in practice and can lead to pro-
hibitive startup and wind-down times.

2. It is necessary to know all theci’s andwi’s in the entire
tree to derive the schedule. Although it might be pos-
sible to make complete information available in some
Grid platforms, doing so for dynamic and decentral-
ized platforms such as global and peer-to-peer com-
puting systems [25, 12] introduces significant compli-
cations of collecting and distributing the information,
and maintaining consistency in a dynamically chang-
ing system.

The autonomous scheduling protocols we present in the
next section address both of these limitations and achieve
near optimal behavior in our experiments.

3. Autonomous Protocols

Our goal is to design a distributed scheduling algorithm
that achieves the optimal task execution rate (according to
the bandwidth-centric theorem) while using only “local in-
formation”. In other words, scheduling decisions at each
node are based only on information that is directly measur-
able at that node. Each node can measure the time it takes
to communicate a task to each of its children, the time it
takes to compute a task by itself, and the time it takes for
each child node to have an empty buffer. In the bandwidth-
centric scheduling protocol we present in this section, each
node determines whether a received task will be computed
by the node itself and if not, which child’s subtree will com-
pute the task. In our protocols, a child requests a task from
a node when the child has an empty buffer. Each node can
then schedule each received task using only directly mea-
surable information. We term such a distributed scheduling
protocolautonomous.

There are three main advantages to autonomous schedul-
ing protocols. First, they can adapt naturally todynami-
cally changingdistributed computing environments. Each
node can change its scheduling to adapt to a change in its
view of the world (e.g. a slower communication time to one
child than to another). Second, they should be able to adapt
without costly global communication and synchronization.
Third, they promote scalability. Indeed, since all nodes use
the same scheduling with no dependence on global infor-
mation, it is very straightforward to add subtrees of nodes
below any currently connected node. In other words, the
tree overlay network can grow and reconfigure itself dy-
namically, which is a highly desirable property in emerging
computing platforms.
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Figure 2. Case studies to illustrate the buffer
growth problem.

3.1. Non-interruptible communication

Our first approach for designing our autonomous proto-
col was to use what we callnon-interruptible communica-
tion: once a parent node starts communicating a task to a
child, it will finish that communication without any inter-
ruptions or pauses regardless of any arriving requests from
other children. This is a traditional assumption in most pre-
vious work. We found that with non-interruptible commu-
nication:

1. One buffer per node does not suffice. In Figure 2(a),
the highest priority node, B, should be kept busy pro-
cessing. B takes2 time units to compute a task and
would need to have at least3 buffered tasks in order to
maintain its rate while node A is sending to node C for
5 time units.

2. For every positive integerk, there is a tree such that
there is at least one node needing more thank buffers
to reach optimal steady-state throughput. Consider a
more general example in Figure 2(b), where node B
takesx time units to compute a task and node A takes
k ∗x+1 time units to send a task to node C. Assuming
x > 1, node B would need at leastk +1 buffered tasks
to maintain its rate while node A is sending to node C.

3. For every node in a tree, there is a maximum number of
buffers,mi, needed in order to reach optimal steady-
state throughput. The maximum number of buffers
needed by a tree ism, wherem = MAX (mi). In Fig-
ure 2(a),m is3, whereas in Figure 2(b)m isk+1. Since
m is not knowna priori or may change over time for
a dynamic platform, a correct protocol must allow for
buffer growth and, optimally, buffer decay.

4. With unlimited buffers, a flawed protocol may not
reach optimal steady-state throughput because it re-
queststoo manytasks from its parent. For example,
if a child node is able to grow more buffers than it
minimally needs, that child may be sent more tasks

than necessary to maintain optimal steady state, thus
robbing its siblings and possibly greatly extending the
overall execution time.

Clearly, with non-interruptible communication, a
bandwidth-centric protocol using a fixed number of buffers
will not reach optimal steady- state throughput in all trees.

Consequently, in the case of non-interruptible commu-
nication, our autonomous protocol provides for a variable
number of buffers per node. Thus, our protocol makes no
assumption about the value ofmi and buffer growth is as
follows. Initially, each node has a single, empty buffer. At
the start of the application, each node makes a request to its
parent. A node will additionally send a request to its parent
when one of its buffersbecomesempty: either the node has
started the computation of a task or the node has started to
communicate a task to one of its children. A node is allowed
to ’grow’ another buffer in the following situations:

1. when the node’s buffersall becomeempty and there is
an outstanding request from one of its children,

2. when the node completes the communication of a task
to one of its children and there is an outstanding re-
quest from one of its children but the node’s buffers
are all empty,

3. and when the node completes the computation of a
task, and its buffers are all empty.

