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Abstract—Many parallel and distributed computing research
results are obtained in simulation, using simulators that mimic
real-world executions on some target system. Each such simulator
is configured by picking values for parameters that define the
behavior of the underlying simulation models it implements. The
main concern for a simulator is accuracy: simulated behaviors
should be as close as possible to those observed in the real-world
target system. This requires that values for each of the simulator’s
parameters be carefully picked, or “calibrated,” based on ground-
truth real-world executions. Examining the current state of the
art shows that simulator calibration, at least in the field of
parallel and distributed computing, is often undocumented (and
thus perhaps often not performed) and, when documented, is
described as a labor-intensive, manual process. In this work
we evaluate the benefit of automating simulation calibration
using simple algorithms. Specifically, we use a real-world case
study from the field of High Energy Physics and compare
automated calibration to calibration performed by a domain
scientist. Our main finding is that automated calibration is on
par with or significantly outperforms the calibration performed
by the domain scientist. Furthermore, automated calibration
makes it straightforward to operate desirable trade-offs between
simulation accuracy and simulation speed.

Index Terms—Simulation of distributed computing platforms
and applications, Simulation accuracy and scalability, Simulation
calibration.

I. INTRODUCTION

Much Parallel and Distributed Computing (PDC) research
relies on experimental results obtained by executing appli-
cation workloads on PDC platforms. Many published works
include results obtained in simulation, either in addition to or
as a replacement for results obtained from real-world experi-
ments. Simulation is attractive for several reasons. It makes
it possible to explore hypothetical workload and platform
configurations. It also yields results that are 100% reproducible
and observable. Finally, in most cases, simulation experiments
entail significantly less time, labor, carbon footprint, and/or
funds than their real-world counterparts. The main concern
with simulation is accuracy, that is, how well real-world and
corresponding simulated executions match.

Consider a PDC system that consists of some software
stack used to execute an application workload on a hardware
platform, and a simulator of this system. The simulator’s
underlying simulation models can operate at various levels of
abstraction. As an example consider a distributed file system
whose performance needs to be studied in simulation. A
simulator could be developed that simulates the system as
a black box server with some stochastic service time (high
level of abstraction), or as a set of daemons that perform I/O
operations on local disks and coordinate over the network
using some distributed algorithm (low level of abstraction).
Whenever data is sent to the distributed file system the time
necessary for that data transfer could be based on packet-
level simulation of network communications (low level of
abstraction) or computed as a data size divided by a bandwidth
(high level of abstraction). While low levels of abstractions can
potentially lead to high simulation accuracy they also typically
increase the space- and time-complexity of the simulator,
hence the well-recognized trade-off between simulation accu-
racy and simulation scalability (speed and memory footprint).

Regardless of their levels of abstraction, the simulation
models in a PDC simulator all come with configuration
parameters. These parameters pertain to the hardware platform
(e.g., network and disk bandwidths, CPU clock rates, cache
sizes), the software stacks (e.g., TCP window size, software
overhead to start a virtual machine instance, size of some
control messages), and the application workload (e.g., data and
compute volumes, task granularity, control/data dependencies).
Simulation models can be developed from scratch by simulator
developers themselves, who then define the set of relevant
parameters. Alternately, simulator developers can use simu-
lation models provided by simulation frameworks designed
specifically to ease PDC simulator development [1]–[9].

Different values for the parameters of the simulation models
used by a simulator of a target PDC system lead to different
simulated executions. It is thus critical that values be chosen
that make the simulation is as accurate as possible. Some
parameter values may be straightforward to determine, such



as the parameters that define the application workload. But for
others, typically those that pertain to the hardware platform,
picking good values can be challenging. A seemingly natural
approach is to pick values based on knowledge of the PDC
system. Unfortunately, these values may not be known to
the user (e.g., parameters that define the precise network
topology). Furthermore, if the simulator’s level of abstraction
is high, a single parameter value may not map directly to a
single known characteristic of the target system. For instance,
if a simulator abstracts a complicated network topology as
a single network link with a latency and a bandwidth, it is
difficult to come up with reasonable values for these two
parameters based on knowledge (assuming this knowledge
even exists) of the real-world network topology. A more sound
approach is instead to pick parameter values that maximize
simulation accuracy with respect to one or more execution
scenarios on a real-world system. We term this approach
simulation calibration. We say that simulation models, or
simulators that use these models, have been calibrated if
all parameter values have been determined so that simulated
executions are as similar as possible to ground-truth real-
world executions. The hope is that the calibrated simulator
will then achieve high accuracy when simulating executions
that go beyond the ground-truth executions used to calibrate
it (different application workloads, different platform scales,
different platform hardware characteristics, etc.).

Simulation calibration ensures that meaningful conclusions
can be drawn from simulation results obtained with PDC sim-
ulators. Yet, many research works present simulation results
without any mention of calibration, perhaps indicating that
it was not performed. This may be because these works use
simulators developed using some PDC simulation framework,
which come with built-in simulation models. These models
typically come with default parameter values, and these default
values may have been obtained based on calibration for some
particular real-world system (or averaged over calibrations for
multiple real-world systems). At any rate, there is no guarantee
that these default values will be appropriate for all possible
scenarios. Some works do mention calibration and give some
details about the calibration procedure, which is typically a
labor-intensive, at least partially manual, procedure.

