Determining Levels of Detail for Simulators of Parallel and
Distributed Computing Systems via Automated Calibration

Jesse McDonald
Information and Computer
Sciences
University of Hawai‘i at Manoa
Honolulu, Hawai‘i, USA

Frédéric Suter
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Ewa Deelman
Information Sciences Institute
University of Southern California
Marina Del Rey, California, USA

Abstract

There are two sources of inaccuracy when simulating parallel
and distributed computing systems: (i) a simulator imple-
mented at an insufficient level of detail; and (ii) incorrectly
calibrated simulation parameter values. Increasing the simu-
lator’s level of detail can improve accuracy, but at the cost of
higher space, time, and/or software complexity. Furthermore,
evaluating the intrinsic accuracy of a simulator requires that
its parameters be well-calibrated. Making decisions regarding
the level of detail is thus challenging. We propose a method-
ology for instantiating the simulation calibration process and
a framework for automating this process, which makes it
possible to pick appropriate levels of detail for any simulator.
We demonstrate the usefulness of our approach via two case
studies for two different domains.

Notice: This manuscript has been authored in part by UT-Battelle,
LLC under Contract No. DE-AC05-000R22725 with the U.S. De-
partment of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, ir-
revocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PMBS’25, St. Louis, MO

(© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1871-7/2025/11
https://doi.org/10.1145/3731599.3767698

Yick-Ching Wong
Information and Computer
Sciences
University of Hawai‘i at Manoa
Honolulu, Hawai‘i, USA

Rafael Ferreira da Silva
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Kshitij Mehta
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Loic Pottier
Lawrence Livermore National
Laboratory
Livermore, California, USA

Henri Casanova
Information and Computer
Sciences
University of Hawai‘i at Manoa
Honolulu, Hawai‘i, USA

CCS Concepts

¢ Computing methodologies -+ Modeling and simu-
lation; Simulation tools; Parallel computing method-
ologies; Distributed computing methodologies.

Keywords

Simulation of parallel and distributed computing systems,
simulation accuracy, simulation calibration

1 Introduction

Parallel and Distributed Computing (PDC) research often
involves executing application workloads on hardware plat-
forms. Many researchers resort to simulating these executions
because simulation makes it possible to explore hypothetical
scenarios, can yield 100% reproducible results, and can re-
quire less time, labor, carbon footprint, and/or funding. The
main concern with simulation is accuracy, i.e., how represen-
tative simulated executions are of ground-truth, real-world
executions. A common way to improve simulation accuracy
is to increase the level of detail at which real-world behaviors
are simulated. But doing so incurs costs (higher space, time,
and/or software complexity), raising the question: at which
level of detail should a simulator be implemented? [48]
Consider a PDC system of interest and a simulator of that
system. Key questions are whether the simulator can achieve
some desired accuracy at its current level of detail, whether
a higher level of detail is required, or whether a lower lever of
detail is tolerable. Answering these questions is challenging
because simulation error not only comes from the imple-
mented level of detail, but also from possibly incorrect values
of the user-selected parameters that define the behavior of
the simulation models. To evaluate the intrinsic accuracy of a
simulator soundly, these values must themselves be accurate.
Unfortunately, selecting accurate values, or calibrating [52]

https://doi.org/10.1145/3731599.3767698

PMBS’25, Nov. 16, 2025, St. Louis, MO

the parameters, is a non-trivial optimization problem with
dimensionality in the number of parameters. Thus, there is
a tension that further deepens the above challenge: increas-
ing the level of detail can improve simulation accuracy, but
often introduces more parameters, which makes simulation
calibration more difficult [49].

To address the above challenge we propose to use auto-
mated simulation calibration, making the following contribu-
tions:

McDonald, Wong, et al.

e A general, automated simulation calibration frame-
work;

e A methodology for instantiating this framework to
evaluate the intrinsic accuracy of a simulator;

e A demonstration of the usefulness of this methodology
for two domains in which simulation is used routinely:
(i) scientific workflows; and (ii) message-passing appli-
cations.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Sections 3 and 4 detail our approach,
which we evaluate via two case studies in Sections 5 and 6.
Section 7 concludes with a summary of results and future
work.

2 Background and Related Work

Many frameworks are available for developing PDC simu-
lators. Some implement high levels of detail, often using
Parallel Discrete Event Simulation [28] to increase simula-
tion scalability [10, 13, 43, 51], while others implement lower
levels of detail [9, 11, 15, 37, 40, 44, 53, 57]. The choice of a
particular simulation framework impacts the level of detail of
the base simulation abstractions and models. But a simulator
can use these abstractions and models in arbitrary ways. For
instance, although a simulation framework may provide ways
to simulate the network topology at a high level of detail, a
simulator could opt for a low level of detail by abstracting
away the entire network as a single shared “macro” network
link. In general, a simulator can implement different levels
of detail for simulating different components of a system,
somewhat independently of the simulation framework used.
Picking an appropriate level of detail for a simulator is chal-
lenging in general [8, 18] and thus also for simulators of PDC
systems [5, 12, 24, 46, 47, 54]. In this work, we tackle this
challenge via automated simulation calibration.

The need to calibrate model parameters with respect to
ground-truth experimental data has long been recognized [52].
Calibration may seem unnecessary when simulating computer
systems since simulation parameter values should come di-
rectly from hardware/software specifications. Previous re-
search shows this not to be the case, even when simulating
at high levels of detail [27, 29, 34, 39]. The lower the level
of detail, the more abstract the simulation models and their
parameters, whose correct values are then complex functions
of the hardware/software specifications. To the best of our
knowledge there is no standard calibration method for simu-
lators of PDC systems. In [41], we have reviewed 114 research
publications that include results obtained with a particular
PDC simulation framework, and found that calibration is
typically not performed nor documented. When documented,
authors typically describe labor-intensive, use case-specific,
and manual procedures. In some cases, authors use tech-
niques such as linear regressions or gradient descent to pick
parameter values for simulated components [20, 31].

In this work we develop and use an automated simulation
calibration framework. Automated calibration has been ex-
plored recently for two specific PDC use cases [41, 42]. The

Picking Levels of Detail for Simulators of PDC Systems via Automated Calibration

goal in these previous works is to improve the accuracy of a
simulator implemented at an already decided level of detail,
and to show improvement over manual calibration done by
human experts. By contrast, this work uses automated cal-
ibration as a means to address the challenge of picking an
appropriate level of detail.

3 Proposed Methodology

Consider a PDC system of interest, i.e., a class of applica-
tion workloads to execute on a class of platforms, for which
ground-truth execution data is available. Our approach con-
sists in automatically calibrating any simulator of this system,
so that one can soundly evaluate its intrinsic accuracy, and
decide whether to implement a new simulator at a different
level of detail. This approach is predicated on automati-
cally solving the simulation calibration optimization problem:
Given a function that quantifies the discrepancy between
ground-truth and simulated executions, which we term the
loss function, and given a simulator whose behavior is de-
fined by various parameters, find the parameter values that
minimize the loss function. We propose a methodology for
instantiating the automated simulation calibration process
as follows.
Pick parameter ranges — The constraints of the opti-
mization problem are user-specified ranges for the parameter
values. The more knowledge the user possesses about the tar-
get system, the narrower these ranges and the more tractable
the optimization problem. But the user should be able to
pick overly broad ranges since knowledge about the target
system is often incomplete.
Pick a loss function — A scalar metric is often used to
quantify execution performance (e.g., the execution time). A
natural idea is to define loss functions based on such met-
rics (e.g., the average relative difference between real-world
and simulated execution times). With these simple metrics,
it is possible for errors of different simulation models to
compensate for each other (i.e., overestimating I/O perfor-
mance while underestimating compute performance). This is
a problem because the simulator may appear correct on the
ground-truth data at hand but is in fact fundamentally flawed
and will not generalize beyond the ground-truth data. One
way to alleviate this potential problem is to employ metrics
that capture the temporal (when events happen) or physical
(on which hardware resources events happen) structure of
the execution, so as to obtain more robust calibrations.
Many loss functions can be defined, but selecting the most
appropriate one is difficult because the values of different loss
functions are not easily comparable. Even for the best possible
calibration (i.e., the best set of simulation parameter values),
different loss functions can have different (non-zero) values.
Furthermore, when different loss functions lead to different
calibrations one does not know which one is the closest to the
(unknown) best calibration. In previous works [41, 42] loss
function selection was not investigated, and loss functions
were picked based on intuition.

