
Simulation of Large-Scale HPC Storage Systems:
Challenges and Methodologies

Julien Monniot∗, François Tessier∗, Henri Casanova‡, Gabriel Antoniu∗
∗University of Rennes, Inria, CNRS, IRISA - Rennes, France
{julien.monniot, francois.tessier, gabriel.antoniu}@inria.fr

‡ University of Hawai’i - Honolulu, HI, USA
henric@hawaii.edu

Abstract—As the scale of production HPC platforms increases,
so does the computing and I/O performance gap, exacerbating the
storage bottleneck. High-performance storage systems have been
developed to alleviate this bottleneck, but many questions remain
concerning their architecture, implementation, and configuration.
Answering these questions via experimental campaigns proves
arduous. First, some answers are required before deploying the
system. Second, once a system hits production the experimental
scope is limited by the system’s specific configuration and by
constraints of production use. In this work we identify challenges
posed by the design and validation of a storage simulator. We
then propose solutions implemented in FIVES, a simulator of
HPC workloads on platforms that comprise a parallel file system.
We show how our simulator can be instantiated and calibrated
for the accurate simulation of a production Lustre deployment.

Index Terms—HPC, Storage, Modeling, Simulation

I. INTRODUCTION

As increasingly powerful HPC systems are being deployed
the gap between compute and I/O performance keeps widen-
ing. This is seen plainly by the evolution of the ratio between
compute power and I/O bandwidth of the top three machines
in Top500 [1], which has decreased by ∼10x over the last 13
years (see Figure 1). At the same time, the recent shift from
compute-centric to data-centric applications and workflows has
resulted in a so-called “data deluge”, the effect of which has
been observed in major supercomputing centers. For instance,
at the National Energy Research Scientific Computing Center
(NERSC) the volume of data stored by applications increased
by ∼41x between 2010 and 2021, with an annual growth rate
estimated at 30% [2].

Date

G
B

ps
/T

Fl
op

s

0.00

0.05

0.10

0.15

0.20

0.25

01/2010
01/2012

01/2014
01/2016

01/2018
01/2020

01/2022

GBps / TFlops Trend

Fig. 1: Historical ratio of I/O bandwidth (GBps) to compute
power (TFlops) of the top 3 systems of the Top500 list.

To alleviate the storage bottleneck, high-performance stor-
age systems, vertically and/or horizontally scaled, have been
installed alongside compute partitions. Vertical scaling consists
in enhancing the storage infrastructure with additional fast
storage layers based on flash memory or non-volatile mem-
ory [3]. This is done in emerging systems like DAOS [4] but
also in mainstream parallel file systems like Lustre. Horizontal
scaling consists in increasing the number of storage devices.
For instance, this is the approach used by Orion [5], the
700PB parallel file system deployed on the Frontier super-
computer at Oak Ridge National Laboratory, which features
47,700 hard disks. The integration of I/O forwarding nodes
into the interconnect also provides more gateways for I/O
transit, reducing contention and increasing bandwidth. These
developments have led to significant performance gains, at the
cost of higher system complexity.

The architecture, implementation, configuration and effi-
cient use of these high-performance storage systems open up
many research questions. However, providing sound answers
requires conducting comprehensive experiments, which often
proves arduous. This is in part because some challenges, such
as the sizing of the infrastructure, need answers upstream of
the storage system design, before an actual system is available.
One approach is to analyze job execution historical data,
collected on other previously available systems. Unfortunately,
this data is strongly tied to the particular features of those sys-
tems and of their application workloads. Even when a system
is accessible for experimental purposes, the limitations im-
posed by its implementation and/or its production use reduces
the scope of experiments that can be carried out to answer
questions in areas such as storage-aware job scheduling, re-
source allocation, file system configuration or storage system’s
energy consumption. For instance, consider Lustre [6], the
most widely deployed file system on supercomputers to date.
The provisioning of a Lustre-based storage system, the choice
of a data striping policy, or the development of strategies for
mitigating contention are well-known questions that can only
be answered via extensive experimental campaigns [7]. But
running the necessary experiments at scale on a production
system is a difficult proposition as these experiments would
not only disrupt the system’s production use, but could also
lead to prohibitive resource and energy consumption.

Simulation is a promising approach to overcome the above

1



experimental obstacles. It provides a way to 1) evaluate
possible architecture designs and configurations before the
system is deployed; 2) evaluate a wide range of I/O and storage
resource management algorithms; and 3) perform post-mortem
analysis of a decommissioned storage system and draw lessons
from it. The simulation of parallel and distributed systems has
long been an active field, enabling reproducible experiments
for arbitrary scenarios in a way that is less time-, labor-,
and resource-intensive than real-world experiments. However,
there have been few attempts at simulating high-performance
storage systems in a way that is both accurate and fast.

In this work, we first identify the main challenges for
the design and validation of an accurate simulator of high-
performance storage systems, ranging from the question of
which data the simulator should take as input to the difficulty
of achieving a desirable trade-off between simulation accuracy
and simulation speed. We then propose solutions for these
challenges, which we implement as part of FIVES, a ”Simu-
lator for Scheduling on Storage Systems at Scale” (five ”S”).
The goal of FIVES is to be sufficiently accurate for its output
to inform file system configuration and design decisions. This
goal is partly achieved via an automated simulation calibration
method. Our contributions in this work are as follows:

• The identification of key challenges for the accurate and
fast simulation of high-performance storage systems;

• A simulation abstraction for a distributed storage system;
• The design and implementation of the FIVES simulator;
• A method for automatically calibrating FIVES using

Bayesian optimization;
• An experimental evaluation of FIVES for simulating a

production Lustre deployment and workload.

II. SIMULATION CHALLENGES FOR HPC STORAGE

We have identified four key challenges for the accurate
simulation of high-performance storage systems in HPC plat-
forms. The first two are specific to this domain, while the last
two are relevant to the simulation of parallel and distributed
computing systems in general.

Challenge #1
Input data is hard to find, often incomplete or imprecise,
and not usable out-of-the-box.

Assuming that an accurate high-performance storage system
simulator is available, it must be provided input data that
describes the workload to be simulated. Several “workload
traces” have been collected on HPC platforms from various
logs and produced by various monitoring tools (batch sched-
uler logs, I/O traces, parallel file system logs, . . . ). The goal
is to combine these traces to construct a complete workload
description that can be provided as input to the simulator.
Unfortunately, not all necessary traces are always available for
a single platform, and one often must work with incomplete
data. Even if all the necessary data is available, it must be
carefully curated because it contains artefacts due to incidents

or misuses of the platforms, or to limitations or bugs of the
monitoring tools [8].

