
Practical Divisible Load Scheduling on
Grid Platforms with APST-DV

Krijn van der Raadt1 Yang Yang2 Henri Casanova1,2

1San Diego Supercomputer Center2 Dept. of Computer Science and Engineering
University of California, San Diego

Abstract

Divisible load applications consist of aload, that is in-
put data and associated computation, that can be divided
arbitrarily into independent pieces. Such applications arise
in many fields and are ideally suited to a master-worker ex-
ecution, but they pose several scheduling challenges. While
the “Divisible Load Scheduling” (DLS) problem has been
studied extensively from a theoretical standpoint, in thispa-
per we focus on practical issues: we extend a production
Grid application execution environment, APST, to support
divisible load applications; we implement previously pro-
posed DLS algorithms as part of APST; we evaluate and
compare these algorithms on a real-world two-cluster plat-
form; we show in a case study how a user can easily and
effectively run a real-world divisible load application; and
we uncover several issues that are critical for using DLS
theory in practice. To the best of our knowledge the soft-
ware resulting from this work, APST-DV, is the first usable
and generic tool for deploying divisible load applications
on distributed computing platforms.

1. Introduction

The divisible load application model corresponds to
computations that can be arbitrarily divided intoinde-
pendentpieces (i.e., they can be executed in any or-
der). This application model is a good approximation
of many real-world applications in scientific comput-
ing (e.g., see [21, 26, 2, 27, 35, 7, 16, 33, 3, 19, 14]).
Divisible load applications are amenable to the sim-
ple master-worker programming model and can in principle
be easily executed on platforms ranging from one sin-
gle cluster to large distributed Grids.

This paper is based upon work supported by the National Science
Foundation under Grant No. 0234233.

Two key challenges faced by users for executing paral-
lel applications on distributed platforms areeasy deploy-
mentandhigh performance, and divisible load applications
are no exceptions. The deployment challenge arises on Grid
platforms as they contain heterogeneous resources with var-
ious access methods and policies. The current Grid middle-
ware infrastructure [18] provides most of the required func-
tionality for Grid application deployment, but it is complex
and not designed to be used directly by end users. A suc-
cessful approach has been to provide so-called “application-
level tools” that isolate the user from the middleware infras-
tructure and take on the burden of all application deploy-
ment logistics [5].

A great amount of research has been done on scheduling
Divisible Load applications (see Section 2.2), but most of
this work, including our own, has been either purely theoret-
ical or specific to a single application. So the goal of this pa-
per isnot to bring up new algorithms; instead, ourfirst con-
tribution in this paper is to provide a generic application-
level tool for the easy deployment of these applications on
Grid platforms. We build upon an existing Grid application-
level tool, APST [11, 4], to which we add support for divis-
ible load applications. With this new tool, which we call
APST-DV, users can deploy applications on a wide vari-
ety of resources completely automatically and transparently.
We use a case study to demonstrate how users can do this
easily and effectively. Oursecond contribution is a prac-
tical evaluation and comparison of these algorithms, ob-
tained by running APST-DV on a real-world platform. Be-
yond demonstrating APST-DV’s functionality, these exper-
iments allow us to identify issues relevant to the use of di-
visible load theory in practice.

This paper is organized as follows. We present back-
ground on divisible load in Section 2. Section 3 briefly de-
scribes the APST software and highlight the key aspects
of our implementation of APST-DV, including the schedul-
ing algorithms. We present our experimental results in Sec-
tion 4, followed by our case study in Section 5. Section 6
concludes the paper with future directions.

2. Divisible Load: Applications and Schedul-
ing Algorithms

In this section we define the divisible load model, give
examples of real-world divisible load applications, and pro-
vide a small survey that highlights the spectrum of applica-
tion characteristics. We then review relevant previous work
in the area of divisible load scheduling.

2.1. Divisible Load Applications

The input to a divisible load application consists of many
small independentparts, and the processing time of each
part is small compared to the time to process the whole in-
put. So the total input can bedivided into chunksof ar-
bitrary sizes, which may be processed in any order (and
each chunk may itself contain an arbitrary number of small
parts). Correspondingly, the computation can be easily de-
composed into sub-tasks and can thus be easily deployed on
distributed computing platforms in a master-worker fashion.
Many real-world applications fit thedivisible loadmodel.
Divisible load applications are similar to many so-called
“embarrassingly parallel applications”, but the term “di-
visible load” is used to emphasize that these applications
are data-intensive and that communication takes a non-
negligible amount of time. In fact, a large part of the dif-
ficulty of achieving high performance for these applica-
tions comes from the need to orchestrate communication
and computation.

To get an idea of the large diversity of the characteristics
of divisible applications, we conducted simple experiments
for three specific applications: (1) HMMER [21], a bioinfor-
matics sequence comparison application; (2) MPEG4 video
compression [26]; and (3) VFleet [32], a volume rendering
application.

Table 1 shows for each of these three applications the in-
put size in MB, the running time in seconds on an Athlon
1.8GHz, and the computation-communication ratio,r, com-
puted assuming a 100 Mb/s data transfer rate. The table
also shows data for the Data Mining application presented
in [30]. The main point to draw from the data is that these
applications exhibit different characteristics, and in partic-
ular a wide range of values forr (differences of more than
one order of magnitude).