PMBS'25, Nov. 16, 2025, St. Louis, MO

To resolve this difficulty we use a classical synthetic bench-
marking technique: we pick arbitrary simulation parameter
values and simulate executions for all application workloads
and platform configurations in our ground-truth data. We
obtain synthetic ground-truth data for which we know the
best calibration by design. We then perform automated cali-
bration using this data for each loss function, each leading to
a particular calibration. We compute the relative L1 distance
between each of these calibrations and the best calibration,
and then pick the loss function that achieves the lowest
distance, which we term the calibration error.

Pick an optimization algorithm — In principle, any opti-
mization algorithm can be used to compute a calibration, but
different algorithms may have different relative effectiveness
for different use cases. For instance, for low-dimensionality
scenarios with narrow user-specified parameter ranges, ran-
dom search has been shown to be effective [41]. However, the
choice of the algorithm is not necessarily orthogonal to the
choice of the loss function. Our methodology thus consists in
using the synthetic benchmarking technique described above
for each combination of loss function and optimization algo-
rithm, so as to select the loss/algorithm pair that achieves
the lowest calibration error.

Pick a calibration time budget — Each loss function
evaluation by the optimization algorithm entails invoking
the simulator for each ground-truth data point, which has
non-zero computational cost. As optimization is not guar-
anteed to converge in an acceptable amount of time, the
user may wish to allocate a fixed time or iteration budget
to the calibration process. After this budget is exceed the
best achieved calibration is simply returned. In this work
we allocate a fixed time budget to enable fair comparison of
different calibration options.

4 Implementation

We have prototyped an automated simulation calibration
framework as a Python package, making no assumptions
regarding the, necessarily use case-specific, simulator. It pro-
vides a Simulator class with a run() method to be over-
ridden for invoking the simulator. It returns a loss value
computed by a user-provided loss function implementation.
Our framework relies on the multiprocessing package for
parallel calibration on multiple cores. Users can define con-
tinuous and discrete parameters to be calibrated within any
arbitrary range, using the following iterative algorithms:

Grid search (GRID) — An algorithm that performs an
exhaustive search over points in a discretized grid over the
parameter space, doubling the resolution of the discretization
at each iteration.

Random search (RAND) — An algorithm that samples a
random point in the search space at each iteration.

Gradient descent (GRAD) — An algorithm that, at each
iteration, randomly samples a point in the search space and
performs a gradient descent using that point as a starting
point until convergence.

PMBS’25, Nov. 16, 2025, St. Louis, MO

Bayesian Optimization (BO) — An algorithm that uses
an incrementally updated surrogate model for learning the
relationship between the loss function’s inputs and outputs.
This model is used to prune the search space and identify
promising regions, balancing exploration and exploitation.
While the exploration samples input configurations that can
potentially improve the accuracy of the surrogate model, the
exploitation samples input configurations that are predicted
by the model to be high-performing. We use the BO imple-
mentation in the scikit-optimize package [50], using four
possible regressors: Gaussian Process (BO-GP), Random For-
est (BO-RF), Extra Trees (BO-ET), or Gradient Boosting
Quantile Regressor Trees (BO-GBRT).

The above algorithms have been used in previous work
for the purpose of PDC simulator calibration. For instance,
GRID, RAND, and GRAD were used in [41], and BO was
used in [42]. In this work we omit results for the GRID
and GRAD algorithms because they performed poorly in
preliminary experiments. We also found that all versions of
the BO algorithms perform almost identically, and we only
present results for the BO-GP algorithm.

Our framework allows the user to specify a bound on
the elapsed time before a solution is returned, so that a
fixed calibration time budget can be used regardless of the
algorithm. Our calibration framework is available at [4].

5 Case Study #1: Scientific Workflows

Scientific workflows and their executions on PDC platforms
have supported some of the most significant discoveries of
the past decades [7, 21]. In this context, many researchers
have used simulation to explore relevant questions (often to
investigate scheduling and resource management strategies),
which has motivated the development of simulation frame-
work specifically for this purpose [6, 17, 56]. In this section
we apply our approach to a simulator that was designed to
evaluate workflow scheduling strategies. The implementation
of the simulator and of the simulator calibrator is available
at [2].

5.1 Ground-truth Data

The ground-truth data, which is available [1], was produced
using WfCommons tools [19] to generate and execute real-
istic workflow benchmarks that are based on the structures
and the execution logs of real-world workflows. Benchmarks
were generated for five different scientific applications, five
different workflow sizes (i.e., numbers of tasks), five different
amounts of per-task CPU work, and four different total data
footprint sizes (i.e., sum of the sizes of all workflow data
files). Additionally, benchmark were also generated for two
synthetic workflow patterns, a “chain” linear task graph and
a “forkjoin” fan-out/fan-in task graph, each for three different
workflow sizes, five different amounts of per-task CPU work,
and three different total data footprint sizes.

McDonald, Wong, et al.

These benchmarks were executed with the Pegasus [22]
(v5.0.3) / HTCondor [33] (v24.0) Workflow Management Sys-
tem (WMS) on Chameleon Cloud [16]. Pegasus and the HT-
Condor Central Manager were installed on a “submit node,”
and n HTCondor workers were deployed on n “worker nodes’
(48-core Intel Icelake processors running Ubuntu 22.04) on
which tasks execute. Each benchmark was executed five times
for a deployment with n = 1,2,4,6 workers (except for the
chain benchmark, which only uses n = 1 worker). The work-
flow’s input data was initially stored on disk at the submit
node, and all workflow data was transferred (automatically
by Pegasus) between the submit node and the worker nodes
until all output data was eventually stored on the submit
node. Some benchmark executions with high data footprint
and small workflow sizes are not available due to limits im-
posed on individual file sizes. In total, execution logs were
collected from 9,200 workflow executions (i.e., 1,840 different
executions, each repeated five times). Table 1 gives more
details on the ground-truth data.

i

5.2 Simulator Versions

Our target simulator was developed in C++ using the
WRENCH simulation framework [14]. It takes as input a
workflow specification, as a WfCommons JSON file, and a
number of workers. In practice a user would decide to imple-
ment different levels of detail only as needed (as determined
by using the methodology proposed in this work). For the
purpose of this case study, however, we have modified the
simulator so that it takes in three arguments for specifying
the level of detail for simulating three particular components:
(i) the network; (ii) the storage system; and (iii) the compute
system.

We do not have precise information regarding the physical
network topology that interconnects the submit node and the
workers, besides the fact that all nodes are in the same data-
center, and perhaps in the same rack. As a result, we consider
three standard options for the network topology: (i) a single
shared network link; (ii) a star topology of dedicated network
links between the submit node and each worker; and (iii) a
single shared network link out of the submit node and then
a dedicated network link to each workers.

The storage system consists of disks attached to nodes and
of services used for reading/writing workflow data on these
disks. We consider two options: (i) only the submit node
has storage capabilities; and (ii) the submit node and the
workers all have storage capabilities. In the physical platform
all nodes have storage capabilities, but it is possible that
simulating storage only on the submit node is sufficient or
even more representative, performance-wise, of what happens
in practice.

The compute system consists of compute services on work-
ers, accessed by the WMS to execute workflow tasks. We
consider two options: (i) the WMS submits tasks directly
to the workers; and (ii) the WMS uses HTCondor to access
the workers. WRENCH provides built-in abstractions for
simulating HTCondor deployments.