We claim that, overall, calibrating simulators of PDC sys-
tems is challenging and often not performed (sufficiently or
sufficiently thoroughly) in practice. In this work, we verify this
claim based on inspection of the literature, and evaluate the
potential benefit of automating simulation calibration. More
specifically, our contributions include:

• An investigation of the state of the art of the calibration
of simulators of PDC systems;

• An instantiation of a general automated simulation cali-
bration procedure with simple algorithms;

• An evaluation of the benefit of automated simulation
calibration when compared to a calibration performed by
a domain scientist for a production use case.

This paper is organized as follows. Section II reviews related
work and attempts to characterize the state of the art of

PDC simulator calibration. Section III defines the simulation
calibration problem and describes our algorithms. Results are
presented in Section IV for a High Energy Physics production
use case. Finally, Section V concludes with a brief summary
and perspectives on future work.

II. RELATED WORK

A. Simulation of PDC Systems

Many frameworks have been developed for PDC system
simulation. Several have garnered sizable user communities
and are still actively being maintained at the time of writ-
ing [1]–[9]. Different frameworks achieve different compro-
mises between accuracy and scalability by implementing dif-
ferent kinds of simulation models. At one extreme are models
that are designed at low levels of abstraction to capture “mi-
croscopic” behaviors of hardware/software components, which
favors accuracy over scalability (e.g., packet-level network
simulation, cycle-accurate CPU simulation, block-level disk
simulation). At the other extreme are analytical models that
abstract away microscopic behavior and instead attempt to
capture “macroscopic” behaviors via empirical mathematical
models. While the latter models have lower space- and time-
complexity, they must be developed with care so that high
accuracy can be achieved [10].

This work is agnostic to the simulation framework used
to develop the simulator. However, if the simulation models
it provides have inherent inaccuracies (e.g., too high a level
of abstraction, implementation/design flaws), calibrating pa-
rameters optimally could still lead to low simulation accu-
racy. In Section IV, we employ a simulator developed using
WRENCH [8], [11], which implements high-level simulation
abstractions for easy development of simulators of PDC sys-
tems. WRENCH itself builds on top of SimGrid [9], [12],
which comes with implementations of simulation models that
are high-level enough to achieve high simulation scalability.
These simulation models have also been thoroughly vali-
dated [8], [10], [13]–[21], meaning that they can lead to high
simulation accuracy provided their configuration parameter
values are chosen appropriately.

B. Calibration of PDC Simulators

The lower a simulation model’s level of abstraction, the
more directly its parameters map to the characteristics of the
system to be simulated. Low-level simulation abstractions are
the norm in several fields such as computer architecture and
networking. For instance, many published networking research
results are obtained using packet-level simulators in which the
lifecycle of each individual network packet is simulated via
several, and possibly many, discrete events. The parameters
of the such simulation models map directly to the physical
characteristics of the network links and routers and to the
network protocol implementations in the target real-world
system to be simulated. It should thus be possible to pick
appropriate values for these parameters based solely on the
specification of the target system. However, many authors have



TABLE I
EXAMINATION OF 114 RESEARCH PUBLICATIONS IN THE 2017-2022 TIME PERIOD THAT INCLUDE RESULTS OBTAINED WITH SIMGRID.

# Publications that only include simulation results 85

No comparison thereof 4

# Publications that include both simulation and real-world results 29 Calibration perhaps performed or at best mentioned 15

Calibration performed and documented 10

found that doing so is challenging, and that calibration is
necessary for achieving high accuracy [22]–[26].

Hundreds of PDC research works have been published that
include results obtained with simulators built using various
simulation frameworks. Most of these frameworks do not im-
plement low-level simulation models. Instead, they implement
simulation models at high levels of abstraction to achieve
high scalability, i.e., to make the simulation of large-scale
and/or long-running execution scenarios feasible. Because of
these high levels of abstraction picking appropriate values
for simulation model parameters is even more challenging.
That is, there may be no one-to-one correspondence between
simulator parameters and system characteristics, meaning that
even perfect knowledge of the target system may not be suffi-
cient to pick appropriate parameter values. Instead, parameter
values should be determined base on calibration with respect
to ground-truth real-world executions.

Assessing the state of the art of calibration of PDC simu-
lators is difficult. But a popular PDC simulation framework,
SimGrid [12], maintains a list of research publications that
include results obtained using this framework (https://simgrid.
org/usages.html). At the time of writing, this list includes
610 publications, 114 of which are peer-reviewed journal or
conference/workshop publications for the 2017-2022 6-year
time period. As an attempt to assess the state of the art, we
have examined these 114 publications in detail to determine
how they perform simulator calibration (many authors refer
to calibration as “parameter picking” or “parameter tuning”).
Our results are summarized in Table I. Of the 114 publications,
85 include only simulation results, which likely indicates that
calibration was not performed. In some of these works the goal
is only to simulate a simplified model of an abstract system. In
others, real-world data is used as input to the simulation, but no
comparison with the real-world execution that has generated
that data is done (or can be done). In yet other works, the goal
is to simulate a system with hardware/software technology that
does not (yet) exist. One reason why many papers do not
include real-world results is because simulation is often used
precisely because such results cannot be obtained in practice.
In several of these works, however, the simulation is intended
to be representative of real-world systems. If calibration was
not performed it is not clear what these systems are.