The fifth column in Table 1 shows the coefficient of vari-
ance (i.e., standard deviation divided by the mean, in per-
centage) of the amount of computation per unit of load,
which we callγ. We can see that some applications exhibit
a γ value up to approximately 10%, due to data-dependent
and/or non-deterministic computation. In terms of schedul-
ing, this implies that there will be some uncertainty when
predicting the computation time of a chunk of load, which
can negatively impact the schedule.

2.2. Divisible Load Scheduling

An important problem whose solution holds the key to
high performance for divisible load applications on dis-
tributed computing platforms is Divisible Load Scheduling
(DLS): the decision process by which the load is divided
and assigned to compute resources, with the goal of mini-
mizing application “makespan”, i.e. execution time.

The first proposed DLS algorithms wereOne-Roundal-
gorithms, so called because they assign exactly one chunk
of the load to each worker. These algorithms were stud-
ied for many platform topologies (e.g., Linear Networks,
Single-level Trees, Meshes, Hypercubes) and we refer the
reader to [6] for references to specific papers. Most of these
algorithms assume purely linear cost for transfer and com-
putation, that is the time to transfer some amount of data is
proportional to the data size. The most recent ones consider
communication start-up costs, i.e. they assume anaffine
communication cost model, which is known to be more re-
alistic as real networks do experience start-up costs (e.g., la-
tencies, overhead for establishing connections).

One clear limitation of One-Round algorithms is that
they do not overlap communication with computation well,
which has led to the development ofMulti-Round algo-
rithms that assign multiple chunks to each worker in rounds
and increase chunk size throughout application execution
in an attempt to pipeline communication and computation.
Much fewer results are available for Multi-Round algo-
rithms than for One-Round algorithms and they are all on
single-level tree topologies. The work in [8] proposes a
multi-round algorithm that assumes purely linear commu-
nication and computation costs. [37] extends this algorithm
to affine costs for both communications and computations,
which is more representative of real-world platforms. Both
these algorithms assume that the number of rounds is mag-
ically fixed and are only applicable to homogeneous plat-
forms. By contrast, the UMR algorithm in [39] computes
a near-optimal number of rounds with affine communica-
tion and computation costs, and it is applicable to heteroge-
neous platforms.

Finally, the recently proposed RUMR algorithm [38] ex-
tends UMR and attempts to mitigate the effects ofuncer-
taintyon chunk communication and computation times. The
RUMR approach is to first increase chunk size for bet-
ter pipelining, as UMR, but decrease chunk size towards
the end of the application execution to tolerate uncertainty.
The notion of decreasing chunk size for better robustness
to uncertainty was pioneered by the GSS and Factoring ap-
proach [22, 20, 23].

In this work we focus on Multi-Round algorithms. We
target distributed Grid platforms that aggregate multiple
parallel computing platforms, typically commodity clusters.
These platforms can be easily modeled as single-level trees

Application input size (MB) running time (sec) r γ max−min

mean

HMMER 802.0 534 6.7 9% 2700%
MPEG 716.8 2494 34.8 10% 30%
VFleet 87.5 600 68.0 1% 2%
Data Mining 400.0 3150 78.0 N/A N/A

Table 1. Characteristics of 4 divisible load applications: input data size, running time on a 1.8GHz
Athlon, communication/computation ratio (r) assuming a 100Mb/sec network, coefficient of variation
of the running time of a unit of load (γ), and percentage spread of the running time of a unit of load
(max−min

mean
).

in which each leaf is a cluster and the root is the master
holding the application’s input data, which makes Multi-
Round algorithms applicable. We refer the reader to recent
surveys [9, 28], to the special issue of the Cluster Comput-
ing journal [1], and to the Web page collecting related liter-
ature [29] for more details about DLS research.

3. The APST-DV Software

3.1. APST Background

APST [4, 12] is a Grid application execution environ-
ment originally targeted to “Parameter Sweep Applica-
tions” that consist of a fixed number of independent tasks.
The APST software was designed with the goal of fully au-
tomated and transparent deployment of applications on
Grid platforms, as well as high performance via effi-
cient scheduling. APST runs as two distinct processes: a
daemon and a client. The daemon is in charge of deploy-
ing and monitoring applications. Its central component
is a scheduler that makes all resource allocation deci-
sions. The client is essentially a console (several APIs
are also available) that can be used by the user to inter-
act with the daemon (e.g., to submit requests for compu-
tation). The user interface is XML-based and typically no
modification of the application is required.

APST is currently used in production for a number
of applications, including the MCell neuroscience applica-
tion [10], the Encyclopedia of Life (EOL) bioinformatics
application [25], the Vizport visualization portal [34], and
the discrete-event simulation application SIM GRID [24].
We refer the reader to [12, 4] for more details about APST.