Picking Levels of Detail for Simulators of PDC Systems via Automated Calibration

PMBS'25, Nov. 16, 2025, St. Louis, MO

Table 1: Workflow specifications used for ground-truth executions logs.

Workflow Size (#tasks)’

Work / Task (sec.)?

Data Footprint (MB)?

Workflow Application

Epigenomics [55] (bioinformatics)
1000Genome [55] (bioinformatics)
SoyKB [55] (bioinformatics)
Montage [55] (astronomy)
Seismology [55] (seismology)
Chain (synthetic)
Forkjoin (synthetic)

43, 64, 86, 129, 215
54, 81, 108, 162, 270
98, 147, 196, 294, 490
60, 90, 120, 180, 300
103, 154, 206, 309, 515
10, 25, 50
10, 25, 50

0.6, 1.15, 1.73, 7.22, 73.25
0.9, 1.47, 2.11, 8.02, 80.94
0.53, 1.06, 1.6, 6.55, 74.21
0.59, 1.12, 1.75, 7.07, 73.13
0.74, 1.28, 1.91, 8.34, 86.25
0.83, 1.36, 1.85, 5.74, 48.94
0.84, 1.39, 2.05, 7.61, 70.76

0, 150, 1500, 15000
0, 150, 1500, 15000
0, 150, 1500, 15000
0, 150, 1500, 15000
0, 150, 1500, 15000
0, 150, 1500
0, 150, 1500

1. For each application the smallest workflow size is the smallest size that can be generated by WfCommons, and the other sizes are approximately
1.5x, 2x, 3x, and 5x larger (WfCommons enforces constraints on workflow size to ensure that the generated task-graphs are representative of the

original application).
2. Based on an execution on a single core of a worker node.

3. Given as the sum of the sizes of all the data files used by the workflow, including intermediate files.

Network topology simulation options

One-link topology

B: bandwidth

Star topology

One-link-plus-star topology

B: bandwidth B: bandwidth

B’: bandwidth

Storage system simulation options

Storage service (SS) on submit node only

B,: read bandwidth

N . By, write bandwidth

. N: max # concurrent
B, W
P

disk reads/writes

Storage service (SS) on submit and worker nodes

-
]3?'; :
)
B

w

B;: read bandwidth

B.,: write bandwidth

N: max # concurrent
disk reads/writes

Compute system simulation options

WMS accesses compute services (CS) directly

s: core speed
o: task startup overhead

@]

s, 0

WMS accesses compute services (CS) via HTCondor (HTC)

s: core speed

o: task startup overhead

0,: HTCondor negotiator overhead
0;j1: HTCondor job pre-overhead
0j2: HTCondor job post-overhead

Table 2: Level of detail options for the simulators used in Case Study #1.

Table 2 depicts the above options and shows the parameters
to calibrate, which lead to 2 X 2 x 3 = 12 simulator versions.
The highest level of detail for all three options leads to 10
parameters. The simulator could take many more parameters,
e.g., a different disk bandwidth at each worker. Furthermore,
the simulation models provided by the simulation framework
also come with their own parameters. For instance, the size in
bytes of each control message exchanged between simulated
components is a parameter, which defaults to 0 bytes. Instead
of considering possibly hundreds of parameters, and to ensure
that our case study is representative of common practice in
the field, we follow the typical approach: use basic knowledge

of the system on which the ground-truth data is obtained
to prune the parameter set and consider the most likely
relevant parameters. For instance, we know that the nodes
are homogeneous, and thus use the same parameter values
for all nodes; and we know that all control messages are small
and that our platform’s network has low latency and high
bandwidth, thus justifying using the default 0-byte value since
control messages have negligible impact on the execution.

PMBS’25, Nov. 16, 2025, St. Louis, MO

5.3 Instantiating the Automated
Calibration

In this section we apply the methodology in Section 3 to
the simulator that implements the highest level of detail,
computing calibrations using 48 cores of a dedicated Intel
Xeon Gold 2.8GHz CPU.

5.3.1 Parameter Ranges. We use the following parameter
ranges: network and disk bandwidths are 2% bits per second
and core speeds are 2° ops per second for 20 < z < 40,
network latencies are between Oms and 10ms, overheads are
between 0s and 20s, and the maximum number of concurrent
I/O operations at a disk is between 1 and 100. We intention-
ally picked very broad ranges with upper, resp. lower, bounds
between much larger, resp. smaller, than the performance of
current hardware. This is because, in practice, a user may
have very little knowledge upon which to select parameter
ranges. The best calibration is guaranteed to lie within these
broad ranges (unless the simulator is fundamentally flawed).

5.3.2 Loss Functions and Algorithms. The ground-truth data
reports the makespan (i.e., overall execution time) and the ex-
ecution times of each individual task. For workflow i, let m,
resp. 1M, denote the ground-truth, resp. simulated, makespan;
and let ¢; ;, resp. #; ;, denote the ground-truth, resp. simu-
lated, execution time of task j in workflow i. For workflow 4,
let e; = |(m; — 1;)/m;| denote the error on the makespan,
and e; ; = |(ti,; — ti.;)/ti,;| denote the error on a task’s exe-
cution time. Among the many possible options for defining a
loss function we consider:

e Lo max;(e;)
o L4: maxi(ei + anj(eiyj))
e Ls: max;(e; +max;(e;,;))

o Li:avg,(e;)
o L3: avg;(e; +avg;(eij))
e Ls5: avg,(e; + max;(e; ;))

These loss functions minimize average and/or maximum
errors. £1 and L2 only consider the makespan error, hence
do not account for the temporal structure of the execution.
L3 to L combine the makespan error and the task execution
time errors in various ways that a user may employ.

Table 3: Calibration error vs. algorithm and loss
function.

Loss L1 Lo L3 Ly Ls Lo
Alg.
RAND 541.24 | 111.43 | 610.82 | 883.40 | 130.55 | 883.40
BO-GP 30.96 | 935.10 | 935.10 | 89.76 89.76 89.76

As explained in Section 3, we use synthetic benchmarking
to compare the calibration error of different loss functions.
Table 3 shows calibration error for different algorithm /loss
combinations (lower values are better). Overall, BO-GP out-
performs RAND. Using BO-GP with the £; loss function
leads to the best calibration error (even though £, is the
simplest loss function). Consequently, in all that follows, we
use BO-GP with £;.

McDonald, Wong, et al.

5.3.3 Calibration Time Budget. As expected, the longer the
time budget the better the calibration and/or the better the
use of a larger training dataset. We picked a 24-hour time
budget for our experiments, which is sufficient for the loss
function to converge. For instance, Figure 1 shows loss vs.
time for a particular workflow (similar behavior is seen for
other workflows). The loss improves rapidly in the first two
hours, and only improves marginally afterwards.

300%
9 200%
o

—
-~ 100%

50%
5m10m 1h 2h 24h

Figure 1: Loss value vs. time when using all ground-
truth data for the Epigenomics workflow.

5.4 Picking the Level of Detail

In practice a user would calibrate a simulator, decide whether
a different level of detail is more desirable, implement a new
simulator, and repeat. For the purpose of this case study we
instead calibrate all 12 simulator versions. These calibrations
should be computed based on a subset of the ground-truth
data (the “training dataset”) and their simulation accuracy
should be evaluated on the remaining data (the “testing
dataset”). For each workflow application, our ground-truth
data includes executions for four, resp. five, distinct num-
bers of workers, resp. tasks. We define the testing dataset
as the “large” executions, i.e., all executions for the largest
number of workers and/or the largest number of workflow
tasks (excluding executions for the smallest number of work-
ers and the smallest number of tasks). For instance, for the
1000Genome workflow, ground-truth executions are for 1, 2,
4, and 6 workers; and for 54, 81, 108, 162, and 270 tasks. Our
testing dataset comprises all executions on 6 workers with 81
or more tasks, and all executions with 270 tasks on 2 or more
workers. In this section, we define the training dataset as all
workflow executions for the second largest number of workers
and the second largest number of tasks (e.g., for 1000Genome
these are executions for 4 workers and 162 tasks). We study
the impact of the training dataset in Section 5.5.