We considered many buffer growth events for our protocol.
We found that the combination of the events listed above
worked well for our random trees (see Section 4 for more
details). They allowed almost every node to grow its neces-
sary buffers, while discouraging over-growth.

In practice, our bandwidth-centric non-interruptible
communication protocol has some undesirable character-
istics. The maximum number of buffers needed for some
trees can be prohibitively large. Also, the over-growth
of buffers by some nodes may inhibit optimal steady-state
throughput rate in some trees. In the next section we de-
scribe a protocol which assumes interruptible communica-
tions.

3.2. Interruptible communication

With interruptible communication, a request from a
higher priority child may interrupt a communication to a
lower priority child. The interrupted communication is
shelved while a communication to the higher priority child
is started. When the lower priority child comes again to the
front of the priority queue, the interrupted communication
is resumed from where it left off. A resumed communi-
cation can also be interrupted by a request from a higher
priority child. And there may be more than one interrupted
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Figure 3. Throughput rates (tasks per time) over a sliding gr owing window normalized to the optimal
steady state per tree. Each point on the x-axis designates a w indow from x to 2x tasks completed.

communication at a time, should a request come in from an
even higher priority child. A high priority node like node
B in Figure 2(a) will not need to stockpile tasks to sustain
its optimal steady-state rate while its parent services a lower
priority node.

Using interruptible communications allows us to follow
the spirit of bandwidth-centric scheduling more closely:
send tasks to the faster communicating nodes before send-
ing tasks to the slower communicating nodes. With inter-
ruptible communication the fastest communicating nodes
will never have to wait for another task so long as there
is a task available for it to receive. Because it never waits
on lower priority nodes, the highest priority node will need
fewer buffers to sustain optimal steady-state throughput.
All nodes will require fewer buffers, because no node waits
on lower priority nodes. Therefore, interruptible commu-
nications alleviate the undesirable characteristics found in
Section 3.1.

Similar to the non-interruptible case, a node will send a
request to its parent when one of its buffersbecomesempty.
Because nodes receive tasks based upon their bandwidth
priorities and their ability to receive tasks, no extra buffers
are needed. The main advantage to using interruptible com-
munication is that the number of buffers needed per node
is not large. In Section 4 we use at most 3 buffers per
node, in addition to having one buffer per child to hold the
partially-completed transmissions. Finally, note that inter-
ruptible communications are easy to implement in practice
and should cause little overhead (e.g. with multi-threading).

4. Simulation Results

4.1. Methodology

To validate our protocols, we simulate the execution of
an application on a large number of random trees. Each tree
is described by five parameters:m, n, b, d, x. Each tree has
a random number of nodes betweenm andn. After creating

the desired number of nodes, edges are chosen one by one to
connect two randomly-chosen nodes, provided that adding
the edge doesn’t create a cycle. Each link has a random
task communication time betweenb andd timesteps. Each
node has a random task computation time betweenx/100
andx timesteps. All random distributions are uniform. Un-
less otherwise noted, the parameters we used for the sim-
ulations reported in this paper werem = 10, n = 500,
b = 1, d = 100 andx = 10, 000. The trees generated with
these parameters had an average of245 nodes, and ranged
in depth from2 to 82. (The distribution in depths can be
seen in figure 6(b).)

We do not claim that these trees necessarily correspond
to actual networks; our goal was simply to try a wide va-
riety of trees to help us find flawed protocols. Indeed, the
simulations helped us search the design space as described
in the previous section. We implemented a simulator us-
ing the Simgrid toolkit [8]. Simgrid provides core function-
alities for simulating distributed applications in heteroge-
neous distributed environments for the purpose of evaluat-
ing scheduling algorithms.