3.2. APST-DV: Motivation and Design

APST is not well-suited to divisible load applications as
it expects a finite and complete list of application tasks as
input. As a result, current divisible load application users
are forced to divide the load manually into some number of
sub-tasks. However, the field of DLS research shows that

load division is a difficult problem and that simple solutions
(e.g., divide the load in many identical pieces) are bound
to achieve poor performance. So while APST does the best
it can with the divided load submitted by the user, differ-
ent division schemes that account for both application and
resource characteristics would inherently allow higher per-
formance.

The popularity of APST is mostly due to the fact that
it does not require modification of the application, requires
only a minimal understanding of XML, and can be used
immediately within a small local-area network with default
mechanisms. Users can then easily and progressively transi-
tion to larger scale Grids because APST transparently builds
on the base Grid software infrastructure. We wish to build
on these strengths and extend APST to support divisible
load applications. We call this extension APST-DV.

APST-DV needs to accomplish the following. It must
provide a way for the user to specify a divisible load ap-
plication in XML. It needs to divide the load into individ-
ual tasks (or “chunks”). This must be done according to a
DLS algorithm. Such algorithms typically require informa-
tion about the application and the resources (e.g., how fast
one unit of load runs on a given resource), and APST-DV
must obtain such information automatically. The chunks
must then be sent out to storage resources and computation
must be initiated on remote compute resources, which can
be accomplished easily as APST already provides mecha-
nisms for accessing a wide range of resources. Finally, out-
put from chunk computation needs to be returned to the
users and, most likely, “glued” together. This last step is
typically application-specific and we leave it to the user. We
briefly review interesting aspects of our implementation of
APST-DV below.

3.3. XML Divisible Load Specification

We have added a new XML element to APST,
divisibility , within the existing task con-
struct. See Figure 1 for a sample divisible load spec-
ification, and the APST webpage [4] for a complete

<task

executable="a_divisible_app"

input="bigfile"

>

<divisibility

input="bigfile"

method="uniform"

start="0"

steptype="bytes"

stepsize="10"

algorithm="rumr"

probe="probefile"

/>

</task>

Figure 1. Sample APST-DV XML specification
of a divisible load application.

description of APST’s XML schema. Theinput at-
tribute specifies the file(s) that contain the load’s input
data that must be divided. Themethod attribute speci-
fies the method used for dividing the input file(s), which
will be described in more detail in Section 3.4. In this ex-
ample the method used isuniform , which is defined by
the following three attributes: thestart attribute speci-
fies the starting offset in the load, that is not to be used in a
chunk of load; thesteptype attribute specifies the type
of load unit, for examplebytes; and thestepsize at-
tribute is used to indicate how many load units can go
in a chunk. In this example the input file can be di-
vided at each 10-byte boundary starting at byte 0 (meaning
that the size of each load chunk in bytes will be a multi-
ple of 10). Note that APST-DV divides the load on-the-fly,
thereby avoiding creating a prohibitive number of files for
each individual chunk.

In our current prototype thealgorithm attribute spec-
ifies which DLS algorithm to use for scheduling the applica-
tions (rumr in the example). Eventually this could be deter-
mined automatically by APST. The meaning of theprobe
attribute will be explained in Section 3.5.

3.4. Load Division Methods

In the ideal divisible load model the input can be divided
continuously, exactly as the scheduling algorithm dictates.
However, depending on the application, some cut-off points
in a load would be valid, and some would not. To enable the
user to specify where the load can be divided, APST-DV im-
plements three methods to determine what the closest valid
cut-off point is to the cut-off point that is requested by the
scheduling algorithm.

Uniform – With the uniform division method a cut-off point
can be at some number of load units from the beginning of
the load. There are two types of load unit, specified by the

steptype attribute, which arebytes andseparator .
A valid cut-off point is measured in the number ofsteps
from the beginning of the load, where a step is a number of
load units. This step size is specified by thestepsize at-
tribute (see Figure 1). If the load unit isbytes , and the
step size is10, it means that the load can be cut at every10

bytes from the start. For theseparator type a valid cut-
off point is indicated by the occurrence of a special separa-
tor character or characters in the load. This separator char-
acter is specified in the APST-DV XML specification by the
separator attribute.

Index – With the index division method, the user supplies
an index file, containing an entry for every valid cut-off
point. For every desired cut-off point the scheduling algo-
rithm consults the index file to find the nearest valid cut-off
point. Cut-off points are specified as numbers of bytes from
the beginning of the load file. The index file is specified in
the XML specification by theindexfile attribute.

Callback – APST-DV also provides the callback division
method, which allows the user to supply a program to per-
form load division. APST-DV can call this program, pass-
ing it an offset and a chunk size in theload attribute,
both specified in terms of number of “work units” whose
sizes are application-specific. The callback programs then
extracts the chunk data from the load and places it into a
temporary file that APST-DV can send to remote resources
to initiate chunk computation. The callback program and
its possible command line arguments (for instance a typi-
cal callback program would take the name of the input file
containing the entire load as a command-line argument) are
specified in the XML specification by thecallback and
thearguments attributes.