Figure 2 shows, for all 12 calibrated simulator versions,
the relative percentage error between simulated and ground-
truth makespans. This is the metric that most users would
likely care about (and also happens to also be the loss value
in percentage). The first observation is that simulating HT-
Condor is crucial. This is because the simulated HTCondor
component simulates overheads that occur at different phases
of a task’s execution. Considering only the bottom half of
the figure, we find that using a relatively low level of detail
for the network topology is sufficient. This is because the
real-world network is sufficiently provisioned to support all
concurrent data transfers in the ground-truth workflow execu-
tions. As a result, the one-link and the star topology leads to

Picking Levels of Detail for Simulators of PDC Systems via Automated Calibration

No HTCondor

I

A IN

e

All nodes
B Submit node only

HTCondor

&
S
nﬁ

20 40 60 80 100
Percent Relative Error

i

Figure 2: Percent relative error between simulated
and ground-truth makespans (bars show averages
values over all workflows; error bars show min and
max values). The top, resp. bottom, half of the figure

is for not simulating, resp. simulating, HTCondor.

Each pair or bars is for one of the three options
for simulating the network (depicted as simplified
network diagrams on the vertical axis). Each bar in
a pair is for a different option for simulating the
storage system, either on the submit node only or
on all nodes.

equivalent results. Our more complex topology with a shared
link and a dedicated link in series does worse. This may seem
surprising because setting the bandwidth of the shared link,
resp. of the dedicated links, to a high bandwidth effectively
yields a star, resp. one-link, topology. But this more complex
topology increases the dimensionality, and thus the difficulty,
of the simulation calibration problem without bringing any
accuracy benefit (at least given our available ground truth).
Finally, we find that simulating a storage system on all nodes
brings only marginal benefit over simulating a storage system
on the submit node only. In the real-world deployment there
is a storage system at all nodes. But simulating storage only
on the submit node provides a reasonable approximation, at
least in the scope of our available ground-truth data.

In the end, for this case study, our approach makes it
possible to conclude that the best accuracy is achieved when
simulating (i) HTCondor; (ii) a one-link topology; and (iii)
a storage system at all nodes. Because all considered sim-
ulators are calibrated to the best of their ability, and can
thus be compared soundly, a user can pick the simulator
that maximizes their utility. All simulators achieve compa-
rable simulation speed in this case study, and most users
would likely pick the most accurate simulator. This simula-
tor achieves error around 20% and relatively low variance
across workflows, meaning that it can be used reliably to
compare simulated executions and draw conclusions regard-
ing real-world systems. One source of simulation inaccuracy
is that the simulator does not reproduce the ground-truth
task schedules exactly. To do so, the simulator would have

PMBS'25, Nov. 16, 2025, St. Louis, MO

to implement the exact same scheduling algorithms as that
in Pegasus and HTCondor, and use the exact same data
structures, which we have not done in this case study.

To assess the value added by our proposed methodology,
we consider an approach in which one would simply use the
simulator implemented at the lowest level of detail and set all
parameter values based on available hardware specifications
(i-e., documented on the Chameleon Cloud website and/or
inspected directly on the nodes). This is likely in line with
what authors do when they do not mention calibration (e.g.,
as in more than 70% of the publications reviewed in [41]).
Using this approach, the average percent relative error be-
tween simulated and ground-truth makespans ranges from
110% to 1,412% over the five workflow applications, i.e., or-
ders of magnitude worse than our automatically calibrated
simulators.

5.5 Use of Ground-Truth Data

A simulator should be calibrated with respect to a sufficiently
large and diverse set of ground-truth executions for the com-
puted calibration to yields low loss on the testing dataset.
Obtaining ground-truth data has a cost as it requires labor,
time, and hardware resources. Also, using more ground-truth
data increases the evaluation time of the loss function (due to
a larger number of simulator invocations), which in turn can
impede the exploration of the calibration search space. There
is thus an incentive to compute calibrations based on only
a few and/or small-scale executions. The risk is to overfit
to these executions, obtaining a calibration that is “correct
for the wrong reasons” and thus non-generalizable to other
executions.

In the previous section, the training dataset is the execu-
tions with the second largest number of workers and number
of tasks. In this section we consider other options using two
different schemes: (i) “single-sample” training based on ex-
ecutions for a single number of workers (n) and a single
number of tasks (m); and (ii) “rectangular-sample” training
based on executions for all numbers of workers < n and for
all numbers of tasks < m. Given our available ground-truth
data, for a given workflow this yields 27 different options for
the training dataset. Obtaining the ground-truth data for
each of these options has a resource cost, with higher cost
for more workflow executions, more workers, and/or longer
workflow executions. We measure the cost of obtaining the
ground-truth data for a particular training dataset as the
sum, over all included workflow executions, of the number of
workers multiplied by the makespan, in seconds.

Figure 3 shows results as a scatter plot where the horizon-
tal axis is the achieved loss and the vertical axis is the cost
of obtaining the training data, for all workflows. Although
the training datasets used in the previous section were not
the best choices, they achieve relatively low loss at relatively
low cost. An interesting observation from these results is that
using larger training datasets (in the number of data points,
as in the rectangular-sample scheme, or in the scale of the
executions for these data points) can be detrimental. This

PMBS’25, Nov. 16, 2025, St. Louis, MO

~10°
% » Epigenomics
< 8 o g 1000Genomes
@ o o
By & ﬂ o o Bo » Montage g
® 10 L] 2] o > Seismology T
° %X . o .
o §a X @Eiu » SoykKB .
£ x® { b H ¥ Ve @,
'© 103 - o oo — o
o : e :
£ $. °
= o® o | @ ' o =
2102 ¢.é 89, -
° $0° .
o * o 0 [Y
[s] * L]
I ° °
o ° o
O 401

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Loss

Figure 3: Training dataset cost vs. loss, for each
workflow. For each workflow, data points are shown
for the single-sample scheme as filled circles and for
the rectangular-sample scheme as unfilled squares.
Crosses indicate the training datasets used in the
previous section.

may seem counter-intuitive, but is explained as follows. A
simulation for a single number of workers and single number
of tasks does exert all components of the simulated systems
with many simulated task executions, data transfers, and
I/0 operations. The executions for other numbers of work-
ers and/or tasks are not necessarily qualitatively different,
in which case there is little new behavior to learn. Includ-
ing these executions leads to an unnecessarily large training
dataset. This is detrimental because the loss function evalua-
tion involves simulating the execution of all workflows in the
training dataset. For a given time budget, the optimization
algorithm will thus perform fewer iterations and may produce
a worse calibration. Another observation is that using the
cheapest (running the smallest workflow configuration on a
single worker), and thus necessarily least diverse, training
datasets is a poor choice. Save for the SoyKB workflow, the
cheapest training dataset for each workflow in Figure 3 is
among the ones with the highest loss. We conclude that,
for this case study, a training dataset with executions for a
single number of workers > 1 and single number of tasks is
sufficient.

A way to further reduce the training dataset cost is to,
for each worker count and task count, execute fewer work-
flow configurations. As seen in Table 1, our ground-truth
data spans a range of sequential work and data footprint
values. We computed calibrations using only executions for
one sequential work value and one data footprint value. In
more than 98% of the cases the resulting loss on the testing
dataset becomes significantly larger, sometimes up to an or-
der of magnitude. Expectedly, the worst results are when the
training dataset only includes executions with zero sequential
work and/or zero data footprint, meaning that some compo-
nents of the system are never simulated. We conclude that
the training dataset must include executions with diverse
data to compute volume ratios. Otherwise, calibrations are
overfit to a single such ratio and thus non-generalizable.