29 of the 114 works we have reviewed include both
simulation and real-world results. We use a broad definition
of the term “real-world”, which includes not only results
obtained on real-world hardware platforms, but also results
obtained using emulation and results obtained using low-level

simulation (e.g., results obtained using packet-level simulation
of networks). 25 of these 29 works perform or allow com-
parison of simulation and real-world results. 15 of these 25
works either do not detail any calibration procedure or merely
mention that picking better simulation parameters improves
accuracy. Some of these works, however, present simulation
results that exhibit high accuracy, which may indicate that
calibration was performed even if not mentioned.

Overall, out of the 114 publications we reviewed only 10
are explicit about performing some calibration and give some
details. Half of these describe manual painstaking procedures
by which simulation parameter values are picked based on
quantitative and qualitative comparisons of real-world and
simulation execution logs and metrics, and sometimes on
inspecting the source code of the target system’s software
stacks. The other half do perform similar procedures but also
rely on simple statistical techniques (i.e., regressions). It is
important to note that, for 8 of these 10 works, the main
research contribution is a novel simulation model. Calibration
is thus necessary to validate this simulation model. In the
end, among the 106 publications that target a non-simulation-
related research topic, we found only 2 that performs a solid
and documented calibration procedure so as to ensure that
simulation results are accurate.

The above discussion indicates that simulator calibration is
likely not performed routinely in the PDC field. Parameters
may be picked based on best guesses or simply by using the
default values for models provided by simulation frameworks.
These defaults can come from calibration with respect to
some real-world systems available to the developers of the
simulation framework (as it is the case with SimGrid). Con-
sequently, published simulation results obtained using default
parameter values may be valid for some system configurations,
but not necessarily for that of the particular system of interest.
Furthermore, not all simulation models are provided by the
simulation framework, and custom models are also developed
for each particular simulator. These custom models may not
come with any (calibrated) default parameter values. Finally,
we find that those works that perform simulation calibration
typically employ labor-intensive, partially manual, procedures.

All the above provides a strong motivation to automate PDC
simulator calibration, which, to the best of our knowledge, has
not been reported in the PDC literature. The general ideal of
simulation model parameter calibration is of course not new,
and has been studied from theoretical standpoints [27]. It is
thus not surprising that automated calibration approaches have
been proposed in many disciplines [28]–[30].

https://simgrid.org/usages.html
https://simgrid.org/usages.html


III. AUTOMATED CALIBRATION

A. Problem Statement

We define a PDC system as: (i) a hardware platform with
compute and I/O resources distributed over a network; (ii) an
application workload that consists of compute tasks that use
and produce data items; and (iii) a runtime system that is
used to execute the workload on the platform. Consider a real-
world such system on which the application workload has been
executed repeatedly and perhaps for different configurations
of the system (e.g., different subsets of the resources, differ-
ent application workload instances, different runtime system
configurations). Each such execution produces a ground-truth
execution trace, i.e., a log of time-stamped execution events,
such as compute task start times and completion times.

Consider now a simulator of the system that implements
several simulation models each of which can be configured
via parameters. In practice parameters can take many possible
values (e.g., the bandwidth of a network link in MBps, the
compute speed of a core in GHz, the maximum number of
supported concurrent connections outgoing from a data server)
or only a few (e.g., a binary value that specifies whether
some feature of the runtime system is enabled). The simulator
is implemented so that it takes as input a set of parameter
values and produces an execution trace that is comparable to
a ground-truth execution trace. This comparison is done via a
user-defined metric that quantifies the discrepancy between a
simulated and a ground-truth execution trace as a measure
of simulation accuracy. The simplest simulation accuracy
metric is the relative makespan difference, that is, the relative
difference between the time elapsed between the start of the
first task and the completion of the last task in the ground-truth
and in simulation.

Given a PDC system, a set of ground-truth execution
traces, a simulator of the system, and a simulation accuracy
metric, calibration is the optimization problem that consists in
determining the simulator’s parameter values that optimize the
simulation accuracy metric.

The simulator developer must specify the range of possible
values of each parameter. The narrower these ranges the more
constrained the search space, but the higher the risk that
the best parameter value lies outside that range. Simulator
developers specify ranges based on their best guesses and
knowledge of the target system, but in practice some parameter
ranges could be large. For all results in this work we use a
logarithmic representation of each parameter. That is, each
parameter with a user-specified range [a, b] is written as 2x

and x is sampled in the interval [log2 a, log2 b]. The rationale
is that by sampling values logarithmically, we ensure a big-
ger diversity of orders of magnitudes within the parameter
range. For instance, consider a parameter that describes the
bandwidth of some network link. Sampling values of, say,
10 Mbps and 11 Mbps is likely useful, but sampling values
of, say, 100,000 Mbps and 100,001 Mbps probably is not.