3.5. Collection of Resource Information

DLS algorithms, like most scheduling algorithms, make
their decisions based on application and resource informa-
tion. There are two approaches to gather such information.
The first approach is to rely on application performance
models and on resource information provided by services
such as MDS [13], NWS [36], and Ganglia [15]. Some of
this information can be dynamic and must be retrieved pe-
riodically. The advantage of this approach is that it is light-
weight. The drawback is that it requires an infrastructure to
be installed, and that it is often difficult in practice to ob-
tain accurate estimates of computation and transfer times
for a particular application based on monitored resource in-
formation. The second approach is to just observe applica-
tion performance for a few application tasks and data trans-
fers, and use this observation to estimate the performance
of all application components. This approach is more costly

as real work needs to be done to obtain performance infor-
mation, although this work can be useful to the application,
but more accurate as the performance delivered by the re-
sources is experienced directly at the application level.

Since our target applications typically exhibit long exe-
cution times, we opted for the second approach. This ap-
proach has actually been explored in the context of DLS
in [17]. The idea is to “probe” the resources by sending out
a relatively small chunk of the overall load to each available
resource and observing chunk transfer time and chunk ex-
ecution time. We use a very simple probing strategy in our
current APST-DV implementation: we do a round of prob-
ing, and then start the real application execution. The load
we use for probing is not part of the actual load, but in-
stead consists of a separate, user-specified small input file
that is representative of the application’s load. “Represen-
tative” may mean “close to the average case” for scenarios
in which there is uncertainty on the computational cost of a
unit of load (see Section 2.1). In such scenarios, the schedul-
ing will be impacting by performance prediction errors. The
input file used for probing is specified by theprobefile
attribute in the XML specification of a divisible load appli-
cation.

Finally, some of the scheduling algorithms implemented
in APST-DV require estimates for communication and com-
putation start-up costs. APST-DV obtains these estimates
periodically by launching no-op jobs on each worker and
transferring empty files to storage resources.

3.6. Scheduling in APST-DV

The current APST-DV prototype implements the follow-
ing four DLS scheduling algorithms:

SIMPLE- n – uniformly divides the input among the work-
ers, and divides the data for each worker inton chunks. No
probing is used. This is the simplistic “static chunking” ap-
proach that is currently used by divisible load application
users who use APST. We used SIMPLE-1 and SIMPLE-5
in our experiments.

Uniform Multi-Round (UMR) [39] – a recently proposed
DLS algorithm that (i) is designed to maximize communica-
tion/computation overlap; (ii) uses multiple rounds; (iii) ac-
counts for communication and computation start-up costs;
(iv) computes a near-optimal number of rounds; and (v) can
be used on heterogeneous platforms. Points (iii)-(v) above
represent significant advances over previously proposed al-
gorithms and make multi-round DLS feasible in practice.
(See Section 2.2 for a brief discussion of multi-round DLS.)
UMR increases chunk size geometrically throughout execu-
tion to achieve good pipelining of communication and com-
putation. This algorithm uses probing.

Weighted Factoring [23] – divides the load into
chunks in rounds, and decreases chunk size by 2 be-

tween rounds (down to a minimal chunk size). Chunks
are sent out to workers in a greedy fashion. The algo-
rithm is called “weighted” because the size of a chunk as-
signed to a worker is proportional to the worker’s speed,
which is known to achieve better load-balancing than plain
factoring. Our implementation of weighted factoring uses
probing. It also observes chunk execution times through-
out application execution to refine its estimates of worker
speeds. SIMPLE-n and UMR do not perform such adap-
tation. The factoring method was specifically designed to
deal with uncertainty in computation times: application ex-
ecution ends with small chunks, which makes it easier
to do load-balancing. However, Factoring was not de-
signed to maximize overlap of communication and compu-
tation.

Robust Uniform Multi-Round (RUMR) [38] – One
problem with UMR is that, unlike Factoring, it was
not designed to tolerate uncertainty on chunk trans-
fer/execution times (execution ends with large chunks).
To achieve the best of both worlds, the RUMR algo-
rithm splits application execution into 2 phases. During
the first phase chunk size is increased using the UMR al-
gorithm, and during the second phase chunk size is
decreased using Weighted Factoring. The RUMR algo-
rithm uses a heuristic to determine when to start the sec-
ond phase. We also experiment with a version of RUMR
calledFixed-RUMR presented in [38] that always sched-
ules 80% of the load in the first phase. RUMR uses prob-
ing.

Some of the above algorithms have been evaluated in
simulation in previous work. For instance, in [39] it was
shown that UMR outperforms competing multi-round algo-
rithms and largely outperforms SIMPLE-n. In [38] it was
shown that RUMR outperforms both UMR and Factoring
for a wide range of uncertainty on chunk compute and trans-
fer time. While these results are valuable, our goal here is
to run these algorithms in the real world and observe what
truly happens. In fact, just going through the process of im-
plementing these algorithms as part of usable software has
highlighted several interesting practical issues.