McDonald, Wong, et al.

Yet another way to reduce the training dataset cost is
to employ simple benchmarks, such as the chain or forkjoin
workflows described in Section 5.1. We computed calibrations
with a training dataset that contains only chain executions,
forkjoin executions, or both. The ground-truth data for real-
world workflows is used as the testing dataset. Using only
chain executions increases the loss by more than one order
of magnitude due to the training dataset not including any
parallel task executions. Using only forkjoin executions leads
to loss increases between 1.2x and 3.5x depending on the
workflow. Computing calibrations based on both chain and
forkjoin executions leads to worse results, due to the loss func-
tion evaluation being more costly. Overall, the use of simple
benchmark ground-truth data for calibrating simulations of
real-world applications is attractive but has a non-negligible
negative impact on accuracy, at least in the scope of this case
study.

6 Case Study #2: Message Passing
Applications

Many researchers have used simulation to investigate the
performance of MPI (Message Passing Interface) applications,
relying on one of the many simulation frameworks developed
for this purpose [10, 23, 26, 32, 36, 43]. In this section we
apply our approach to a simulator that was developed to
investigate MPI performance on a particular HPC cluster.
The implementation of the simulator and of the simulator
calibrator is available at [3].

6.1 Ground-truth Data

The ground-truth data, which is available at [1], is from runs
of the Intel MPI Benchmarks (IMB) [35] on the pre-exascale
Summit leadership class supercomputer at the Oak Ridge
National Laboratory. The IMB measures the performance
of various MPI point-to-point communication functions and
patterns for ranges of message sizes. Specifically, the collected
ground-truth data consists of execution logs of the PingPing,
PingPong, BiRandom, and Stencil IMB benchmarks with
2%-byte messages, for z € {10,11,...,22}, on 128, 256, and
512 compute nodes.

Summit is an IBM system with ~4,600 compute nodes,
each equipped with two IBM POWERY processors, for a total
of 42 CPU cores, and with six NVIDIA Tesla V100 GPUs.
Summit’s interconnect uses a non-blocking three-level Fat-
Tree topology: Level one switches connect 18 nodes in each
cabinet along with 18 director switches comprising 36 level
two and 18 level three switches to connect cabinets together.
On platforms like Summit, the bulk of the performance comes
from the use of the multiple GPUs at each node. The usage of
CPUs is often limited to the control of the execution flow of
the application, to send and retrieve data to and from GPUs,
and to manage inter-node data exchanges using MPI. On
Summit, with six GPUs per node, often only six out the 42
available CPU cores are used. The ground-truth executions
match this practice by running the IMB with six MPI ranks
per node.

Picking Levels of Detail for Simulators of PDC Systems via Automated Calibration

6.2 Simulator Versions

Our simulator uses SMPI [23], which makes it possible to
compile and simulate unmodified MPI programs. SMPI takes
as input a specification of a simulated hardware platform and
executes the MPI application code as is, with each MPI rank
executing as a thread. Each MPI call is intercepted and its
duration is simulated, while each block of code between two
calls is timed to simulate computation delays. The simulator
takes in three arguments for specifying the level of detail for
the simulation of three particular components: (i) the network;
(ii) the compute nodes; and (iii) the adaptive communication
protocol.

We consider four options for simulating the network topol-
ogy: (i) a single shared backbone link; (ii) a single shared
backbone link and dedicated links to each compute nodes;
(iii) a 4-ary tree network; and (iv) a fat tree topology with
several layers of switches, which corresponds to the network
topology used on Summit.

We consider two options for simulating the compute nodes:
(i) a multi-core node with NIC, which abstracts away ar-
chitectural details; and (ii) a two-socket node where the
sockets communicate via an X-Bus SMP bus, and are each
connected to the NIC via a PCle bus, which is closer to the
real architecture.

MPI implementations use different communication proto-
cols for different message sizes for performance reasons (e.g.,
switching from eager to rendez-vous mode), which can be
modeled as a multiplicative factor applied to data transfer
rates [23]. Results in [23] indicate two such message sizes, or
change points. We consider two options for simulating this
adaptive protocol: (i) protocol changes occur at two known
change points (experiments can be conducted to determine
the change points empirically), leading to three bandwidth
factors to calibrate; and (ii) the same model but where the
two change points are unknown and must thus be calibrated
(which removes the need to conduct extra experiments but
increases the dimensionality of the calibration problem).

Table 4 depicts the above options and shows the parameters
to calibrate, which lead to 4 X 2 x 2 = 16 simulator versions.

6.3 Instantiating the Automated
Calibration

In this section we apply the methodology in Section 3 to
the simulator that implements the highest level of detail,
computing calibrations on 48 cores of a dedicated Intel Xeon
Gold 2.8GHz CPU.

6.3.1 Parameter Ranges. We use broad parameter ranges:
for all bandwidth, latencies, and compute speeds, we use min,
resp. max, values that are at least one order of magnitude
lower, resp. higher, than the actual hardware specification of
Summit.

6.3.2 Loss Functions and Algorithms. For each benchmark
and for a given message size, our ground-truth data consists
of data transfer rate measurements, or samples, for multiple
repeated executions. Due to platform noise, there is variance

PMBS'25, Nov. 16, 2025, St. Louis, MO

in these samples. Our simulator, instead, produces a single
data transfer rate value since SMPI simulations are deter-
ministic and repeatable by design. We need to quantify how
representative this simulated value is of the set of measured
samples. To do so we use the explained variance, which is de-
fined as a/b, where a is the L1 distance between the samples
and the model value, and b is the L1 distance between the
measured samples and their mean. The lower (i.e., closer to 1)
the explained variance, the more closely the simulated value
matches the measured sample. Let ev; ; denote the explained
variance between the ground-truth data transfer rates and
the simulated data transfer rate for benchmark i executed
with message size j. We consider four loss functions defined
based on the explained variance:

o Lo avg;(max;(evs,;)

° £4Z max; (man (67;7]‘))

o L1: avg,(avg;(evi,y)
o L3: max;(avg;(ei,;))

Table 5 shows the calibration error, computed using the
synthetic benchmarking technique in Section 3. Results are
shown for each combination of algorithm and loss function,
when computing (and evaluating) calibrations using all gener-
ated synthetic ground-truth data for the PingPing, PingPong,
and BiRandom benchmarks. Note that this error measure
may be misleading due to the bandwidth factors used to
simulate the adaptive message-passing protocol: calibrations
that differ only in bandwidths and multiplicative bandwidth
factors can produce the same simulated execution. That is,
simulating a link with bandwidth B with multiplicative factor
« is the same as simulating a link with bandwidth aB with
multiplicative factor 1. For this reason, Table 5 also shows
the relative absolute error between real-world and simulated
transfer rates, averaged over all benchmarks and data sizes.
Overall, the best combination, which we use in all that fol-
lows, is the BO-GP algorithm with the £1 loss function. This
is similar to our finding in the previous case study (i.e., use
Bayesian Optimization with a simple loss function).

n 400%
u}
s}
—300%
AN

200%
10m 1h 2h 5h 10h 48h

Figure 4: Loss value vs. time when using all ground-
truth data for 128 compute nodes.

6.3.3 Calibration Time Budget. We use a 48-hour time bud-
get, which is sufficient for the loss value to converge, as seen
in the example in Figure 4.

6.4 Picking the Level of Detail

In this section we compare the accuracy of all 16 simulators,
each calibrated using the method instantiated in the previous
section. As noted in the previous case study, in practice
a user would instead incrementally implement, calibrate,
and evaluate simulators. We present overfitting results, i.e.,

PMBS’25, Nov. 16, 2025, St. Louis, MO

McDonald, Wong, et al.