Determining when the execution of the application has
reached steady state, optimal or otherwise, is difficult. The
bandwidth-centric theorem gives the optimal steady-state
rate for each node as well as the entire tree. But the pe-
riod for each rate is unknown, and its only known bound is
impractically large. To compensate for this, we computed
the average execution rate in asliding window. The window
was made to increase in size as the simulation proceeded, so
that eventually it would exclude the startup phase but would
include a full period.

To illustrate our methodology we show an example in
Figure 3(a). The figure plots the throughput rates over time,
normalized to their respective optimal steady-state rates, for
three selected trees. In the graphs, the y-axis value at point
x on the x-axis represents the average rate between the time
tx when taskx is completed and timet2x when task2x is
completed. Thus, it is(2x − x)/(t2x − tx). These three
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particular trees were chosen to illustrate the difficulty inde-
termining the onset of steady- state behavior.

All three trees eventually reach a steady state, which is
clear from looking at the same data over a period of 1000
windows in Figure 3(b). Notice that the graphs of average
execution time wiggle slightly, due to the discrete nature of
task completion. However, the wiggles center around hor-
izontal lines that are the steady-state execution rates (nor-
malized to the optimal possible rate). Because of the wig-
gling, the curves sometimes exceed and sometimes are less
than the steady-state rate.

Only tree 3 reaches the optimal steady-state rate, tree 1
comes very close to optimal, and tree 2 is well below opti-
mal. It would be tempting to assume that the optimal theo-
retical steady-state rate is achieved if the average in sliding
window ever reaches 1. However, Figure 3(a) reveals that
tree 1 exceeds the optimal rate at several initial points, be-
fore it eventually settles to a near-optimal steady state. In
contrast, tree 2 has less variation at the beginning. Tree 3
has low rates for a longer period than the other two, but the
normalized rate steadily climbs toward optimal.

Based on our simulations with 1,000 random trees with
the parameters as described earlier, we observed the follow-
ing. If a tree did not reach optimal steady state before 1000
tasks, it had at most one point above the optimal steady-
state rate beyond window 300. Also, we found that if a
tree reached the optimal steady-state rate, then it had more
than one pointabovethe optimal steady-state rate beyond
window 300. Based on this, we decide whether a tree has
reached steady state or not as follows. We arbitrarily say
that the tree has reached optimal steady state if its rate goes
over the optimal steady-state ratetwice after window 300.

Number of Buffers
Protocol 1 2 3 10 20 100

non-IC 0.0% 0.0 0.0 0.2 0.8 5.1
IC 81.9% 98.5 99.6 - - -

Table 1. Percentage of trees that reached the
optimal steady-state rate using at most n
buffers, for selected n between 1 and 100.

We say that the onset of optimal steady state occurs when
the rate goes over the optimal steady-state rate for the sec-
ond time after window 300. This heuristic is purely em-
pirical, but works well in practice. We leave the develop-
ment of more theoretically-justified decision criteria forfu-
ture work.

4.2. Results

We evaluate our protocols using a number of criteria.
The most important criterion is how often they achieve the
optimal steady-state rate. Another criterion is the number
of buffers used or needed to reach optimal steady state. We
present our evaluations in Sections 4.2.1 and 4.2.2, followed
by a brief study of the adaptability of our protocols.

4.2.1. Reaching optimal steady state.We simulated an
independent-task application of 10,000 tasks on 25,000 ran-
domly assembled trees. With the non-interruptible commu-
nication protocol (non-IC), we give each node one initial
buffer (IB), then allowed the pool of buffers to grow as dic-
tated by the protocol. With the interruptible communication
protocol (IC), we ran simulations for one, two, and three
fixed buffers (FB). Figure 4 shows probability distribution
functions for these four protocol variations. A point (x,y)
on the graph indicates thaty% of the trees reached the opti-
mal steady-state rate withinx tasks.

In Figure 4, the highest performer is interruptible com-
munication with three fixed buffers, reaching the optimal
rate in 99.57% of the trees. Interruptible communication
with two fixed buffers is very close, reaching the optimal
rate in 98.51% of the trees. The lowest interruptible per-
former has one fixed buffer, reaching the optimal steady-
state rate in just less than 82% of the trees. This agrees with
our findings on non-interruptible communication (see Sec-
tion 3.1): one buffer is not sufficient to sustain the optimal
steady-state rate in all trees.