4. Experimental Evaluation

4.1. Methodology

Application – We have seen in Section 2.1 that the funda-
mental characteristics of divisible load applications span a
range of values. Rather than picking one single application,
which would limit the space of our evaluation, or trying to
run a large number of different applications, which would
require a lot of unnecessary effort, we opted for using a syn-
thetic application. Note that we have tested APST-DV with
the real-world applications mentioned in Section 2.1, and
that we present a case study with a real application in Sec-

tion 5. Our synthetic application reads in an input file and
does some floating point operations in a loop. This synthetic
application can be tuned to exhibit specific application char-
acteristics: in particular, the communication/computation
ratio,r, and the uncertainty on load unit computation time,
γ (we use a Normal distribution for generating random com-
putational costs for units of load).

Computing Platform – We used a small Grid consisting
of two clusters: theMeteor cluster at the San Diego Su-
percomputer Center (SDSC), which consists of 57 dual-
processor Pentium III 790∼996MHz nodes; and theDAS-
2 cluster at Vrije Universiteit in Amsterdam, the Nether-
lands, which consists of 72 dual-processor 1Ghz Pentium-
III nodes. We access the clusters via the SGE and PBS batch
schedulers. The APST-DV daemon and initial input for the
divisible load application were located in the Grid Research
and Innovation Laboratory (GRAIL) at UCSD, about 1/2
mile from SDSC. In this section, we focus on platforms
whose processors are dedicated during application execu-
tion. This is so that we can control the performance predic-
tion error parameterγ in our experiments.

Uncertainty – We wish to study the effect of uncertainty,
which causes performance prediction errors, on divisible
load scheduling. Indeed, some of the DLS algorithms de-
scribed in Section 3.6, namely RUMR and Factoring, have
been specifically designed to tolerate performance predic-
tion errors, and we wish to evaluate how robust they are in
practice. Uncertainty can come from two sources: the ap-
plication itself, and the compute platform. As seen above,
we experiment withγ = 0% andγ = 10%, with the lat-
ter generating inherent uncertainty in the chunk execution
time. With a dedicated computing platform and stable net-
work, the only significant source of uncertainty in our setup
is the application itself which allows us to control our ex-
periments.

4.2. Experimental Results

We ran APST-DV with all the DLS algorithms described
in Section 3.6, back-to-back. Each data point corresponds to
an average over 10 distinct runs. Each application run lasted
between 68 minutes and 178 minutes, depending on the re-
sources and the scheduling algorithm used.
DAS-2, 16 nodes, r = 37,γ = 0, 10 – We first ran our ap-
plication on theDAS-2 cluster only. For each algorithm we
compute the (average) application makespan achieved. Re-
sults are shown in Figure 2 forγ = 0 andγ = 10.

For γ = 0 we found expected results. The RUMR and
UMR algorithms (note that in this case we have no uncer-
tainty and RUMR degenerates to pure UMR) lead to the
best performance as they overlap communication and com-

0

1000

2000

3000

4000

5000

6000

7000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

γ=0

SIMPLE−1

SIMPLE−5

UMR

Factoring

RUMR

F−RUMR

0

1000

2000

3000

4000

5000

6000

7000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

γ=10

SIMPLE−1

SIMPLE−5

UMR

Factoring

RUMR

F−RUMR

Figure 2. DAS-2, 16 nodes

putation well and account for the large start-up costs for
communication and computation (around 6.4s and 0.7s re-
spectively in this case). The second closest algorithm is
SIMPLE-5 (5% slower), while SIMPLE-1 is 26% slower.
The Factoring algorithms are roughly 10% slower than
UMR/RUMR, due to poor overlap of communication with
computation. These results confirm the simulation results
presented in [39, 38]. One may ask why communication is
an issue, since ther value of37 seems to mean that com-
munication time would be only1/37 of the total makespan.
One should note that communications to workers are serial-
ized. So when multiple workers are used, the communica-
tion time does not decrease, while the communication de-
creases. As a result, communication represent a more sig-
nificant part of the makespan as the number of worker in-
creases.

For γ = 10, that is with more uncertainty, one expects
Weighted Factoring to perform better than UMR, which
is the case (e.g., Weighted Factoring is about 8% faster
than UMR). The simulation results in [38] indicate that
RUMR should outperform Weighted Factoring as it strives
to both overlap communication and computation, and to
mitigate the effects of uncertainty. However, in our exper-
iments, RUMR exhibits poor performance when compared
to Weighted Factoring. After looking into the detailed exe-
cution report generated by APST-DV, this is what we found:
the RUMR algorithm as developed in [38] assumes that
the value forγ is known in advance and, using this value,
pre-determines when the second phase (i.e., the Factoring
phase) should begin. However, in our experiments, the value
of γ is “discovered” throughout application execution. We
found that in most cases, when RUMR discovers that it
should switch to its Factoring phase, it is too late and the
last round (which is large since UMR increases chunk size)
has already been started. This prevents RUMR from doing a
late switch to its second phase, meaning that Factoring is in
fact never used. This is a good example of an aspect of DLS
theoretical research that does not translate well to practice.
This observation highlights a major limitation of the RUMR
algorithm (although it may be argued that the magnitude of
the uncertainty could be learned from past application exe-

0

1000

2000

3000

4000

5000

6000

7000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

γ=0

SIMPLE−1

SIMPLE−5

UMR

Factoring

RUMR

F−RUMR

0

1000

2000

3000

4000

5000

6000

7000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

γ=10

SIMPLE−1

SIMPLE−5

UMR

Factoring

RUMR

F−RUMR

Figure 3. Meteor, 16 nodes

cutions). Importantly, we can see that the Fixed-RUMR al-
gorithm does the best in our experiments, therefore justi-
fying that RUMR’s two-phase approach is sound, provided
there is a mechanism for switching to the second phase in
time.
Meteor , 16 nodes, r = 46,γ = 0, 10 – Using only the Me-
teor cluster we have a higher value forr and obtained the
results shown in Figure 3.