Challenge #2
A simulator cannot be accurate for every I/O workload.

The heterogeneity of I/O workloads executed on real-world
systems is high [9]. Furthermore, an inspection of actual
application traces shows that many jobs are outliers, with
behaviors (due to bugs, due to idiosyncratic implementations)
that are hard to model and thus to simulate. This is because a
program can implement I/O in many different ways, including
ways that are vastly sub-optimal. In addition, even if we were
to design a job model with enough flexibility to represent such
a wide array of I/O behaviors, it would be very complex to
benefit from it. Indeed, we don’t have enough knowledge about
the jobs to match each of them with a correct configuration
of the model (see Challenge #1 above).

Challenge #3
The level of details of the simulation must be chosen to
achieve a sensible accuracy/scalability trade-off.

A natural approach is to implement a simulator’s simulation
models with high levels of details in order to reproduce
near-exact real-world behaviors. In many cases, such as the
simulation of large HPC workloads and systems, doing so can
lead to prohibitive time and space complexity due to large
numbers of simulated discrete events. Furthermore, not all
information is always available to implement highly detailed
simulation models. For these reasons, one must instead resort
to implementing less detailed, and thus likely less accurate,
simulation models. The challenge is that for each component
of the target system one must choose an appropriate level of
detail at which to model this component, so that, overall,
the simulator achieves sufficient levels of accuracy and of
scalability.

Challenge #4

Calibrating a simulator with respect to ground-truth data1

so as to maximize simulation accuracy is difficult.

All simulation models in a simulator come with configura-
tion parameters, and appropriate values must be chosen for
these parameters. Because simulation models are often not
implemented at a high level of details, model parameter values
cannot simply be picked based on the hardware specification
of the system being simulated. For instance, say that a real-
world network topology is abstracted away as a single macro-
link. The latency and bandwidth values of this macro-link that
maximize simulation accuracy are some complex functions
of the latencies and bandwidths of the individual network
links in the real-world network topology. In general, parameter
values must be calibrated so that the simulator’s accuracy is
maximized with respect to available ground-truth data. This

1The reality of the modeled system behavior.

2



amounts to solving a multi-variate optimization problem in
which the objective function is some simulation accuracy
metric and the variables are the simulation model parameters.
In the field of parallel and distributed computing, simulation
calibration is often not performed and, when it is, it is mostly
a labor-intensive and manual process [10].

To the best of our knowledge, there is no validated simulator
of high-performance storage systems for which the above
challenges have been addressed satisfactorily.

III. RELATED WORK

A. I/O and Storage Systems Analysis

The evaluation of high-performance storage systems has
been actively pursued because, as applications’ I/O require-
ments continue to grow, storage systems need to be studied
and optimized throughout their lifetimes [2]. Multiple studies
have focused on analyzing the behavior of specific storage
system deployments over months of production usage [11],
[12], [13], [14], [8], [15]. The goal of most of these works
is to provide guidance to users and administrators of these
specific deployments, without attempting to generalize to other
hardware architectures or other low-level configurations of the
system. They also require access to a significant volume of
logs, often collected from multiple sources inside the studied
systems (in [8], fives different logs were used). Other studies
strive for more generalizable conclusions [16], [17], sometimes
providing methods for tuning file system or application con-
figuration parameters [7], [18]. These works, however, require
extensive access to an already deployed file system, and are
limited to configuration parameter tuning (no changes in the
hardware infrastructure).

B. Simulation Approaches

Given the advantages of simulations over real-world exper-
iments, it is not surprising that many parallel and distributed
computing researchers have developed simulators, even though
relatively few have focused on the simulation of distributed
storage systems [19], [20], [21], [22].

Any simulator must implement simulation models that
mimic the behavior of the components of actual systems.
The most natural approach is to implement these models
with a high level of details, in an attempt to reproduce
“microscopic” real behaviors and achieve the highest possi-
ble accuracy (packet-level network simulation, cycle-accurate
CPU simulation, block-level I/O device simulation). However,
this is at the expense of scalability as the number of discrete
events is typically proportional to the size of the workload
being simulated. This scalability issue is problematic when
wanting to simulate HPC workloads with large compute and
data volumes. One solution is to use Parallel Discrete Event
Simulation (PDES) [23] by which the simulation itself is a
parallel application that executes on an HPC cluster [24], [25],
[26]. This approach is used in [20], which, like this work, fo-
cuses on simulating a high-performance storage system. How-
ever, achieving high parallel efficiency with PDES is known

to be challenging and, when simulating large systems and
long-running workloads, the resource expenses for conducting
extensive experimental campaigns can be prohibitive (in this
work, for instance, we execute thousands of simulations).

The way to increase simulation scalability is to employ
less detailed simulation models. These models aim to capture
“macroscopic” behaviors of real-world systems, with time and
space complexities orders of magnitude lower than those of
the “microscopic” models discussed earlier. In the specific
context of the simulation of high-performance storage sys-
tems, previous authors have developed simulators with such
models [19], [21], [22]. These simulators are developed from
scratch using a generic discrete-event simulation framework
(namely SimPy [27]). However, considerable effort has been
invested by the community in the development of discrete-
event simulation frameworks for easing the development of
simulators of parallel and distributed computing systems [28],
[29], [30], [31], [32], [33], [34]. But these frameworks typ-
ically only provide simplistic simulation models of I/O re-
sources and do not provide out-of-the-box solutions for the
simulation of high-performance storage systems.

This work aims to address the challenges posed by the
simulation of high-performance storage systems described in
Section II. To do so we propose an architecture and an
implementation of a storage system simulator called FIVES.
In contrast to the aforementioned simulators, FIVES builds on
(and contributes to) existing and well-established parallel and
distributed computing simulation frameworks: WRENCH [33]
and SimGrid [34]. We chose these frameworks because they
are widely-used, provide the necessary simulation abstractions
and models for this work, and have been the object of thorough
validation studies that have demonstrated that they can achieve
high accuracy [35], [36], [37], [38], [39], [40], [41], [33], [10].

IV. THE FIVES SIMULATOR

A. FIVES conceptual architecture

We consider that an HPC system comprises three main con-
ceptual elements as depicted in Figure 2a: a Job Manager, an
Orchestrator and an Infrastructure. The Job Manager receives
user requests with compute resources and time demands,
creates a job for each request, and submits jobs for execution
to the Orchestrator. The Orchestrator implements scheduling
policies by which jobs are assigned to particular hardware
resources in the Infrastructure. We describe these conceptual
elements in more details hereafter.