Network topology simulation options

Single backbone | Single backbone with node links

B: bandwidth
l: latency
B’: bandwidth
I': latency

B: bandwidth
[: latency

4-ary tree of switches

Fat tree

bandwidth
limiters

B: bandwidth
l: latency
B’: bandwidth

B: bandwidth
l: latency

Compute node simulation options

Complex node

s: core speed

s: core speed
B: bandwidth
l: latency

B’: bandwidth
I': latency

NIC

Adaptive protocol simulation options

Two fixed change points

Two arbitrary change points

4;_;'; B) 2T B Bi: bandwidth factor
- Bu: bandw%dth factor £ Bs: bandwidth factor
< Bs By: bandW}dth factor | & B, Bs: bandwidth factor
_— b . 92}
g Bs Bs: bandwidth factor 2 Bs - 1: message size
B ° ° - E : : To: message size
16kB 128kB msg size T1 T2 msg size
Table 4: Level of detail options for the simulators users in the case study in Section 6.
Table 5: Calibration error and average relative trans- simulating simple compute nodes and a backbone topology

fer rate error vs. loss function.

Metric I L0] L2 [Ls | L4
RAND
Calibration error 60.96 | 58.17 | 43.80 | 70.74
Rel. avg. transfer rate error || 0.05 0.10 0.09 | 0.22
BO-GP
Calibration error 1.87 | 126.65 | 31.58 | 47.11
Rel. avg. transfer rate error || 0.03 0.12 0.11 | 0.17

both the training and the testing datasets consist of 128-
node ground-truth executions for PingPing, PingPong, and
BiRandom. We study the impact of the training dataset in
Section 6.5.

Figure 5 shows relative percentage error between simu-
lated and ground-truth data transfer rates. This is an easier
accuracy metric to interpret than the loss value, and what
most users would measure. The first observation is that all
simulators exhibit relatively similar results, more so than in
the previous case study, with average relative errors between
13% and 24%. Simulating complex, rather than simple, com-
pute nodes is better in most cases. The one exception is when

with individual links (i.e., the second pair of bars in the top
half of the figure). This particular case happens to lead to
average error as low as the best simulator that simulates
complex compute nodes (but a higher variance). In terms of
MPI protocol simulation, the differences are small in terms
of averages. But using fixed, rather than arbitrary, change
points, leads to lower variance in most cases. The increase
in the level of detail due to non-fixed change points is not
worthwhile, at least given our calibration time budget. Finally,
we see that the best results are achieved when simulating
a backbone topology with individual links, which seems to
strike a good compromise between calibration dimensionality
and potential accuracy. Simulating the network at a higher
level of detail, using a 4-ary tree or a fat-tree topology, leads
to worse results in terms of average and/or variance.

The best accuracy is achieved when simulating (i) a back-
bone with individual links and (ii) an adaptive MPI protocol
with fixed change points. In these conditions, simulating a
complex compute node brings almost no benefit compare
to simulating a simple compute node. Like in the previous
case study, all simulators achieve similar simulation speed.
Given the results in Figure 5, a user would most likely opt

Picking Levels of Detail for Simulators of PDC Systems via Automated Calibration

Simple compute node
— -_—

Complex compute node

B Fixed change points
§=§ = Arbitrary change points

0 5 10 15 20 25 30 35
Percent Relative Error

Figure 5: Percent relative error between simulated
and ground-truth data transfer rates (bars show av-
erage values over all benchmarks; error bars show
min and max values). The top, resp. bottom, half of
the figure is for simulating a simple, resp. complex,
compute node. Each pair of bars is for one of the
four options for simulating the network topology (de-
picted as simplified network diagrams on the vertical
axis). Each bar in a pair is for a different option for
simulating the adaptive MPI protocol, with either
fixed or arbitrary change points.

for simulating a simple compute node, since it is sufficient to
achieve good results an requires less simulator code.

The most accurate simulators achieve errors below 15%,
with relatively low variance across all benchmarks. As in the
previous case study, we have performed a straightforward
calibration that a user may do based on Summit’s specifica-
tions, using the simulator implemented at the lowest level of
detail. The average percent relative error between simulated
and ground-truth data transfer rates ranges from 91% to 97%
over the three benchmarks.

6.5 Use of Ground-truth Data

As in the previous case study, we explore the impact of using
different training datasets for computing calibrations, to de-
termine the extent to which a calibrated simulator produces
results that generalizes beyond the ground-truth data. We
consider generalization to (i) different benchmark types and
(ii) different execution scales, using the simulator that im-
plements the highest level of detail. First, we simulate the
128-node execution of the Stencil application benchmark us-
ing a calibration computed based on the 128-node executions
of the BiRandom, PingPing, and PingPong benchmarks. We
find that simulated execution achieves a relative error (aver-
aged over all message sizes) of 58.8%. By contrast, using a
calibration based on the Stencil ground-truth data, the error
becomes 28.6%. Second, we simulate the 256- and 512-node
execution of each benchmark using a calibration computed

PMBS'25, Nov. 16, 2025, St. Louis, MO

based on their 128-node executions. We observe significant
increases in simulation error for all benchmarks. For instance,
for the BiRandom benchmark, while error averaged over all
message sizes is 15.2% when simulating 128-node executions,
when simulating 256- and 512-node executions the error be-
comes 30.8% and 59.4%, respectively.

These results show that the calibrated simulator does not
generalize well beyond the ground-truth data. It may still be
useful for some purposes (e.g., studying the impact of the
network link bandwidth on particular benchmark executions
at particular scales). But overall, this is a negative result
for this simulator: it cannot fulfill its intended purpose of
studying MPI performance scaling for the target HPC cluster,
even for simple point-to-point communications. Perhaps the
simulator does not implement a sufficiently high level of detail.
But we actually suspect that information on how the ground-
truth data was obtained is incomplete and/or inaccurate,
leading to the simulated executions to qualitatively differ
from the ground-truth executions. Regardless, as far as this
work is concerned, this is positive result for our methodology:
automatically calibrating the simulator to the best of its
ability with respect to the available ground-truth data makes
it possible to systematically evaluate its intrinsic accuracy,
and to reach the above (negative) result.

7 Conclusion

Evaluating the intrinsic accuracy of simulators of PDC sys-
tems requires that these simulators be well-calibrated. Be-
cause simulation calibration is labor-intensive, it must be
automated. We have proposed a methodology for instanti-
ating the simulation calibration process and a framework
for automating this process. This approach is general and
makes it possible to make rational decisions and draw ra-
tional conclusions when implementing and/or evaluating a
simulator. We have demonstrated its usefulness via two case
studies representative of current simulation-driven research.
Our first case study demonstrates how our approach allows
a designer to pick an appropriate level of detail for each
simulated component. Our second case study shows how our
approach makes it possible to quantify the accuracy limits of
a given set of simulator implementations calibrated based on
available ground-truth data.

Conclusions regarding the most appropriate level of detail
may be use case-specific. However, many researchers use sim-
ulation to study similar scenarios, often using the same simu-
lation frameworks or simulators (e.g., batch-scheduling using
Alea [38] or Batsim [25] and data from the Parallel Workload
Archive [45], scientific workflows using WRENCH [14] with
execution logs from WfCommons [19], or cloud computing us-
ing CloudSim [11] with ground-truth data from Google [30]).
We thus expect some conclusions to generalize across related
use cases within the same PDC domain. In future work, we
will perform other case studies to verify this expectation,
with a broader range of considered simulation frameworks.
The ultimate goal for our approach, and its implementation,
is not only to improve simulation-driven research, but also

PMBS’25, Nov. 16, 2025, St. Louis, MO

to give rise to guidelines regarding which simulation level of
detail should be used in particular PDC domains.