For γ = 0 we can see that all algorithms achieve com-
parable performance, except for SIMPLE-1 and SIMPLE-
5, which are 21% and 24% slower than the best algorithm.
In this environment start-up costs are low (around 0.7s for
communication and 0.1s for computation) since theMeteor
cluster is close to the APST daemon. (The network band-
width is also marginally higher: around 116 kB/sec com-
pared to 92 kB/sec to theDAS-2 cluster.) As a result, the
UMR approach does not lead to any advantage as it is really
designed to handle situations in which start-up costs are sig-
nificant.

For γ = 10, the only thing that matters for performance
in this environment is adaptation to uncertainty and clearly
the Weighted Factoring approach is the best. UMR and
RUMR (20% and 23% slower) suffer from the same prob-
lems as discussed above for theDAS-2 experiments. But,
importantly, Fixed-RUMR leads to roughly the same per-
formance as Weighted Factoring.

These results show that if the platform is a nearby dedi-
cated cluster, then a simple Factoring approach is sufficient,
which is not surprising.
DAS-2 (8 nodes) +Meteor (8 nodes), γ = 0, 10 – In
these experiments we used nodes from the two clusters,
so the communication/computation ratio was a mix of the
ones for the two previous experiments. Results are shown
in Figure 4. The results here show that with no uncertainty
(γ = 0), UMR and RUMR lead to the best performance
(again, they are identical in this case) and that SIMPLE-
1 and SIMPLE-5 have poor performance (25% and 17%
slower). When there is uncertainty (γ = 10), Weighted Fac-
toring and Fixed-RUMR lead to the best performance. Once
again, the SIMPLE-1 and SIMPLE-5 algorithms do not per-
form well (28% and 14% slower).

0

1000

2000

3000

4000

5000

6000

7000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

γ=0

SIMPLE−1

SIMPLE−5

UMR

Factoring

RUMR

F−RUMR

0

1000

2000

3000

4000

5000

6000

7000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

γ=10

SIMPLE−1

SIMPLE−5

UMR

Factoring

RUMR

F−RUMR

Figure 4. Meteor+DAS-2, 16 nodes

4.3. Discussion

From the experimental results above (we also ran exper-
iments with different subsets of our clusters and different
load sizes, but did not learn anything different) we draw the
following broad conclusions:

1. The SIMPLE-n algorithm, which is what current
APST users are using for running divisible load appli-
cations, is always inefficient (on average SIMPLE-1
and SIMPLE-5 are 28% and 18% slower than the best
algorithm). As a result, our work on APST-DV has al-
ready significantly improved the state of practical
deployment for these applications.

2. The UMR approach is best when uncertainty is low, as
it accounts for communication and computation start-
up costs, and overlaps communication with computa-
tion well. Its performance is poor when uncertainty be-
comes significant (on average 17% slower than the best
algorithm).

3. Expectedly, when the platform consist of a single,
nearby cluster, then a simple Factoring approach is suf-
ficient.

4. The general RUMR approach is the most effective
across the board for low and high uncertainty, but the
algorithm as it was proposed in [38] does not do well in
practice. Indeed, it does not switch to its second phase
in time. This was shown by the good performance ex-
hibited by the Fixed-RUMR version. A key direction
for further RUMR development is to solve this prob-
lem and in the meantime Fixed-RUMR can be used by
APST-DV users.

5. Case Study: MPEG-4 Encoding

In this case study we use APST-DV to run aparallel
MPEG-4 encodingapplication to compress a DV format
video file, shot with a digital video camera. There are many
MPEG-4 encoders available and we usemencoder[26],
which is an open source command line tool for decoding,
filtering, and encoding video and audio files. One of the

avimerge

 and starts subtasks

3: sends input files

5: gets output

 files

mencoder mencoder

APST−DV

daemon

1: provides

 input

6: retrieves

 output

 output

7: merges
2: creates divided

callback

program

avisplit

 input files

4: runs 4: runs

 task task

workers on the Grid

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �
� �

� �� �

� � �
� � �
� � �

� � �
� � �
� � �

� �
� �
	 	
	 	

� �

�
�
�
�
�
�
�
�

Figure 5. Case study scenario.

merits of APST-DV is that it can deploy readily available
applications, such as mencoder, without the need to mod-
ify them.