Evaluating the objective function entails executing the
simulator with sets of candidate parameter values, but the

simulator’s execution time is non-zero and could be relatively
large. For this reason we assume that there is a fixed bound
T on the time allotted to the calibration procedure. We use a
time bound rather than a bound on the number of simulator
invocations because the value of some parameters can impact
the simulator’s space- and time-complexity.

B. Calibration Algorithm Implementations

Many algorithms can be used for solving the simulation
calibration problem. These include simple searches, standard
optimization algorithms such as gradient descent, genetic
algorithms, or Machine Learning algorithms such as Bayesian
optimization. Our goal in this work is not to determine which
level of algorithm sophistication is sufficient. The answer to
this question is likely highly dependent on the use case at
hand (simulated system, simulator execution time, number
of parameters to calibrate). Instead our primary goal is to
determine if even simple optimization algorithms can improve
upon the state of the art of manual simulator calibration. We
consider the following such algorithms:

• Grid Search (GRID) – This algorithm evaluates all
parameter combinations by subdividing the parameter
space evenly in each parameter range. As the number
of subdivisions is not known in advance, each time all
current subdivisions of the range have been sampled, a
new set of points to sample is determined using the mid-
points between each pair of already sampled points. The
initial ranges are the parameter value bounds provided
by the simulator developer. Thus, given p parameters to
calibrate, each parameter can take one of approximately
p√
N (evenly spaced) values in its range, where N is the

total number of simulation invocations completed before
the time bound T has been reached.

• Random search (RANDOM) – This algorithm simply
evaluates sets of random parameter values, where each
value is sampled uniformly in its parameter range.

• Gradient Descent – This algorithm uses a random
starting point in the parameter space. At each iteration the
gradient is approximated by sampling points a distance δ
away along each dimension. A standard backtracking line
search is then used to compute the “learning rate,” i.e.,
by how much to move along the gradient to determine
the next point that should be sampled. When the change
in the objective function between two iterations is less
than ϵ, the current search path is terminated, and a new
starting point is randomly selected. For all results in this
paper we use δ = 0.0001 and ϵ = 0.01. For completeness,
we did consider two variations of this algorithm:
1) Dynamic (GDDYN) – At each iteration the value of δ

is updated to be the learning rate determined by the
backtracking line search;

2) Fixed (GDFIX) – The value of δ remains constant
regardless of the learning rate.



In all our experimental results these two variants lead to
almost always identical simulation accuracy. Hence, in all
that follows the results for GDDYN are omitted.

In all the above, random numbers are generated using a
pseudo-random number generator seeded with the same seed.
In our experiments all algorithms use the same bound T = 6
hours. Each algorithm executes one simulation on each core
of a dedicated 2.5GHz Intel Xeon Gold 6248 40-core CPU.

IV. CASE STUDY

A. Context and Objective

In this section we present a case study for an application in
the field of High Energy Physics (HEP). Distributed computing
platforms are used to support the high compute and storage
demands of many HEP applications, for processing data gen-
erated by the Large Hadron Collider (LHC) experiments and
simulations. Specifically, we consider the processing of data
generated by LHC experiments conducted for the Compact
Muon Solenoid (CMS) collaboration [31], which, in 2022,
required ∼415PB of tape storage and more than 1.94 billion
CPU-hours. The generated data, which describes particle col-
lision events, can be split into chunks that can be processed
and stored independently of each other. The processing of
one event entails multiple data reduction/transformation steps
until a final analysis step produces an output that can be
stored on a single computer and analyzed to generate scientific
results. This data processing workload is performed on a
multi-site distributed computing platform, the Worldwide LHC
Computing Grid (WLCG) [32], using various software infras-
tructures, such as HTCondor [33] for distributing computation
and XRootD [34] for distributing storage.

Researchers need to estimate the execution times of current
HEP workloads of interest on (subsets of) WLCG to plan ex-
periments, to explore various hardware resource provisioning
options, and to ensure that future CMS workloads can achieve
acceptable performance. A key performance driver of scientific
distributed computing applications is data locality, and HEP
workloads are no exception. XRootD, which is deployed on
WLCG, makes it possible to deploy data caches (called “proxy
storage services”) that can perform in-memory or on-disk
caching. CMS researchers need to compare different cache
deployment options in terms of the performance boost that
caching can bring to current and future workloads. The main
objective is thus to explore the large design space of combi-
nations of hardware resource provisioning, cache deployment,
and scheduling options, as well as workload configurations.
Achieving this objective via real-world experiments would be
too resource-consuming, especially since WLCG is used daily
in production for running critical workloads. Also, real-world
experiments cannot be used to explore hypothetical (future)
scenarios. As a result, this objective can only be achieved by
conducting simulation experiments.

B. Methodology

Simulator – We have developed a simulator [35] in C++
using the WRENCH and SimGrid simulation frameworks (see

TABLE II
HARDWARE PLATFORM CONFIGURATION SPECIFICATIONS.