1) Infrastructure: The Infrastructure represents a simulated
hardware platform, such as the one depicted in Figure 3. In this
example the compute partition consists of homogeneous com-
pute nodes interconnected via a Dragonfly network topology,
and is defined by the number of compute nodes, their compute
speed and number of cores, and the bandwidth and latency of
the network links. Other network topologies are already avail-
able in SimGrid, and more can be manually implemented as
needed. The storage partition comprises homogeneous storage
nodes interconnected via a star topology, and is defined by
the number of storage nodes and the bandwidth and latency

3



(a) Architecture (b) Implementation

Fig. 2: FIVES architecture and implementation.

of the network links. A disk is attached at each storage
node, and is defined by a capacity, a read bandwidth, and
a write bandwidth. The compute partition and the storage
partition are connected to a common backbone interconnect
via their network links. The backbone and links are defined
by a bandwidth and a latency.

Fig. 3: FIVES’s Infrastructure conceptual element.

2) Job Manager: The Job Manager is in charge of inter-
preting the resource demands in each user request, creating
jobs, and sending these jobs to the Orchestrator. We define
a job as a set of compute and I/O operations caused by
the execution of one or more applications. These are to be
executed on a set of resources on the Infrastructure (specified
as a desired number of nodes and cores) that are requested
for a given time period. A reservation corresponds to a job
for which the requested resources have been allocated. During
a reservation one or more applications may run, each with
a known start and end timestamp within the bounds of the
reservation.

3) Orchestrator: The Orchestrator is responsible for
scheduling submitted jobs and their I/O operations. It thus
must employ both a job scheduling algorithm and a striping
policy for allocating storage resources and distributing data to
disks. Although users can provide their own implementations
of these algorithms, we have already implemented several
algorithms in FIVES, described in the next section, which
correspond to a large spectrum of relevant use cases (i.e.,
classical job scheduling algorithms, the striping policy of the
Lustre file system).

B. FIVES Implementation
FIVES is implemented using the WRENCH [33] and Sim-

Grid [34] state-of-the-art simulation frameworks. SimGrid

provides foundational simulation abstractions for sequential
concurrent processes that use compute, network, and storage
hardware resources, using scalable and validated simulation
models. WRENCH builds on top of SimGrid to implement
high-level simulation abstractions of “Services” to which
“Jobs” can be submitted and perform “Actions.” Using these
abstractions, simulators of complex workloads and systems
can be implemented with minimal effort.

1) Main Simulation Components: Figure 2b depicts the
simulation components used to implement the conceptual ar-
chitecture described in Section IV-A, and shows the workflow
of the simulation. The figure indicates which components are
native to WRENCH and which are developed in FIVES.

The entry point component of FIVES is the Controller,
which manages job executions throughout the simulation. It
takes as input a dataset that specifies the jobs whose executions
are to be simulated on the HPC platform, with an arrival date
for each job. At the onset of the simulation, the Controller
creates a set of jobs to simulate based on the job dataset.
It submits each job for execution to the Batch Compute
Service configured to use a particular job scheduling algorithm.
WRENCH already comes with several such algorithms, and in
this work we use its (default) conservative backfilling imple-
mentation [42]. The Controller acknowledges job completions
until the execution of the entire workload has been simulated,
and outputs timestamped job execution, I/O operation and I/O
resource usage events. The Controller incurs no load during
the simulation, but requires a few seconds before and after,
while instantiating the jobs and computing the final metrics.

The jobs submitted by the Controller are executed on a
simulated HPC system such as the one shown in Figure 3.
SimGrid provides a powerful API for describing arbitrary
hardware platforms to be simulated that includes compute,
network, and storage resources. Using this API, the FIVES user
can implement the Infrastructure conceptual element described
in the previous section for any target hardware configuration.
Building on top of SimGrid, WRENCH offers high-level
services implemented in simulation that manages the simulated
hardware resources: a Compute Service manages compute
nodes (called Compute Hosts), while a Simple Storage Service
manages storage nodes (called Storage Hosts). However, the
Simple Storage Service implemented in WRENCH, which
answers file read/write/delete/copy requests over the network,
can only run on a single host and manage file systems on

4



disks attached to that host. To get around this limitation, which
makes the framework unsuitable for modeling distributed
storage systems, we introduce a new type of storage service
that we have contributed to WRENCH: the Compound Storage
Service (CSS).

2) Compound Storage Service: A CSS (see Figure 4) ag-
gregates and provides a high-level interface to multiple Simple
Storage Services on multiple hosts. Files stored on the CSS
are transparently distributed and/or striped across any subset
of the Simple Storage Services, and the CSS keeps track of
the location of each file and file stripe. It intercepts requests
for read, write, copy or delete operations in order to redirect
them to the appropriate Simple Storage Services.

The CSS abstraction implements all core mechanisms for
simulating a parallel file system. Custom policies, such as the
striping policy, are provided through the Allocator component.
This makes it possible to use the generic CSS abstraction and
instantiate it to simulate a particular parallel file systems, as
explained in Section V-B3.

Fig. 4: CSS implementation in WRENCH

V. USE-CASE DRIVEN INSTANTIATION

Once a simulator has been implemented, it must be instan-
tiated to be representative of a real-world system of interest.
For this study, we selected Theta at the Argonne National
Laboratory, a 11.7-PetaFLOPS Cray XC40 HPC system that
ran for almost 6 years until the end of 2023, producing a
significant number of major scientific results. Theta featured
4,392 compute nodes (Intel KNL) interconnected via an Aries
network with a Dragonfly topology. The choice of Theta
was motivated by its hosting of a 10 PB Lustre file system,
the most widespread storage system on Top500 machines
to date. In addition, unless explicitly specified at compile
time, applications running on Theta were monitored with the
Darshan [43] I/O monitoring tool, which has yielded a valuable
dataset with years of I/O execution traces. An aggregated
version of these traces is publicly available online [44].

A. Background

1) Darshan: Darshan [43] is a monitoring tool for record-
ing the I/O performed by an application with low overhead.
Information is collected at a high level of detail, down to the
granularity of the data chunks written by a process. Darshan
is deployed on several top-tier supercomputers, such as those

at Argonne National Laboratory or at NERSC, where the
majority of applications are monitored. However, for reasons
specific to these institutions (confidentiality, data control),
raw data is not publicly distributed. Only aggregated data is
available, providing a global view of job I/Os but omitting
information such as the number of files written or the number
of processes that took part in I/O. Overall, for a given job, the
information made available is job start and end times, volumes
of data read and written, and time spent performing I/O (plus
other information not relevant to this work).