5.1. APST-DV Usage

APST-DV needs to be able to divide the input file’s load
into chunks, which in the case study is done using thecall-
backdivision method. As seen in Section 3.4 this method
uses an external program to create the load chunks. It is up
to the end user to provide this callback program, but APST-
DV provides two example callback programs (written in C
and Perl) that are easily modified and adapted to a partic-
ular application. In our setup we modified the Perl exam-
ple callback program. We managed to keep the modifica-
tions to the Perl script very simple, because we use a read-
ily available tool calledavisplit to do the actual work. This
tool can be used to divide any AVI file into smaller files,
and the Perl script is just a wrapper around the avisplit pro-
gram. Another tool namedavimergecan be used by the end
user to merge all the output files together. Both these tools
are part of the open sourcetranscode[31] video stream pro-
cessing toolkit.

In Figure 5 we can see step by step how the divisible load
application is run:

1. The user provides the APST-DV daemon with the in-
put file(s) and the XML specification of the divisible
load application.

2. The APST-DV daemon uses the callback program,
which uses the avisplit tool, to create the load chunks.

3. The APST-DV daemon sends the chunks to the work-
ers on the Grid, and starts an encoding task on each
worker.

4. The workers use the mencoder program to encode their
chunk of load.

<task

executable="run_mencoder.sh"

arguments="input.avi mpeg4.avi"

input="input.avi"

output="mpeg4.avi"

>

<divisibility

input="input.avi"

method="callback"

load="1830"

callback="callback_avisplit.pl"

arguments="input.avi"

algorithm="rumr"

probe="probe.avi"

probe_load="21"

/>

</task>

Figure 6. APST-DV XML application specifica-
tion used in the case study.

5. The APST-DV daemon downloads the output files
from the workers.

6. The end user retrieves the output files from the APST-
DV daemon.

7. The end user uses the avimerge tool to merge the out-
put files together into one output file.

This shows how APST-DV makes it straightforward for the
end user to run a real-world divisible load application. All
the end user has to do to setup the system is create the XML
specification file and modify the example callback program
to create a wrapper around an existing tool. We describe the
XML specification in what follows.

As far as APST-DV is concerned, the application con-
sists of a specification of input and output files, an exe-
cutable with command-line arguments, and a specification
of the application’s divisibility. Figure 6 shows thetask
part of the XML specification file that is used in the case
study. Both the input file (input.avi) and the probe
file (probe.avi) are DV encoded movies, and the out-
put file (mpeg4.avi) is an MPEG-4 encoded movie. The
input.avi file is 209 MB in size, and contains 1,830
frames, which comes down to about 1 minute of video
footage. Theprobe.avi file is 2.4 MB in size, and con-
tains 21 frames, which is 0.7 seconds of video footage.

The load division method that is used is thecallback
method, and the callback program that is used is a Perl script
called callback avisplit.pl . As described earlier,
this script uses theavisplit tool to create chunks by spec-
ifying the desired range of frames. Note that the load in this
case study is measured inframesinstead ofbytes. This al-
ternative load size is specified in the XML specification,
shown in Figure 6, using theload andprobe load at-
tributes. The number of frames in the divisible input file
that we use (input.avi) is 1830, and the probe file
(probe.avi) contains21 frames. Note that a movie file
containing an hour of footage has a load of 108,000 frames

and is about 12 GB in size. The callback division method
enables us to use the avisplit tool, rather than developing
our own tool. This demonstrates that APST-DV provides a
flexible way for users to define their loads, and integrates
well with tools that may be at the user’s disposal.

5.2. Experimental Runs

For this case study we used a platform consisting of
6 hosts at the Grid Research and Innovation Laboratory
(GRAIL) at UCSD. It is a collection of non-dedicated Linux
workstations on a single 100Mb/sec LAN. Because one of
the hosts has two CPUs, this comes to a total of 7 proces-
sors, with speeds of 700MHz (1 x AMD Athlon) and 1.73
GHz (6 x AMD Athlon XP). In this run all compute re-
sources are accessed via Ssh and files are moved using Scp.
This configuration is easily described to APST-DV using
the traditional APST XML resource description schema [4].

We ran 10 runs of the application for each scheduling al-
gorithm, and each run lasted between 12 and 21 minutes.
As the hosts that were used for this experiment were not
dedicated to our application, there is some uncontrolled un-
certainty in chunk execution time, and the results compar-
ison of the different scheduling algorithms are not as de-
pendable as the results of the experiments described in Sec-
tion 4. The average value forγ (the coefficient of variance
of the amount of computation per unit of load) that was
measured in this experiment is 20%, and the communica-
tion/computation ratior is 13.5.

Because of the fluctuation of resource availability, it was
to be expected that the more adaptive algorithms would
work best in this environment. Furthermore, due to the fast
network, overlap of communication with computation is
not critical. And Indeed, Weighted Factoring leads to the
best performance. Interestingly, RUMR’s performance is
roughly the same (within 2%). By contrast to the other ex-
periments that we ran, the RUMR algorithm successfully
switches to its second phase in every one of the ten runs,
due to the fact that theγ value was higher than in the exper-
iments in the previous section. This may indicate that the
phase switching problem identified in the previous section
is only faced for moderate uncertainty, which we will con-
firm with further experimentation. UMR and Fixed-RUMR
perform very similarly, around 7% slower than Weighted
Factoring, as they do not account for uncertainty suffi-
ciently. As expected, Simple-5 and Simple-1 do not perform
well, 38% and 52% slower than Weighted Factoring.