Platform RAM page cache WAN interface

SCFN disabled 10 Gbps

FCFN enabled 10 Gbps

SCSN disabled 1 Gbps

FCSN enabled 1 Gbps

Section II-A). The simulator takes as input a description of a
workload to execute and of the WLCG platform on which
to execute it. A workload consists of a set of independent
jobs, where each job consists in reading input files of given
sizes, performing some volume of computation per byte of
input, and writing an output file of a given size. The user can
specify data and compute volumes either as constant values
or as probability distributions from which values are sampled.
A hardware platform consists of multiple sites interconnected
over a wide-area network. One or more of these sites hosts
a storage service that stores all initial input data for all jobs.
Each site comprises multi-core compute nodes, each of which
can use its local disk to cache input data. The simulator takes
as input a number between 0 and 1, called the ICD (Initially
Cached Data), that denotes the fraction of input files that
are initially stored in these caches. These compute nodes are
interconnected via a local network.

Ground Truth Data – Ground-truth data was obtained with a
workload that comprises 48 jobs, where each job takes 20 files
as input, each of size of ∼427MB. This workload was executed
on WLCG using one compute site and a remote storage size,
interconnected together via a wide-area network. The compute
site hosts three compute nodes that are homogeneous, but two
of these nodes have 12 cores while the third one has 24 cores.
All three nodes host a local HDD cache, and are connected
together via a local network. This platform configuration is
depicted in Figure 1. The workload was executed for ICD
values ranging from 0 to 1 in 0.1 increments.

Each execution of the workload on the platform was con-
ducted for 4 different configurations of the hardware platform.
Specifically, two different network interfaces can be used for
the compute site to connect to the remote storage site (1 Gbps
or 10 Gbps), and at each compute node the use of an in-
RAM disk cache (the Linux Page Cache) can be enabled or
disabled. These platform configurations are summarized in
Table II (FC and SC stand for Fast Cache and Slow cache,
respectively, and FN and SN stand for Fast Network and Slow
Network, respectively). We treat each of these configurations
as a different platform and perform simulation calibrations
independently. Because they correspond to different ground
truths with different hardware configurations, they cannot be
used as a larger aggregated dataset that can be used for
computing a single calibration. This is because our calibration
parameters pertain to the platform hardware characteristics, as
described hereafter.
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Fig. 1. Execution platform.

Calibration Parameters – In this case study the goal is to
calibrate the following four simulation parameters, which are
depicted also in Figure 1:

• Compute node core speed (flop/sec);
• Disk bandwidth (bit/sec);
• LAN bandwidth (bit/sec); and
• WAN bandwidth (bit/sec).

Although the simulator takes as input core speed floating point
operations per second, these are better understood as work unit
per second, where the work unit is application-specific. The
simulator comes with two other parameters (which we con-
sider in SectionIV-C4). The SimGrid and WRENCH frame-
works provide simulation models configurable via hundreds
of parameters (for which we use the default values these
frameworks provide). As a result, our parameter search space
has low dimension, which is why one can expect the simple
algorithms in Section III-B to perform well.

Accuracy Metric – The domain scientists intending to use this
simulator to achieve the objectives outlined in Section IV-A
have identified performance metrics of interest. These are the
the average job execution times for each of the 3 compute
nodes at the compute site and for each of the 11 ICD values,
for a total of 33 metrics. In this case study we consider a single
aggregate metric to quantify simulation accuracy: the Mean
Relative Error (MRE), in percentage, of these 33 metrics. A
lower MRE value means a better accuracy.

Domain Scientist Calibration – In this case study we quantify
the improvement that automated calibration can bring w.r.t. a
calibration performed manually by a domain scientist. This
manual calibration was performed by the second author of
this paper. The approach was incremental. First, the core
compute speeds were calibrated based on ground-truth data
obtained from FCFN (to 1,970 Mflops), so as to minimize the
overhead of network and I/O operation. Second, the external
network bandwidth was calibrated for SCSN and FCSN (to
1.15 Gbps). For SCFN and FCFN, it was assumed that
the same ratio of effective bandwidth to hardware-specified
bandwidth applies, and thus the external network bandwidth

was set to 11.5 Gbps (10x higher than for SCSN and FCSN).
Third, the bandwidth of the HDD caches was calibrated
based on SCFN (to 17 MBps). Some other parameter values
were not calibrated, but their values were determined based
on knowledge of the platform and simple benchmarks (and
variations of these values were observed to have negligible
impact on the simulation). These parameter values are: the
internal network bandwidth (set to be 10 Gbps) and the Linux
page cache speed (set to 1 GBps).

The manual calibration was done by starting from an initial
guess (based on hardware specifications) and searching for
a value in a neighborhood of this guess until a good match
between the ground-truth data and the simulated data was
observed. For the network bandwidths, the ground truth data
exhibits low variance across job execution times, and there
is negligible difference between the ground-truth data and
the data obtained in simulation when using the calibrated
parameters. For the HDD cache speed, there is higher variance
across job execution times, especially at high ICD, due to more
concurrent HDD reads to the cache. HDD effects (e.g., seek
times) are not modeled by the simulator, and as a result the
simulator does not produce the same variance. The calibration
was performed to match the simulated data to the average of
the ground-truth data. All details on this manual calibration
procedure, which we denote as HUMAN, are available in [36].