2) The Lustre Parallel File System: Lustre is an open-
source parallel file system (PFS) that has been maintained
and evolved for over twenty years. As depicted in Figure 5, a
Lustre file system consists of I/O servers called OSS (Object
Storage Servers) and disks called OST (Object Storage Tar-
gets). The number of OSTs managed by an OSS is variable
ranging from one on the Theta supercomputer at Argonne Na-
tional Laboratory, to three on Frontier at Oak Ridge National
Laboratory, or higher on other systems. Following the same
model, metadata is managed by metadata servers (MDS) and
targets (MDT). All storage resources are accessed via so-called
LNET nodes, which correspond to the I/O forwarding nodes
found in many HPC systems. These LNET nodes are generally
part of the interconnection network and access the Lustre file
system via a dedicated network interface.

Fig. 5: Lustre architecture

Data written to a Lustre file system is striped across the
OSTs, allowing performance gain by aggregating bandwidth
from multiple OSTs and possibly OSSs. Striping a file is a two
steps process. First, Lustre creates an ordered list of usable
OSTs. Second, Lustre distributes file parts on a subset of
this list according to a striping layout. Selecting and ordering
which OST(s) will be used is achieved using one of two
allocation strategies: round-robin or weighted. The round-
robin strategy is used in most cases. The weighted strategy
implements a bias towards selecting the least used OSTs first
and is triggered on rare occasions, when free-space imbalance
between OSTs is above some threshold.

Lustre’s default striping layout takes two main parameters:
the stripe count which defines the number of OSTs on which
the stripes will be distributed and the stripe size, which defines
the granularity at which the data is divided into chunks of
identical size inside the stripes. The stripe count and the stripe
size have default values, although they can be changed by

5



the user, on a per-file or per-directory basis. On Theta, the
stripe count was set to 1 and the stripe size was set to 1MB.
Section V-B3 describes our implementation of the Lustre’s
striping policy in the FIVES Allocator component.

B. Simulator Instantiation

Given the characteristics of the platform to be simulated and
the information available regarding the jobs whose executions
are to be reproduced on that platform, one must make various
decisions regarding how the simulator should be instantiated.
In what follows we discuss the three main decision axes when
using FIVES to simulate the Theta platform and workload.

1) Job execution: When submitting a job to the Batch
Compute Service, FIVES uses the real-world walltime and
resource requirements of each reservation and respects the ac-
tual interval between subsequent job submissions, as available
in the job trace. The start date of a job, however, is condi-
tioned by the conservative backfilling job scheduling algorithm
implemented in WRENCH. These start dates can thus be
different from start dates that were driven by the specific batch
scheduler configuration deployed on the real-world platform.
Each job is defined by a runtime that we estimate based on
the information present in the workload trace, and bound by
the reservation walltime. Each I/O phase is subdivided in a
variable number of individual read or write WRENCH actions,
executed collectively from a subset of the job’s compute nodes.
Each action internally spawns multiple actual reads and writes
to the storage system, depending on the job’s I/O volume. The
typical number of simulated reads or writes for a job can be
approximated as F × H × SH , where F (1 ≤ F ≤ 102) is
the number of files, H (1 ≤ H ≤ 101) is the number of
participating compute nodes and SH (1 ≤ SH ≤ 102) is the
number of stripes accessed by each host, similar for all hosts
±1. SH is bounded by the number of OSTs in use and the
number of file chunks allowed on each OST for simulation
scalability reasons (see Section V-B3). This approximation is
an underestimation of the number of I/O accesses that jobs
performed on the real system. Despite this underestimation,
our results demonstrate that our simulations are in line with
real-world behaviors.

We assume that all reads and writes from a job are on the
PFS. Some might be local since the Theta compute nodes
feature node-local SSD, but the workload trace does not
distinguish between local and non-local I/O. Furthermore, for
a given job, the trace does not specify the number of files (F )
and the number of compute nodes that are involved in I/O
operations (H). We consider that F and H are parameters
that must be calibrated based on observed real-world job
executions. We assume that, for all jobs, the ratio of the total
I/O volume to the total number of files, and the ratio of the
number of compute nodes involved in I/O operations to the
number of compute nodes allocated to the job, are based on
fixed constants for reads and writes. In other words, we need
to calibrate only 4 parameters (2 for reads, and 2 for writes),
instead of 4n parameters where n is the number of jobs, which
would render the calibration problem intractable due to high

dimensionality. This choice leads to a smaller range of possible
I/O behaviors among the simulated jobs, which at the moment
we consider better than to allow more randomness, as our data
doesn’t currently provide us with details on the matter.

Challenge #1: Lesson learned
Making assumptions and abstracting away certain I/O be-
haviors is unavoidable because the information contained
in I/O monitoring datasets is not comprehensive. Some of
these assumptions, however, cause simulated workloads to
be less heterogeneous than their real-world counterparts.

2) Disk contention model: SimGrid implements a default
naive fair-share model for disk bandwidth, but users are
advised to provide their own model for bandwidth degradation
as a function of the number of concurrent I/O operations.
This degradation depends on the mix of read and write
operations and occurs both on HDDs and SSDs, with various
behaviors that depend on many architecture- and workload-
specific characteristics [45], [46]. Producing a general such
model is outside the scope of this paper. Instead, we developed
an empirical model derived from experiments we conducted
on Seagate ST1000NX0443 SATA HDDs. The results (omitted
due to space limitations) show that going from a single access
to concurrent accesses causes an initial sharp decrease in
bandwidth. But as concurrency increases, contention from each
additional I/O operation has less impact and the bandwidth
deterioration curve flattens out. It turns out that this behavior
is modeled accurately (for our experimental results) using a
model that includes a logarithmic component. Specifically, in
FIVES, we model the instantaneous bandwidth (read or write)
of a disk as:

bw = bwmax ∗
(

1

C + log n

)
,

where bwmax is the maximum achievable disk bandwidth, n
is the number of ongoing concurrent I/O operations, and C
is a constant. Difference choices for the C value makes the
model more linear or more logarithmic. Values for bwmax and
C must then be calibrated based on observed real-world job
executions.

3) Striping Policy: The Allocator component provides the
Compound Storage Service with a striping policy. Since
Theta’s storage system is a Lustre PFS, we have imple-
mented in FIVES the internal striping policy based on Lustre’s
open source code. It handles both round-robin and weighted
allocation strategies, with recommended default parameters
for choosing between strategies, and accepts stripe size and
stripe count parameters. It is important to note that the
Darshan data source used in this study does not contain the
stripe count and stripe size parameters used for each file. In
our simulations, we resort to calibrating these values based on
the following rules:

• stripe count: All jobs with a mean I/O bandwidth (bwjob)
below a calibrated threshold use the same static default
value for all I/Os (set to 1 in this paper as it is the

6



default stripe count on Theta). Jobs above the threshold
use a dynamic value computed as alt stripe count ×
bwjob/threshold. The alt stripe count and the threshold
values are different for reads and writes.