Non-interruptible communication, starting with one ini-
tial buffer, reached the optimal rate in only 20.18% of the
trees. As we will see in a moment, this protocol often re-
quired a large number of buffers. We also see much longer
startup phases with non-interruptible communication: over
half of the trees that reach the optimal rate with the non-IC
protocol are still in the startup phase at 1000 tasks.
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The performances of the three IC protocols display a
range of desirable characteristics. With FB=1, we see
shorter startup phases but it reaches the optimal steady-state
rate in fewer trees. With FB=3, we see longer startup phases
but it reaches the optimal steady- state rate in the highest
number of trees. FB=2 more closely matches the shorter
startup phases of FB=1 and the higher number of trees of
FB=3.

Figure 5 displays the impact of computation-to-
communication ratios on our protocols. We randomly as-
sembled 1000 trees with number of node parameters(m =
10, n = 500) and communication parameters(b = 1, d =
100). We created four classes of these trees by varying the
value of the computation parameterx. For each class,x is
one of [500, 1000, 5000, 10000]. Thus each tree class has
a different range of computation-to-communication ratios
[x/10000 throughx/1].

For two protocols, non-IC with IB=1 and IC with FB=3,
Figure 5 shows the percentage of trees within each class
that reach the optimal steady-state rate on an application of
4000 tasks and a window 300 threshold. We have two direct
observations. First, IC with FB=3 performs well for all four
classes of trees. Second, non-IC with IB=1 suffers greatly
with the rise in computation-to-communication ratio. From
other simulations not displayed here, we observe that for
all protocols the startup time increases as the computation-
to-communication ratio increases. Furthermore, while IC
with FB=1 is inadequate with applications of any size, the
choice of using the IC protocol with 2 or 3 fixed buffers may
be based upon application size.

Median Buffers per
#tasks completed Maximum

x 100 1000 4000 Buffers

500 3 3 3 165
1,000 4 5 5 472
5,000 150 212 218 1535
10,000 551 560 561 1951

Table 2. Median and maximum number of
buffers used by non-IC, across various tree
classes and number of tasks completed.

Figure 6 shows that, with the higher computation-to-
communication ratios associated with the parameters cho-
sen for our simulations, significant subtrees actually re-
ceived tasks in the simulations. Figure 6(a) shows that it
was usually more than 50 nodes and Figure 6(b) shows the
typical sub-tree depth was around 18. There is a slight dif-
ference between the two protocols shown; the non-IC pro-
tocol occasionally used a larger or deeper tree than the IC
protocol with three buffers.

4.2.2. Buffer usage. Table 1 shows the relationship be-
tween the maximum number of buffers used and reaching
the optimal steady-state rate. The IC protocol required only
two buffers for all but 1.5% of the 25,000 trees, and every
7 in 10 of those remaining 1.5% trees required only three
buffers. (We note that the IC protocol also requires one
additional buffer per child to hold the partially-transmitted
data.)

However, the non-IC protocol required far more buffers.
For instance, Table 1 shows that even when the number of
buffers was limited to100, non-IC achieved the optimal
steady-state rate in only5.1% of the trees. Table 2 dis-
plays median and maximum numbers of buffers used by
non-IC with IB=1 across the four classes of trees with var-
ious computation-to-communication ratios. It shows that
rampant buffer growth is a problem for non-IC. With the
highest ratio tree class,(x = 10, 000), the maximum num-
ber of buffers used was1951. The lowest ratio tree class,
(x = 500), is the best situation of the four for non-IC. Even
though the worst-case increased to165, the median number
of buffers used was3.

4.2.3. Adapting to Changing Information. We contend
that autonomous, bandwidth-centric scheduling can adapt
to changes in the underlying network, since decisions are
made locally. To illustrate this potential we re-visit our
small model in Figure 1. We first simulate an application
consisting of 1000 fixed-size, independent tasks using our
non-interruptible protocol with two fixed buffers. We focus
our attention on nodeP1 with communication timec1=1
and processor work timew1=3. To simulate an increase
in communication contention, we changec1 to 3 after 200
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Figure 6. Tree characteristic comparisons between the enti re tree with all nodes and the subtree
composed only of usednodes (nodes that computed tasks during protocol simulatio n).

tasks are completed. Separately, to simulate a drop in pro-
cessor contention, after 200 tasks we changew1 to 1. Fig-
ure 7 shows these results.