Parameter Ranges – As explained in Section III-A, our auto-
mated calibration procedure requires that a range of possible
values be specified for each parameter. In this case study, all
parameters are given the same 220 - 236 range. This range was
determined loosely based on reasonable expectations regarding
hardware specifications, assuming that no specific knowledge
of the platform is available.

C. Results

1) Simulation Accuracy: Table III shows MRE values for
all calibration methods. The first observation is that the auto-
mated calibration methods almost always improve on HUMAN
for all platforms. The exception is GRID for the SCFN
platform, which leads to MRE higher than HUMAN by less



TABLE III
MRE FOR CALIBRATION METHODS AND PLATFORMS.

Platform

SCFN FCFN SCSN FCSN

M
et

ho
d

HUMAN 23.21% 274.20% 18.48% 196.24%

RANDOM 22.07% 1.02% 14.69% 4.20%

GRID 24.10% 3.08% 16.72% 8.48%

GDFIX 22.90% 1.50% 15.83% 6.59%

than a point. The improvement is by only a few points for
SCFN and SCSN, but more than 150 points for FCFN and
FCSN. For these last two platform configurations recall that
the manual calibration procedure simply assumes the value for
the Linux page cache speed to be 1 GBps (see Section IV-B.
This is likely the cause for the high MRE values, as the
automated calibration methods compute values that are higher
by ∼10x. The poorest performing algorithm is, expectedly,
GRID. But we note that all our algorithms lead to similar MRE.
This is because our search space is of low dimensionality and
even simple algorithms, such as GRID and RANDOM, are able
to find a good calibration. GDFIX is not significantly more
effective because the objective function is “mostly flat” along
several dimensions (for parameters that do not pertain to a
bottleneck resource, as explained in the next section).

2) Bottleneck Resources: Although our algorithms lead to
similar simulation accuracy, they actually compute quite dif-
ferent calibrations. Table IV shows calibrated parameter values
computed by all calibration methods for platform SCSN. We
observe that all methods compute very similar values for
the disk bandwidth parameter (between 16 and 17 MBps).
However, for some of the other parameters, the computed
values can be wildly different. For instance, the values for
the WAN bandwidth range from 0.27 Gbps to 57 Gbps, while
the actual value is likely around 1Gbps. The reason is that the
performance of the workload whose execution is simulated
is driven by a single bottleneck resource. Parameter values
pertaining to other resources thus have little impact on the
simulated execution. In SCSN, the bottleneck for our ground-
truth workload is the disk because the Linux page cache is
disabled. The same observation can be made for the other
three platforms, where all algorithms compute almost the same
parameter value for the relevant bottleneck. Note that the
HUMAN calibrations (for each platform) have values that are
likely more accurate for non-bottleneck resource parameters
due to the incremental manual calibration approach described
in Section IV-B, which benefits from specific knowledge that
the domain scientist has regarding platform configurations.

The problem with the above is that the computed cali-
brations are not generalizable to all application workloads.
That is, the calibrated simulator is valid only to simulate the
execution of workloads that would experience the same perfor-
mance bottleneck as the ground-truth workload. Specifically,
our calibrated simulator (using any of our algorithms), is only
valid for simulating the execution of workloads with the same

ratio of compute to data volumes as the ground-truth workload.
For these workloads, the simulator is useful as it produces
valid results for simulating configurations with more or fewer
jobs, with more of fewer compute nodes and/or cores, and
with different ICD values.

There are two solutions, which can be combined, for making
calibrations generalizable to workloads with a range of ratios
of compute to data volumes. The first solution would be the
use of more ground-truth data obtained from the execution
of workloads with different enough such ratios that they
experience different bottlenecks when executed on the same
platform. In this case study, however, the domain scientist
collected ground-truth data for only one workload. The reasons
are: (i) producing a calibrated simulator for this workload only
is still useful, as explained above; and (ii) collecting ground-
truth data is labor-, time, and energy-consuming. To allow
for a fair comparison between the HUMAN calibration and
our automated calibration approach, our calibration algorithms
use that same ground-truth data. The second solution would
entail defining and using a simulation accuracy metric whose
value is not solely driven by parameter values that pertain
to the bottleneck resource. The metric used in this case
study (defined in Section IV-B) is an aggregate metric that
does not capture the temporal structure of the workload’s
execution, but only takes into account average job execution
times. As a result, the durations of activities (computations,
I/O operations, network communications) that do not execute
on the bottleneck resources (but execute concurrently with
activities that do execute on these resources) have no impact
on simulation accuracy. A metric that captures the duration of
these activities would instead force the calibration algorithms
to calibrate more than just the parameters that pertain to
bottleneck resources. Such a metric could include, for instance,
a measure of the discrepancy between the start and/or end
times of all data transfers, I/O operations, and computations.

The questions of which level of diversity of ground-truth
data is necessary and which accuracy metric is sufficient to
ensure that automated calibration algorithms produce general-
izable calibrations are beyond the scope of this paper and left
for future work. Answering these questions will require con-
ducting multiple case studies for different application domains
and collecting new ground-truth data.