Acknowledgments

This research was partially supported by National Science
Foundation awards #2106059, #2411154, and #2106147.
The technical support and advanced computing resources
from University of Hawaii Information Technology Services
Research Cyberinfrastructure, funded in part by the National
Science Foundation CC* awards #2201428 and #2232862 are
gratefully acknowledged. Finally, this research used resources
of the OLCF at ORNL, which is supported by DOE’s Office of
Science under Contract No. DE-AC05-000R22725. This work
was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. This material is based on
work partially supported by LLNL LDRD 22-SI-004 (LLNL-
CONF-2002494).

References

[1] 2025. Ground-Truth Data for the Case Studies.

(2]

(10

(11

(12

[13

[14

https://doi.org/
10.6084 /m9.figshare.30132955

2025. Simulator and Calibrator for Case Study #1.
https://github.com/wrench-project/pmbs2025_calibration_
casestudyl_reproducibility.

2025. Simulator and Calibrator for Case Study #2.
https://github.com/wrench-project/pmbs2025_calibration_
casestudy2_reproducibility.

2025. The Simcal Calibration Framework. https://github.com/
wrench-project/simcal.

Jung Ho Ahn, Sheng Li, Seongil O, and Norman Jouppi. 2013.
McSimA+: A Manycore Simulator with Application-Level4+ Sim-
ulation and Detailed Microarchitecture Modeling. In Proc. of
the IEEE Int. Symp. on Performance Analysis of Systems and
Software. 74-85.

A. Al-Haboobi and G. Kecskemeti. 2023. Developing a Workflow
Management System Simulation for Capturing Internal IaaS Be-
havioural Knowledge. Journal of Grid Computing 21, 2 (2023).
Malcolm Atkinson, Sandra Gesing, Johan Montagnat, and Ian
Taylor. 2017. Scientific Workflows: Past, Present and Future.
Future Generation Computer Systems 75 (2017), 216-227.
Peraketh Benjamin, Madhav Erraguntla, Dursun Delen, and
Richard Mayer. 1998. Simulation Modeling at multiple Levels of
Abstraction. In Proc. of the Winter Simulation Conf., Vol. 1.
391-398.

Rajkumar Buyya and Manzur Murshed. 2002. GridSim: A Toolkit
for the Modeling and Simulation of Distributed Resource Man-
agement and Scheduling for Grid Computing. Concurrency and
Computation: Practice and Ezperience 14, 13-15 (2002), 1175~
1220.

Swen Béhm and Christian Engelmann. 2011. xSim: The extreme-
scale simulator. In Proc. of the Int. Conf. on High Performance
Computing and Simulation. 280-286.

Rodrigo Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar
De Rose, and Rajkumar Buyya. 2011. CloudSim: A Toolkit
for Modeling and Simulation of Cloud Computing Environments
and Evaluation of Resource Provisioning Algorithms. Software:
Practice and Ezperience 41, 1 (2011), 23-50.

Trevor Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper:
Exploring the Level of Abstraction for Scalable and Accurate Par-
allel Multi-Core Simulation. In Proc. of the Int. Conf. for High
Performance Computing, Networking, Storage and Analysis.
1-12.

Chris Carothers, David Bauer, and Shawn Pearce. 2002. ROSS:
A High-Performance, Low Memory, Modular Time Warp System.
J. Parallel and Distrib. Comput. 62, 11 (2002), 1648-1669.
Henri Casanova, Rafael Ferreira da Silva, Ryan Tanaka, Suraj
Pandey, Gautam Jethwani, Spencer Albrecht, James Oeth, and
Frédéric Suter. 2020. Developing Accurate and Scalable Simulators

(15]

16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

McDonald, Wong, et al.

of Production Workflow Management Systems with WRENCH.
Future Generation Computer Systems 112 (2020), 162-175.
Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quin-
son, and Frédéric Suter. 2025. Lowering entry barriers to develop-
ing custom simulators of distributed applications and platforms
with SimGrid. Parallel Comput. 123 (2025).
Chameleon 2025. Chameleon Cloud.
chameleoncloud.org.

W. Chen and E. Deelman. 2012. WorkflowSim: A Toolkit for
Simulating Scientific Workflows in Distributed Environments. In
Proc. of the 8th IEEE Intl. Conf. on E-Science. 1-8.

Leonardo Chwif, Marcos Ribeiro Pereira Barretto, and Ray Paul.
2000. On Simulation Model Complexity. In Proc. of the Winter
Simulation Conf., Vol. 1. 449-455.

Taina Coleman, Henri Casanova, Loic Pottier, Manav Kaushik,
Ewa Deelman, and Rafael Ferreira da Silva. 2022. WfCommons:
A Framework for Enabling Scientific Workflow Research and De-
velopment. Future Generation Comp. Sys. 128 (2022), 16-27.
T. Cornebize. 2021. High Performance Computing: Towards
Better Performance Predictions and Experiments. Ph.D. Dis-
sertation. Grenoble INP ; Université Grenoble - Alpes.

Ewa Deelman, Rafael Ferreira da Silva, Karan Vahi, Mats Rynge,
Rajiv Mayani, Ryan Tanaka, Wendy Whitcup, and Miron Livny.
2021. The Pegasus workflow management system: Translational
computer science in practice. Journal of Computational Science
52 (2021).

Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott
Callaghan, Philip J Maechling, Rajiv Mayani, Weiwei Chen, Rafael
Ferreira da Silva, Miron Livny, and Kent Wenger. 2015. Pegasus:
a Workflow Management System for Science Automation. Future
Generation Computer Systems 46 (2015), 17-35.

Augustin Degomme, Arnaud Legrand, George Markomanolis, Mar-
tin Quinson, Mark Stillwell, and Frédéric Suter. 2017. Simulating
MPI applications: the SMPI approach. IEEE Trans. on Parallel
and Distributed Systems 18, 8 (2017), 2387—-2400.

Ciprian Dobre, Florin Pop, and Valentin Cristea. 2011. New
Trends in Large Scale Distributed Systems Simulation. Journal
of Algorithms & Computational Technology 5, 2 (2011), 221-257.
Pierre-Frangois Dutot, Michael Mercier, Millian Poquet, and
Olivier Richard. 2016. Batsim: a Realistic Language-Independent
Resources and Jobs Management Systems Simulator. In Proc. of
the 20th Workshop on Job Scheduling Strategies for Parallel
Processing.

C. Engelmann. 2014. Scaling To A Million Cores And Beyond:
Using Light-Weight Simulation to Understand The Challenges
Ahead On The Road To Exascale. Future Generation Computer
Systems 30 (2014), 59-65.

Gilberto Flores, Marcos Paredes-Farrera, Emmanuel Jammeh,
Martin Fleury, and Martin Reed. 2003. OPNET Modeler and
Ns-2: Comparing the Accuracy of Network Simulators for Packet-
Level Analysis Using a Network Testbed. WSEAS Trans. on
Computers 2, 3 (2003).

Richard Fujimoto. 1990. Parallel Discrete Event Simulation. Com-
mun. ACM 33, 10 (1990), 30-53.

Pablo Garrido, Manuel Malumbres, and Carlos Calafate. 2008.
Ns-2 vs. OPNET: A Comparative Study of the IEEE 802.11e
Technology on MANET Environments. In Proc. of the 1st Int.
Conf. on Simulation Tools and Techniques for Communications,
Networks and Systems € Workshops. 1-10.

Google Workload Traces 2025. Google Workload Traces. https:
//github.com/google/cluster-data.

Adridn Herrera, Mario Ibdnez, Esteban Stafford, and Jose Luis
Bosque. 2021. A Simulator for Intelligent Workload Managers
in Heterogeneous Clusters. In Proc. IEEE/ACM 21st Interna-
tional Symposium on Cluster, Cloud and Internet Computing
(CCGrid). 196-205. https://doi.org/10.1109/CCGrid51090.2021.
00029

Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2010.
LogGOPSim - Simulating Large-Scale Applications in the Log-
GOPS Model. In Proc. of the ACM Workshop on Large-Scale
System and Application Performance. 597-604.