• stripe size: This value is manually configured in the
range [50, 100] MB. For simulation scalability reasons,
this is higher than Lustre’s default value of (1MB) to limit
the number of simulation objects being created. For the
same reason, FIVES can be configured so that the number
of file parts on each OST is bounded by a user-specified
values (FOST ). If using the stripe size default value in
conjunction with a large file size L ends up exceeding
FOST , the stripe size is instead set to L / (FOST ×
stripe count) on a per-job basis. We pick FOST so that
one invocation of FIVES in our experimental evaluations
takes at most 20min on a 2.5GHz core.

Challenge #3: Lesson learned
Each simulation model must abstract away some of the
details of the real-world component it simulates for two
reasons that can apply simultaneously: (i) because some
of the details of the real-world system and/or workload are
unknown and (ii) because of simulation scalability concerns.

VI. SIMULATOR CALIBRATION AND VALIDATION

Calibrating a simulator is essential for it to produce accurate
results. The calibration process consists in determining simu-
lation parameter values that make the simulated behavior as
close as possible to the real-world behavior. We have identified
several parameters to calibrate, as detailed in the next section.
One way of determining values for these parameters is to vary
each of them in successive simulation runs until a sufficient
level of correlation between simulated and real performance
is reached. However, this is a prohibitively long process due
to the size of the parameter space and the non-zero simulation
execution time. Instead, we use Bayesian Optimization (BO),
a proven technique for parameter search that helps reduce the
exploration space. In FIVES, we chose to work with the Ax
framework [47], using 50-80 iterations.

A. Calibration parameters

FIVES is configured via dozens of parameters that pertain
to the hardware platform, the jobs to be simulated, and the
storage system. We have empirically determined which pa-
rameters play a significant role in the simulation output when
simulating our production workload, leading us to identify 17
parameters that should be calibrated:

• Platform bandwidths (R/W on disks, network link be-
tween compute and storage partition) - 3 parameters

• Jobs file count (coefficient applied to job’s mean band-
width to determine read and write file counts for each
I/O phase) - 2 parameters (R/W)

• Number of compute nodes participating in I/Os of each
job - 2 parameters (R/W)

• Disk contention model coefficients - 2 parameters (R/W)

• Striping model parameters (stripe size and count values,
adjusted per jobs and for R/W operations and metadata
access overhead) - 7 parameters

• Maximum file parts count on OSTs - 1 parameter

Ranges of possible values for these parameters are loosely
defined based on approximate knowledge of the platform,
workload, and storage system. But for some parameters, as
explained in Section V-B, the range is constrained for simu-
lation scalability reasons.

Some of the parameters that are not calibrated are set
to their known values (e.g., the total number of compute
nodes, the number of disks per storage node). Others have
been empirically determined to have little impact on the
simulation output provided they are set to reasonable guesses.
For instance, the network latency is set to the same value (24
µs) for all links, and only deviations from this value by orders
of magnitude impact the simulation output.

1) Calibration loss function: The calibration process aims
at minimizing a loss function that quantifies the simulator’s
accuracy. We define our loss function as the Mean Absolute
Error of the percentage difference between the cumulative I/O
time of each simulated job and its real-world counterpart. We
use this percentage difference so that the impact of jobs with
very long I/O on the loss function is not larger than that of
jobs with shorter I/O. Formally, our loss function is defined
as:

loss =
1

N
∗

N∑
i=1

|RIO
i − SIO

i |
RIO

i

,

where N is the number of jobs, RIO
i (resp. SIO

i ) is the real
(resp. simulated) I/O duration for job i.

B. Selecting calibration data

We find that our workload dataset includes either highly
under-performing or over-performing jobs in terms of mean
I/O bandwidth, e.g., ranging between 0.1MB/s and 3.5GB/s
for reads. For our generic job model to be applicable, it is thus
necessary to filter out outliers (mean read or write bandwidth
≥ 90th percentile or ≤ 10th percentile, I/O volume > 10TB),
which corresponds to ≈ 29% of the jobs in the original dataset.
The reason why we designed a generic job model, which
cannot capture idiosyncratic behaviors of these outlier jobs,
is that the workload dataset lacks the necessary information
for attempting to model these behaviors. The remaining 82%
of the jobs, however, can be simulated so that trends and
correlations of simulated behaviors are in line with real-world
behaviors. But still, we find that the calibration process is
sensitive to the heterogeneity of the job dataset. Therefore, we
sort jobs into bandwidth classes: fast jobs (mean bandwidth ≥
75th percentile), slow jobs (mean bandwidth ≤ 25th percentile),
and regular jobs in-between. Simulation parameters shared
among all jobs (e.g., platform parameters) are calibrated using
regular jobs only (and fixed for further calibrations). Job-
specific parameters are calibrated independently for each class.

7



C. Validation Procedure

We use the obtained calibration to run simulations on every
single month of the dataset, and evaluate simulation accuracy
using Pearson correlations between simulated and real job I/O
times. We are particularly interested in minimum values and
variance in correlations for read and write times. The month
that was used for obtaining the calibration serves as a control,
the expectation being to get near perfect Pearson correlations
between real and simulated I/O times. The other simulation
runs let us observe whether the calibration generalizes, since
the workload exhibit variations throughout the year.

Challenge #4: Lesson learned
Defining the set of calibration parameters is not straight-
forward as one must determine which parameters have a
significant influence on the simulation output to reduce the
dimensionality of the calibration problem. Choices must
also be made regarding which subset of the ground-truth
data should be used for computing the calibration, requiring
some method to define and exclude outliers.

VII. EVALUATION

In this section we quantify the simulation accuracy of the
calibrated FIVES simulator. Direct comparison is not feasible
between our results and that obtained with previously proposed
simulators [19], [20], [21], [22], some of which have actually
not been validated against real-world ground-truth data. For in-
stance, neither [19] nor [22] offer a network and I/O bandwidth
model which could be used as part of a feedback loop during
the simulation, which make them fundamentally incompatible
with FIVES. In [20], the authors present a simulator closer to
FIVES, but which is able to model the execution of only a
very limited number of applications at a time, and requires an
unspecified, but consequent, cluster of nodes to execute. Due
to these fundamental design and implementation differences
(and others: supported input traces, simulated platform models,
storage allocation algorithms, output metrics, . . . ), performing
sound comparisons would require extensive modification of
these previously proposed simulators to augment their existing
capabilities.