3) Using Less Ground-Truth Data: As seen in the previous
section, more diverse ground-truth data is needed to obtain
calibrations that are valid for the full spectrum of application
workload configurations. Given our available ground-truth data
in this case study, in all that follows we limit our scope to
workloads that have the same compute-data ratio as that of the
ground-truth workload. But within this scope, one may then
wonder whether good calibrations can be computed automat-
ically using less ground-truth data. Specifically, an interesting
question is whether good calibrations can be computed based
on only a subset of the ICD values. If using less ground-
truth data is feasible, then the result is time, labor, and energy
savings for the overall simulation calibration procedure.

To answer the above question we use one of our algorithms



TABLE IV
CALIBRATED PARAMETER VALUES FOR PLATFORM SCSN.

Core speed Disk bandwidth LAN bandwidth WAN bandwidth

HUMAN 1,970 Mflops 17 MBps 10.0 Gbps 1.15 Gbps

RANDOM 823 Mflops 17 MBps 6.1 Gbps 21.0 Gbps

GRID 1,073 Mflops 17 MBps 17.0 Gbps 0.27 Gbps

GDFIX 778 Mflops 16 MBps 2.5 Gbps 57.0 Gbps

TABLE V
BEST, MEDIAN, AND WORST MRE WHEN CALIBRATING USING SUBSETS

OF THE ICD VALUES USING GDFIX FOR PLATFORM FCSN.

# ICD values # Subsets Best Median Worst

1 5 20.51% 52.00% 7008.44%

2 10 4.20% 5.52% 21.10%

3 10 4.20% 4.20% 10.02%

11 1 6.59% 6.59% 6.59%

(GDFIX) to compute calibrations when using subsets of a 5-
element set of ICD values {0.0, 0.3, 0.5, 0.7, 1.0}. Table V
shows results for calibrating using all five 1-element subsets,
all ten 2-element subsets, and all ten 3-element subsets. The
last row of the table shows results when using all 11 ICD
values for calibration, as done in the previous section. These
results are for platform FCSN (results are similar for other
platforms). We do not show results for each individual subset,
but show instead the best, median, and worst MRE values over
all subsets with the same cardinality.

When calibrating using one ICD value the MRE range
is 20.51%-7,008.44%, with the worst MREs (higher than
5,000%) obtained when calibrating based on one of the two
extreme ICD values 0.0 and 1.0. This is expected as with these
values the caching behavior is markedly different than that
with intermediate values. Calibrating using only one of these
intermediate values leads to MRE between 20.5% and 52.0%,
with the lowest MRE values achieved when calibrating based
on ICD 0.5. When using two ICD values the MRE improves
drastically. Although the worst MRE is at 21.10%, the median
is at 5.52%. In fact, only one of the ten possible subsets leads
to MRE above 9%, for subset {0, 0.3}. When using three ICD
values, the worst MRE improves to 10.02%. Here again, the
median is equal to the best. Only subset {0, 0.3, 0.5} leads to
MRE above 7%. In these results, when using 2- or 3-element
subsets, the worst performing subset is always the one that
includes only the smallest ICD value. As long as there is
reasonable diversity in ICD values, e.g., some below 0.5 and
some above 0.5, the automated calibration based on two or
three ICD values leads to accuracy on par with that obtained
when calibrating with all 11 ICD values.

Calibrating using n ICD values can lead to better accuracy
than calibrating with n′ > n ICD values, i.e., using less
ground-truth data. For instance, the best MRE value when

using all 5 ICD values is 6.59%, but is 4.20% when using
2 or 3 ICD values. The main reason is that the same amount
of time T is allotted to the calibration procedure regardless of
how many ICD values are used. Evaluating the accuracy of
a calibration requires n′/n fewer simulator invocations when
using n ICD values as opposed to n′ ICD values. Thus using
fewer ICD values makes it possible to explore the parameter
space more thoroughly within time T .

We conclude that as long as a reasonably diverse set of
ground-truth data is used, good calibrations can be computed
even when using relatively few values. Nevertheless, in the
following sections results are presented for calibrations com-
puted using all 11 ICD values.

4) Trade-off between Speed and Accuracy: Our simulator
takes as input more parameters than the four that we have
calibrated in previous sections. We now consider two specific
additional parameters. The first parameter is the XRootD block
size, B. Each file in XRootD, like in most storage systems,
is partitioned into blocks. The jobs in the workload process
input files block by block, so that reading and processing data
is done in a pipelined fashion. The second parameter is the
buffer size, b, which specifies the internal buffer size used by a
storage service, for the purpose of pipelining I/O and network
operations, as done in production storage systems.

The B and b parameters correspond to software configu-
ration parameters in the real-world system. Picking realistic
values for them could be done by inspecting the system’s
configuration files. This was not done for the WLCG platform
for this case study but, regardless, values are likely a few MBs
or on the order of KBs (e.g., the default XRootD block size is
2MB). These parameters drive the number of discrete events
that must be simulated. Given a job in the workload that needs
to process s bytes of data, the number of simulated events for
this job’s execution is O(s/B + s/b)). If B and/or b are low
relative to s, the simulation time can become prohibitively
high. Hence, for these two parameters the goal is not to find
values that are as realistic as possible. Instead, the goal is to
set the values of these parameters so that the simulation time
is below some user-defined threshold and then calibrate all
other parameters automatically. The question is whether this
calibration can still lead to good simulation accuracy. In other
words, can the automated calibration of the other parameters
compensate for the potential loss of accuracy due to simulating
the execution at a higher granularity (i.e., larger block and
buffer sizes) than the real-world system?