HTCondor 2023. The HTCondor Software Suite. https://htcondor.
org.

Philipp Hurni and Torsten Braun. 2009. Calibrating Wireless
Sensor Network Simulation Models with Real-World Experiments.
In Proc. of the 8th Int. IFIP-TC 6 Networking Conf. (Lecture
Notes in Computer Science, Vol. 5550). Springer, 1-13.

https://www.

https://doi.org/10.6084/m9.figshare.30132955
https://doi.org/10.6084/m9.figshare.30132955
https://github.com/wrench-project/pmbs2025_calibration_casestudy1_reproducibility
https://github.com/wrench-project/pmbs2025_calibration_casestudy1_reproducibility
https://github.com/wrench-project/pmbs2025_calibration_casestudy2_reproducibility
https://github.com/wrench-project/pmbs2025_calibration_casestudy2_reproducibility
https://github.com/wrench-project/simcal
https://github.com/wrench-project/simcal
https://www.chameleoncloud.org
https://www.chameleoncloud.org
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://doi.org/10.1109/CCGrid51090.2021.00029
https://doi.org/10.1109/CCGrid51090.2021.00029
https://htcondor.org
https://htcondor.org

Picking Levels of Detail for Simulators of PDC Systems via Automated Calibration

3]

(36]

(37]

(38

(39

(40

[41

[42

43

[44

45

46

[47

48

[49

(50

(51]

52

(53

[54

(55]

(56

IMB 2021. Intel MPI Benchmarks User Guide. https:
//www.intel.com/content /www/us/en/docs/mpi-library /user-
guide-benchmarks/2021-8 /overview.html.

C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A.
Pinar, D. A. Evensky, and J. Mayo. 2010. A simulator for large-
scale parallel architectures. International Journal of Parallel
and Distributed Systems 1, 2 (2010), 57-73.

Gabor Kecskemeti. 2015. DISSECT-CF: A Simulator to Foster
Energy-Aware Scheduling in Infrastructure Clouds. Simulation
Modelling Practice and Theory 58 (2015), 188-218.

Dalibor Klusacek, Mehmet Soysal, and Frédéric Suter. 2019. Alea
- Complex Job Scheduling Simulator. In Proc. of the 13th Int.
Conf. on Parallel Processing and Applied Mathematics (Lecture
Notes in Computer Science, Vol. 12044). 217 — 229.

Johannes Lessmann, Peter Janacik, Lazar Lachev, and Dalimir Or-
fanus. 2008. Comparative Study of Wireless Network Simulators.
In Proc of the Tth Int. Conf. on Networking. 517-523.

Fabian Mastenbroek, Georgios Andreadis, Soufiane Jounaid,
Wenchen Lai, Jacob Burley, Jaro Bosch, Erwin van Eyk, Laurens
Versluis, Vincent van Beek, and Alexandru Iosup. 2021. OpenDC
2.0: Convenient Modeling and Simulation of Emerging Technolo-
gies in Cloud Datacenters. In Proc. of the 21st IEEE/ACM Int.
Symp. on Cluster, Cloud and Internet Computing. 455-464.
Jesse McDonald, Maximilian Horzela, Frédéric Suter, and Henri
Casanova. 2024. Automated Calibration of Parallel and Dis-
tributed Computing Simulators: A Case Study. In Proc. of the
25th IEEE Int. Workshop on Parallel and Distributed Scientific
and Engineering Computing. 1026-1035.

Julien Monniot, Frangois Tessier, Henri Casanova, and Gabriel
Antoniu. 2024. Simulation of Large-Scale HPC Storage Systems:
Challenges and Methodologies. In Proc. of the 31st IEEE Int.
Conf. on High Performance Computing, Data, and Analytics.
1-11.

Misbah Mubarak, Christopher Carothers, Robert Ross, and Philip
Carns. 2017. Enabling Parallel Simulation of Large-Scale HPC
Network Systems. IEEE Trans. on Parallel and Distributed
Systems 28, 1 (2017), 87-100.

Simon Ostermann, Kassian Plankensteiner, Radu Prodan, and
Thomas Fahringer. 2010. GroudSim: An Event-Based Simulation
Framework for Computational Grids and Clouds. In Proc. of the
Euro-Par Parallel Processing Workshops. 305-313.

Parallel Workloads Archive 2025. Parallel Workloads Archive.
https://www.cs.huji.ac.il/labs/parallel /workload.

Alejandro Rico, Felipe Cabarcas, Carlos Villavieja, Milan Pavlovic,
Augusto Vega, Yoav Etsion, Alex Ramirez, and Mateo Valero. 2012.
On the Simulation of Large-Scale Architectures Using Multiple
Application Abstraction Levels. ACM Trans. on Architecture
and Code Optimization 8, 4 (2012), 1-20.

Sashko Ristov, Mika Hautz, Christian Hollaus, and Radu Prodan.
2022. SimLess: Simulate Serverless Workflows and Their Twins
and Siblings in Federated FaaS. In Proc. of the 13th Symp. on
Cloud Computing. 323-339.

Stewart Robinson. 2011. Choosing the Right Model: Conceptual
Modeling for Simulation. In Proc. of the Winter Simulation Conf.
1423-1435.

Stewart Robinson and Roger Brooks. 2024. Assumptions and
simplifications in discrete-event simulation modelling. Journal of
Simulation (2024), 1-18.

scikit-optimize 2025. scikit-optimize: Sequential model-based op-
timization in Python. https://scikit-optimize.github.io/stable/.
SST-Macro 2024. SST/macro 14.1: User’s Manual.
https://raw.githubusercontent.com/sstsimulator/sst-
macro/refs/heads/master /manual-sstmacro-14.1.pdf.

Chih-Li Sung and Rui Tuo. 2024. A Review on Computer Model
Calibration. WIREs Computational Statistics 16, 1 (2024),
el645.

Michael Tighe, Gaston Keller, Michael Bauer, and Hanan Lut-
fiyya. 2012. DCSim: A Data Centre Simulation Tool for Evaluat-
ing Dynamic Virtualized Resource Management. In Proc. of the
Workshop on Systems Virtualization Management. 385-392.
Irfan Uddin. 2015. Multiple Levels of Abstraction in the Simula-
tion of Microthreaded Many-Core Architectures. Open Journal
of Modelling and Simulation 3 (2015), 159-190.

WfCommons 2025. The WfCommons Project. https://wfcommons.
org.

wrench [n.d.]. WRENCH: Workflow Management System Simula-
tion Workbench. http://wrench-project.org.

PMBS'25, Nov. 16, 2025, St. Louis, MO

[57] Urooj Yousuf Khan, Tarig Rahim Soomro, and Muhammad

Nawaz Brohi. 2022. iFogSim: A Tool for Simulating Cloud and
Fog Applications. In Proc. of the Int. Conf. on Cyber Resilience.
01-05.

https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-8/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-8/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-8/overview.html
https://www.cs.huji.ac.il/labs/parallel/workload
https://scikit-optimize.github.io/stable/
https://raw.githubusercontent.com/sstsimulator/sst-macro/refs/heads/master/manual-sstmacro-14.1.pdf
https://raw.githubusercontent.com/sstsimulator/sst-macro/refs/heads/master/manual-sstmacro-14.1.pdf
https://wfcommons.org
https://wfcommons.org
http://wrench-project.org

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Proposed Methodology
	4 Implementation
	5 Case Study #1: Scientific Workflows
	5.1 Ground-truth Data
	5.2 Simulator Versions
	5.3 Instantiating the Automated Calibration
	5.4 Picking the Level of Detail
	5.5 Use of Ground-Truth Data

	6 Case Study #2: Message Passing Applications
	6.1 Ground-truth Data
	6.2 Simulator Versions
	6.3 Instantiating the Automated Calibration
	6.4 Picking the Level of Detail
	6.5 Use of Ground-truth Data

	7 Conclusion
	References