A. Simulation calibration results

For calibration and validation of FIVES we consider one
year of Darshan traces from the Theta system at Argonne. We
choose the year 2022 because it is recent and representative
of peak machine usage. Out of 18,086 individual jobs, ≈7,000
do not contain actual I/O activity, and we filtered out another
≈6,000 jobs based on the criteria defined in Section VI-B,
leaving us with ≈5,000 suitable jobs. Computing the calibra-
tion using the full year as ground-truth data is computationally
intensive, and our experiments show that it brings only small
accuracy gains when compared to using a single month. In
all results below, the calibration was computed using data
from the month of November, considering only jobs in the
regular class. We picked this month because it has a significant
number of regular jobs (366 jobs) and is representative of the

job heterogeneity seen in the full dataset. We use Pearson’s
correlation between simulated and real cumulative I/O times
in order to report on the quality of the calibration. While this
metric doesn’t fully validate accuracy, it helps make sure that
FIVES captures a satisfactory trend of the time spent in I/O,
which is relevant for a simulation of large periods of time and
thousands of jobs.

Figure 6 shows, for each job of the regular class from
November 2022, the cumulative real I/O time (x-axis) ex-
tracted from Darshan traces and the FIVES-simulated cumula-
tive I/O time (y-axis). This corresponds to the month that was
used for calibrating the simulator, and we thus expect high
accuracy. Most data points are close to the target diagonal,
depicted as a red straight line, and the Pearson’s correlation
between simulated and real cumulative I/O times is 0.98.

101 102 103 104 105

Cumul. Real I/O Time (s)

101

102

103

104

105

Cu
m

ul
. S

im
ul

at
ed

 I/
O 

Ti
m

e 
(s

)

Jobs
Sim. I/O == Real I/O target

Fig. 6: Simulated vs. real cumulative I/O time for regular jobs
of Nov. 2022 (366 jobs).

For the year of 2022, excluding the month of November,
Figure 7 shows the I/O volumes (bytes) vs. the I/O time
(seconds) for each real regular job (green) and its simulated
counterpart (grey). We observe that simulated jobs almost
all fall within the same job class as that of their real jobs
counterparts (92% of jobs). Most of the simulated jobs falling
outside of the class bounds form a horizontal pattern (dotted
box in the figure). The same pattern, although contained
within the class, is present in the real traces. Because these
≈ 200 jobs process almost exactly the same I/O volume
and have mostly sequential job IDs, we conjecture that they
come from the same application, executed multiple times
under various platform conditions and/or with slightly dif-
ferent input parameters. However, the traces do not contain
enough details to determine clear differences between these
jobs, which is especially challenging for the calibration of
FIVES (same, incomplete, input values for n jobs, but different
expected outcomes). Another observation from this figure is
that simulated jobs occupy a narrower diagonal than real jobs,

8



which spread on the entire width of the 25-75th percentile
domain. This is because, as explained in Section V-B1, we
do not have full information regarding the behavior of each
individual job and make assumptions that make the job mix
more homogeneous than in the real world. We could mitigate
this by adding artificial noise to the models, but that would
make the simulator non-deterministic, which is not desirable
before reaching more confidence in the results.

Fig. 7: Cumulative I/O volume vs. I/O time for real (green)
and simulated (grey) regular jobs. Year of 2022, excl. training
set (November).

Figure 8 is similar to Figure 6, but shows results for the
whole year of 2022 and includes the three job classes (≈ 1, 250
slow jobs in blue, ≈ 2, 500 regular jobs in grey and ≈ 1, 250
fast jobs in red). The pattern first observed in Figure 7 is
once again shown inside a black-bordered box. This cluster
causes the Pearson correlation on I/O time to drop to 0.43
for the regular jobs, while it would be 0.71 without it. An
examination of the workload traces reveals that this cluster
corresponds to a single job, which is executed more than
200 times and has a somewhat unique I/O behavior. The
calibration procedure attempts to find a single configuration of
the parameters that best fit all jobs on average, and the many
invocations of this single job end up suffering from lower
simulation accuracy. Because our simulator doesn’t seem to
be a good fit for this type of job, and it was repeated so
many times over two months of our studied dataset, the impact
is significant. Results also highlight a global high level of
accuracy for slow jobs, with a Pearson correlation at 0.83.
By contrast, fast jobs experience the worse correlation, at
0.52, although the overall trend is correct. This is because, as
explained in Section V-B, to increase the scalability of FIVES
we place artificial bounds on several parameters, such as the
stripe count and the number of files. This can lead to the
execution of jobs with highly optimized I/O implementations
to be simulated with lower levels of performance than in the

real world. Note that our calibration of FIVES is for a particular
trade-off between accuracy and scalability, which has allowed
us to run large numbers of simulations as necessary for
performing this research. For a given production use case,
scalability could be reduced to increase accuracy, either overall
or for particular job classes.

The results presented above are a first valuable step towards
informing architecture and configuration of storage systems.
However, FIVES’s job-level accuracy is limited by the level
of detail of the traces, which in turn limits the accuracy of a
generic job model. Addressing this issue would require access
to trace datasets with more complete per-job information, so
that more detailed job models can be developed.

Challenge #2: Lesson learned
The high degree of I/O behavior heterogeneity among jobs
makes it impossible to design a simulator that is accurate
for all jobs. But it is possible to define job classes and
achieve desirable trade-offs between simulation scalability
and simulation accuracy for each class.

VIII. CONCLUSION

This work has presented the FIVES simulator of high-
performance storage systems, which was developed using
but also has contributed to state-of-the-art simulation frame-
works. We have identified four challenges for the accurate
simulation of high-performance storage systems, and have
shown possible approaches for addressing these challenges.
These include methods for modeling job I/Os, for coping with
job heterogeneity, and for automating simulator calibration.
An experimental evaluation based on one year’s worth of
supercomputer traces has allowed us to quantify achievable
levels of simulation accuracy. Furthermore, we confirmed the
coherence of our results with short experiments, including
varying the number of OSTs in our platform model. This led to
expected results in terms of bandwidth impact, conforming to
our initial evaluation of FIVES. Although we have performed
our investigation in the context of the Lustre file system, we
believe the proposed methodologies and the FIVES simulator
itself can be applied to a broad range of production settings.