To answer this question we consider four combinations of



B and b values, so that the average simulation time is ∼1 sec
(B = 1010 byte, b = 108 bytes), ∼3 sec (B = 109 bytes,
b = 107 bytes), ∼30 sec (B = 108 bytes, b = 106 bytes), or
∼5 min (B = 107 bytes, b = 105 bytes). We then run our
automated calibration procedure for platform FCSN for each
of our algorithms. In all other sections we use B = 108 bytes
and b = 106 bytes (for ∼ 30-sec simulation times).

TABLE VI
MRE VS. AVERAGE SIMULATION TIME FOR PLATFORM FCSN.

Sim. time GDFIX GRID RANDOM

∼1 sec 3.13% 4.50% 2.93%

∼3 sec 4.26% 10.85% 3.26%

∼30 sec 6.59% 8.48% 4.20%

∼5 min 13.58% 28.33% 4.02%

Table VI shows MRE vs. average simulation time for our
three algorithms. In general we observe that MRE increases as
the simulation time increases. But there are some exceptions:
GRID leads to higher MRE with 3-sec simulation times than
with 30-sec simulation times; and RANDOM leads to higher
MRE with 30-sec simulation times than with 5-min simulation
times. This may seem surprising given that all simulation
parameter values that are sampled when using the longer
simulation time are also sampled when using the shorter
simulation time. However, simulation parameters that lead to
low MRE for particular B and b values may lead to high
MRE for different B and b values. For instance, the best found
calibration that achieves an MRE of 8.48% with B = 108 and
b = 106 (30-sec simulation time), leads to an MRE of 30.42%
when used with B = 109 and b = 107 (3-sec simulation time).

Regardless, the key observation is that for all algorithms
the best MRE is achieved for the fastest simulation time, i.e.,
for the largest B and b values With larger B and b values
the simulation has a much higher granularity than the real-
world system, which would seem to imply worse accuracy.
However, with these large values the simulation time is short,
meaning that the calibration procedure can better explore the
parameter space, allowing it to find parameter values that lead
to better accuracy in spite of the higher granularity. A lower
granularity in the real-world system means better utilization
of the hardware resources due to finer-grain pipelining of I/O,
network, and compute activities. Pipelining thus increases the
effective speed of I/O, network, and compute resources for
each job. In simulation this same increase can be achieved
instead by using a higher granularity and at the same time
increasing the speed of the corresponding simulated hardware
resources, at least within some bounds. In this case study,
doing so allows the user to obtain a calibrated simulator
that is both fast and accurate. Because our calibration pro-
cedure is automated, it would be straightforward for users of
the simulator to explore the accuracy-speed design space to
achieve whatever user-specific trade-off is the most desirable.
Making this determination manually would be prohibitively
labor-intensive.
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Fig. 2. Absolute simulation error vs. time for platform FCSN.

5) Impact of the Time Bound T : All previous results were
obtained for an arbitrarily fixed calibration time bound T of
6 hours. Figure 2 plots absolute simulation error vs. time, for
time up to 24 hours, for platform FCSN (results are similar
across all platforms). These results are obtained using B = 108

and b = 106 bytes for the XRootD block size and buffer size
parameters, for which the simulation time is ∼30 sec.

As expected, all curves are non-increasing, with a very
sharp initial decrease. GRID leads to the worst results with
the slowest convergence. RANDOM converges the most rapidly
and leads to the lowest error overall. GDFIX is in between.
Some improvements can be achieved by setting T > 6 hours,
especially for RANDOM and GDFIX, with both algorithms
converging to similar error values. Using a shorter T ∼3 hours
would have produced only marginally higher errors than with
T = 6 hours.

V. CONCLUSION

We have shown that the state of the art of PDC simulator
calibration comprises undocumented and/or labor-intensive ad-
hoc approaches, which motivates for developing automated
calibration methods. Via a case study from the field of High
Energy Physics, we have demonstrated that even simple algo-
rithms can be used to improve upon a calibration computed
by a domain scientist. We have also shown that this can be
achieved with reduced amounts of ground-truth data, and that
automated calibration makes it possible to achieve desirable
trade-offs between simulation speed and simulation accuracy.

A clear future direction is to augment our case study and
to perform case studies for other PDC systems and simulators
thereof. Doing so will allow investigating which amount and
diversity of ground-truth data, and which accuracy metric def-
initions, are sufficient to compute calibrations that are robust:
the calibrated simulator should yield accurate results for the
full spectrum of possible application workload configurations.
In our case study in this work we have kept the calibration
parameter space at only 4 dimensions. But in practice, for



this and other case studies, it could be much larger with
with hundreds of parameters. The simple algorithms we have
considered in this work will likely no longer be effective,
and another clear future direction is the use of Machine
Learning algorithms. In particular, Bayesian Optimization is
an attractive proposition as it is highly effective for optimizing
black-box functions that are relatively expensive to evaluate,
such as simulation accuracy metrics whose evaluation entails
invoking a simulator.
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