Overall in Figure 7(a), we see that our protocol adjusts
its steady-state performance with each change in the under-
lying network. The details in Figure 7(b), show the optimal
steady-state performance for each instance of the network
using dashed lines (original, change in c1, change in w1)
along with the results of the simulation. Notice that for each
change, the protocol performance adapts to closely approx-
imate the optimal steady-state performance. This example
shows the potential of our protocols for coping with under-
lying changes in the computing platform. Of course, there
are many questions about speed of adapting and stability
that must be addressed in future work.

5. Related Work

The question of scheduling independent tasks onto het-
erogeneous sets of resources is a well known problem [18,
21, 16, 13, 26, 36, 23, 7, 2, 6, 9, 28, 4, 39], which has been
studied with various sets of assumptions concerning both
the application and the computing platform. Our work de-
parts from previous approaches in that we develop a dis-
tributed,autonomousscheduling strategy. The major ad-
vantage of our approach is that it accommodates large-scale
computing platforms on which centralized control is not
feasible. The notion of decentralized scheduling for par-
allel computing has been explored by a few authors. For in-
stance, the work in [22] presents a simple scheduling heuris-
tic based on a K-nearest neighboring algorithm; the works
in [30] and [19] study hierarchical job scheduling on meta-
computing systems. These works show that decentralized
scheduling compares favorably to centralized scheduling
with the added benefit of scalability. By contrast with our
work, these and other previous approaches consider only
two-level scheduling schemes. The need for decentralized
decision making and scheduling has perhaps been felt the
most in the peer-to-peer community and interesting work
has been done in the area of distributed storage applica-

tions [29, 27, 35]. Similar accomplishments have yet to be
achieved for applications that involve significant communi-
cations, and our work provides a fundamental first step.

Our work is related to a number of endeavors that pro-
vide usable software for deploying applications on large-
scale platforms [10, 1, 32, 12, 25]. At the moment, most of
these projects employ some flavor of centralized schedul-
ing. The works in [33, 17, 20] allow for the well-known
hierarchical master/worker scheme, which is strongly re-
lated to our work. However, hierarchical master/worker has
rarely been deployed in practice due to the lack of a decen-
tralized, autonomous scheduling methodology. Our work
provides such a methodology.

6. Conclusion and Future Work

In this paper we have investigated protocols for schedul-
ing applications that consist of large numbers of identical,
independent tasks on large-scale computing platforms. By
imposing a tree structure on an overlay network of com-
puting nodes, we had seen in our previous work that it is
possible to compute the schedule which leads to the op-
timal asymptotic performance (i.e. optimal steady-state
task completion rate). However, implementing this optimal
schedule in practice, without prohibitive global coordina-
tion of all the computing nodes, remained an open ques-
tion. To address this question we developed a number ofau-
tonomousscheduling protocols, i.e. distributed scheduling
algorithms by which each node makes scheduling decisions
based solely on locally available information. We have dis-
cussed such protocols in two different contexts: with non-
interruptible and with interruptible communications. We
have pointed at limitations of the non-interruptible com-
munication case in terms of prohibitive number of buffers
needed at each node and it’s low performance on trees
with higher communication-to-computation ratios. In or-
der to evaluate our different protocols we performed exten-
sive simulations. Our main finding was that an autonomous
protocol requiring only 3 buffers per nodes reaches the op-
timal steady-state performance in over 99.5% of our simu-
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Figure 7. Adaptability: Bandwidth-centric’s potential to adapt to communication contention (changes
in c1) and processor contention (changes in w1).

lations for the interruptible communication scenario. The
autonomous scheduling approach is inherently scalable and
adaptable, and thus ideally suited to currently emerging
computing platforms. In particular this work has direct im-
pact on the deployment of large applications on Grid and
peer-to-peer computing platforms.

One question we have not addressed is that of the tree
overlay network. Some trees are bound to be more effective
than others. In future work we will perform analysis, sim-
ulations, and real-world experiments to understand on what
basis the overlay network should be constructed. We will
also conduct simulations and experiments to assess the re-
silience of our scheduling approach to changes in resource
conditions and to dynamically evolving pools of resources.
Finally, we will implement prototype software that uses in-
terruptible communication and autonomous scheduling to
deploy real applications on real computing platforms.
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