The main direction for future work is the development of
approaches for better handling the heterogeneity of job I/O
behaviors. In this work we have resorted to defining job classes
based on average I/O performance to handle this heterogeneity,
which has proved effective but has limitations. We have
defined our three jobs classes in a somewhat arbitrary manner,
but it is likely that better classes could be defined. Developing
a methodology to automatically pick the appropriate number
of classes and the criteria for defining these classes would
be a key advance. Regardless, within each job class there
is still heterogeneity in the patterns of I/O operations (e.g.,
the number and frequency of distinct I/O phases throughout
a job’s execution). In this work we have not considered these
patterns because the needed information was not present in
our workload traces. As a result, within a job class, simulated
job behaviors are artificially more homogeneous than in the

9



101 102 103 104 105 106

Cumulated real I/O Time (s)

101

102

103

104

105

106
Cu

m
ul

at
ed

 si
m

ul
at

ed
 I/

O 
Ti

m
e 

(s
) Slow jobs

Sim. I/O == Real I/O target

101 102 103 104 105

Cumulated real I/O Time (s)

101

102

103

104

105

Cu
m

ul
at

ed
 si

m
ul

at
ed

 I/
O 

Ti
m

e 
(s

)

Regular jobs
Sim. I/O == Real I/O target

101 102 103 104 105 106

Cumulated real I/O Time (s)

101

102

103

104

105

106

Cu
m

ul
at

ed
 si

m
ul

at
ed

 I/
O 

Ti
m

e 
(s

)

Fast jobs
Sim. I/O == Real I/O target

Fig. 8: Cumulative simulated I/O time vs. cumulative real I/O time - Full 2022 year, excluding training data of November
(4,646 jobs) - From left to right, slow, regular and fast jobs.

real world. An important future research direction will be to
augment FIVES so that it supports arbitrary I/O operation
patterns and to calibrate it based on ground-truth data that
does contain information regarding these patterns.

REFERENCES

[1] “Top500 ranking,” https://www.top500.org/.
[2] G. Lockwood, D. Hazen, Q. Koziol, R. Canon, K. Antypas, and

J. Balewski, “Storage 2020: A Vision for the Future of HPC Storage,” in
Report: LBNL-2001072. Lawrence Berkeley National Laboratory, 2017.
[Online]. Available: https://escholarship.org/uc/item/744479dp#author

[3] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,
Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic performance
measurements of the intel optane dc persistent memory module,” arXiv
preprint arXiv:1903.05714, 2019.

[4] J. Lofstead, I. Jimenez, C. Maltzahn, Q. Koziol, J. Bent, and E. Barton,
“Daos and friends: A proposal for an exascale storage system,” in
SC ’16: Proc. of the Int. Conf. for High Performance Computing,
Networking, Storage and Analysis, 2016, pp. 585–596.

[5] J. Yang, J. Izraelevitz, and S. Swanson, “Orion: A distributed file system
for {Non-Volatile} main memory and {RDMA-Capable} networks,” in
17th USENIX Conf. on File and Storage Technologies (FAST 19), 2019,
pp. 221–234.

[6] P. Schwan, “Lustre: Building a file system for 1,000-node clusters,” in
Proc. of the Linux Symp., 2003, p. 9.

[7] M. Seiz, P. Offenhäuser, S. Andersson, J. Hötzer, H. Hierl, B. Nestler,
and M. Resch, “Lustre i/o performance investigations on hazel hen:
experiments and heuristics,” The J. of Supercomputing, vol. 77, no. 11,
p. 12508–12536, Nov. 2021.

[8] Z. Liu, R. Lewis, R. Kettimuthu, K. Harms, P. Carns, N. Rao, I. Foster,
and M. E. Papka, “Characterization and identification of hpc applications
at leadership computing facility,” in Proc. of the 34th ACM Int. Conf.
on Supercomputing. Barcelona Spain: ACM, Jun. 2020, p. 1–12.
[Online]. Available: https://dl.acm.org/doi/10.1145/3392717.3392774

[9] S.-H. Lim, H. Sim, R. Gunasekaran, and S. S. Vazhkudai, “Scientific
user behavior and data-sharing trends in a petascale file system,” in
Proc. of the Int. Conf. for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’17. New York, NY, USA: Association
for Computing Machinery, Nov. 2017, p. 1–12. [Online]. Available:
https://doi.org/10.1145/3126908.3126924

[10] J. McDonald, M. Horzela, F. Suter, and H. Casanova, “Automated
Calibration of Parallel and Distributed Computing Simulators: A Case
Study,” in Proc. of the 25th IEEE Int. Workshop on Parallel and
Distributed Scientific and Engineering Computing (PDSEC), 2024.
[Online]. Available: https://arxiv.org/abs/2403.13918

[11] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J.
Wright, “A year in the life of a parallel file system,” in SC18: Int. Conf.
for High Performance Computing, Networking, Storage and Analysis,
2018, pp. 931–943.

[12] A. K. Paul, O. Faaland, A. Moody, E. Gonsiorowski, K. Mohror, and
A. R. Butt, “Understanding hpc application i/o behavior using system
level statistics,” in 2020 IEEE 27th Int. Conf. on High Performance
Computing, Data, and Analytics (HiPC), 2020, pp. 202–211.

[13] J. L. Bez, A. M. Karimi, A. K. Paul, B. Xie, S. Byna,
P. Carns, S. Oral, F. Wang, and J. Hanley, “Access patterns and
performance behaviors of multi-layer supercomputer i/o subsystems
under production load,” in Proc. of the 31st Int. Symp. on
High-Performance Parallel and Distributed Computing. Minneapolis
MN USA: ACM, Jun. 2022, p. 43–55. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3502181.3531461

[14] G. K. Lockwood, S. Snyder, S. Byna, P. Carns, and N. J. Wright,
“Understanding data motion in the modern hpc data center,” in 2019
IEEE/ACM Fourth Int. Parallel Data Systems Workshop (PDSW), Nov.
2019, p. 74–83.

[15] A. Khan, H. Sim, S. S. Vazhkudai, A. R. Butt, and Y. Kim,
“An analysis of system balance and architectural trends based on
top500 supercomputers,” in The Int. Conf. on High Performance
Computing in Asia-Pacific Region. Virtual Event Republic of
Korea: ACM, Jan. 2021, p. 11–22. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3432261.3432263

[16] F. Boito, G. Pallez, and L. Teylo, “The role of storage target allocation
in applications’ i/o performance with beegfs,” in 2022 IEEE Int. Conf.
on Cluster Computing (CLUSTER), 2022, pp. 267–277.

[17] F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone,
K. Mohror, and W. Yu, “I/O Characterization and Performance
Evaluation of BeeGFS for Deep Learning,” in Proc. Int. Conf. on
Parallel Processing (ICPP). Association for Computing Machinery,
Aug. 2019, p. 1–10. [Online]. Available: https://dl.acm.org/doi/10.1145/
3337821.3337902

[18] B. Behzad, S. Byna, Prabhat, and M. Snir, “Optimizing i/o performance
of hpc applications with autotuning,” ACM Trans. on Parallel Comput-
ing, vol. 5, no. 4, pp. 15:1–15:27, Mar. 2019.

[19] C. San-Lucas and C. L. Abad, “Towards a fast multi-tier storage system
simulator,” in 2016 IEEE Ecuador Technical Chapters Meeting (ETCM),
2016, pp. 1–5.

[20] H. Khetawat, C. Zimmer, F. Mueller, S. Atchley, S. S. Vazhkudai, and
M. Mubarak, “Evaluating burst buffer placement in hpc systems,” in
2019 IEEE Int. Conf. on Cluster Computing (CLUSTER), 2019, pp. 1–
11.

[21] K. Arzymatov, M. Hushchyn, A. Sapronov, V. Belavin, L. Gremyachikh,
M. Karpov, and A. Ustyuzhanin, “Online detection of failures
generated by storage simulator,” J. of Physics: Conf. Series,

10



vol. 1740, no. 1, p. 012052, jan 2021. [Online]. Available:
https://dx.doi.org/10.1088/1742-6596/1740/1/012052

[22] J. Monniot, F. Tessier, M. Robert, and G. Antoniu, “Supporting
dynamic allocation of heterogeneous storage resources on hpc
systems,” Concurrency and Computation: Practice and Experience,
vol. 35, no. 28, p. e7890, 2023. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7890

[23] R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM,
vol. 33, no. 10, p. 30–53, oct 1990.

[24] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and R. Ross, “CODES:
Enabling Co-Design of Multilayer Exascale Storage Architectures,” in
Proc. of the Workshop on Emerging Supercomputing Technologies, 2011.

[25] S. Böhm and C. Engelmann, “xSim: The extreme-scale simulator,” in
Proc. of the Int. Conf. on High Performance Computing & Simulation,
2011, pp. 280–286.

[26] M.-Y. Hsieh, R. Riesen, K. Thompson, W. Song, and A. Rodrigues,
“SST: A Scalable Parallel Framework for Architecture-Level Perfor-
mance, Power, Area and Thermal Simulation,” The Computer J., vol. 55,
no. 2, pp. 181–191, 2012.

[27] “SimPy: Discrete event simulation for Python,” https://simpy.
readthedocs.io/en/latest/.

[28] R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling
and Simulation of Distributed Resource Management and Scheduling
for Grid Computing,” Concurrency and Computation: Practice and
Experience, vol. 14, no. 13-15, pp. 1175–1220, Dec. 2002.

[29] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–
50, Jan. 2011.

[30] S. Ostermann, R. Prodan, and T. Fahringer, “Dynamic Cloud Provision-
ing for Scientific Grid Workflows,” in Proc. of the 11th ACM/IEEE Int.
Conf. on Grid Computing, 2010, pp. 97–104.

[31] G. Kecskemeti, “DISSECT-CF: A simulator to foster energy-aware
scheduling in infrastructure clouds,” Simulation Modelling Practice and
Theory, vol. 58, no. 2, pp. 188–218, 2015.

[32] E. U. Yousuf Khan, T. Rahim Soomro, and M. Nawaz Brohi, “iFogSim:
A Tool for Simulating Cloud and Fog Applications,” in Proc. of the Int.
Conf. on Cyber Resilience, 2022, pp. 01–05.

[33] H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jethwani,
W. Koch, S. Albrecht, J. Oeth, and F. Suter, “Developing Accurate and
Scalable Simulators of Production Workflow Management Systems with
WRENCH,” Future Generation Computer Systems, vol. 112, pp. 162–
175, 2020.

[34] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” J. of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, Jun. 2014. [Online]. Available: http:
//hal.inria.fr/hal-01017319

[35] P. Velho, L. Mello Schnorr, H. Casanova, and A. Legrand, “On the
Validity of Flow-level TCP Network Models for Grid and Cloud Sim-
ulations,” ACM Trans. on Modeling and Computer Simulation, vol. 23,
no. 4, 2013.

[36] P. Velho and A. Legrand, “Accuracy Study and Improvement of Network
Simulation in the SimGrid Framework,” in Proc. of the 2nd Intl. Conf.
on Simulation Tools and Techniques, 2009.

[37] A. Lèbre, A. Legrand, F. Suter, and P. Veyre, “Adding Storage Simula-
tion Capacities to the SimGrid Toolkit: Concepts, Models, and API,” in
Proc. of the 8th IEEE Int. Symp. on Cluster Computing and the Grid,
2015.

[38] A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. Stillwell,
and F. Suter, “Simulating MPI applications: the SMPI approach,” IEEE
Trans. on Parallel and Distributed Systems, vol. 18, no. 8, pp. 2387–
2400, 2017.

[39] A. Rizvi, T. Toha, M. Lunar, M. Adnan, and A. Alim Al Islam, “Cooling
Energy Integration in SimGrid,” in Proc. of the 2017 Int. Conf. on
Networking, Systems and Security (NSysS), 2017, pp. 132–137.

[40] L. Stanisic, S. Thibault, A. Legrand, B. Videau, and J.-F. Méhaut, “Faith-
ful performance prediction of a dynamic task-based runtime system for
heterogeneous multi-core architectures,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 16, pp. 4075–4090, 2015.

[41] T. Cornebize, A. Legrand, and F. C. Heinrich, “Fast and Faithful
Performance Prediction of MPI Applications: the HPL Case Study,”

in Proc. of the 2019 IEEE Int. Conf. on Cluster Computing, 2019, pp.
1–11.

[42] A. Mu’alem and D. Feitelson, “Utilization, predictability, workloads,
and user runtime estimates in scheduling the ibm sp2 with backfilling,”
IEEE Trans. on Parallel and Distributed Systems, vol. 12, no. 6, pp.
529–543, 2001.

[43] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
characterization of petascale i/o workloads,” in 2009 IEEE Int. Conf. on
Cluster Computing and Workshops, 2009, pp. 1–10.

[44] “Argonne national laboratory data catalog,” https://reports.alcf.anl.gov/
data/.

[45] A. Lebre, A. Legrand, F. Suter, and P. Veyre, “Adding storage simulation
capacities to the simgrid toolkit: Concepts, models, and api,” in 2015
15th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing,
2015, pp. 251–260.

[46] T. I. Papon and M. Athanassoulis, “A Parametric I/O Model for
Modern Storage Devices,” in Proc. of the 17th Int. Workshop on Data
Management on New Hardware (DAMON). New York, NY, USA:
Association for Computing Machinery, 2021.

[47] “Adaptive Experimentation Platform,” https://ax.dev/, 2024.

11