6. Conclusion

In this paper we have presented and evaluated APST-DV,
an extension to the APST Grid application-level tool to sup-
portDivisible Load Applications. To the best of our knowl-

edge, our work provides the first generic software environ-
ment to deploy them on current distributed computing plat-
forms. We have demonstrated the use of APST-DV with
an MPEG-4 encoding case study, showing that a user can
easily and effectively use readily available tools together
with APST-DV to run real-world divisible load applications.
APST-DV embeds a scheduler that currently implements
four Divisible Load Scheduling algorithms. We experimen-
tally evaluated these algorithms on a real-world testbed con-
sisting of two geographically distant clusters. Our experi-
ments show that the simplistic “static chunking” approach
used by current APST users to run divisible load applica-
tions is not effective. Among other results, we have found
that the RUMR approach proposed in [38] is the most effec-
tive across the board. One limitation of this approach, how-
ever, is that a better mechanism for switching between the
two phases of its execution is needed. For now we have ad-
dressed this problem with a simple version of the algorithm,
Fixed-RUMR, that performs well in practice.

In future work we will investigate new ways in which
RUMR can switch to its second phase appropriately. We
will also implement an adaptive version of RUMR that up-
dates its view of the platform after each sub-task completes.
The results in this paper validate our prototype implemen-
tation of APST-DV, and we will release the software as part
of the APST v2.3 distribution.

Acknowledgments

We wish to thank the San Diego Supercomputer Center
and the Vrije Universiteit in Amsterdam for allowing us to
use their compute resources. We are also grateful to James
Hayes for his help with APST.

References

[1] Special issue ondivisible load scheduling. Cluster Comput-
ing, 6, 1, 2003.

[2] F. J. Gonzalez-Castãno and R. Asorey-Cacheda and R.
P. Martinez-Alvarez and F. Comesaña-Seijo and J. Vales-
Alonso. DVD Transcoding via Linux Metacomputing.Linux
Journal, 116:8, 2003.

[3] N. Amano, J. o Gama, and F. Silva. Exploiting Paral-
lelism in Decision Tree Induction. InProceedings from the
ECML/PKDD Workshop on Parallel and Distributed com-
puting for Machine Learning, pages 13–22, September 2003.

[4] The APST Project. http://grail.sdsc.edu/
projects/apst .

[5] H. Bal, H. Casanova, J. Dongarra, and S. Matsuoka.
Application-Level Tools. InGrid 2: Blueprint for a New
Computing Infrastructure. John Wiley, second edition, 2003.
Foster, I. and Kesselman, C., editors.

[6] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and
Y. Yang. Scheduling divisible loads on star and tree net-

works: results and open problems. Technical Report RR-
2003-41, LIP,École Normale Supérieure de Lyon, Septem-
ber 2003.

[7] W. Bethel, B. Tierney, J. lee, D. Gunter, and S. Lau. Us-
ing high-speed WANs and network data caches to enable re-
mote and distributed visualization. InProceedings of Super-
computing (SC’00), 2000.

[8] V. Bharadwaj, D. Ghose, and V. Mani. Multi-Installment
Load Distribution in Tree Networks With Delays,.IEEE
Trans. on Aerospace and Electronc Systems, 31(2):555–567,
1995.

[9] V. Bharadwaj, D. Ghose, and T. Robertazzi. A new paradigm
for load scheduling in distributed systems.Cluster Comput-
ing, 6(1):7–18, 2003.

[10] H. Casanova, T. Bartol, J. Stiles, and F. Berman. Distribut-
ing MCell Simulations on the Grid.International Journal of
High Performance Computing Applications, 14(3):243–257,
2001.

[11] H. Casanova and F. Berman.Parameter Sweeps on The Grid
With APST, chapter 26. Wiley Publisher, Inc., 2002. F.
Berman, G. Fox, and T. Hey, editors.

[12] H. Casanova and F. Berman.Grid Computing: Making the
Global Infrastructure a Reality, chapter 33. John Wiley &
Sons Publisher, Inc., 2003.

[13] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid Information Services for Distributed Resource Shar-
ing. In Proceedings of the 10th IEEE Symposium on High-
Performance Distributed Computing (HPDC-10), August
2001.

[14] David Skillicorn. Strategies for Parallel Data Mining. IEEE
Concurrency, 7(4):26–35, 1999.

[15] The Ganglia Project. http://ganglia.sourceforge.net.

[16] A. Garcia and H.-W. Shen. Parallel volume rendering: Anin-
terleaved parallel volume renderer with PC-clusters. InPro-
ceedings of the Fourth Eurographics Workshop on Parallel
Graphics and Visualization, pages 51–59, 2002.

[17] D. Ghose, H. J. Kim, and T. H. Kim. Adaptive Divis-
ible Load Scheduling Strategies for Workstation Clusters
with Unknown Network Resources . Technical Report
KNU/CI/MSL/001/2003, Department of Control and Instru-
mentation Engineering, Kangwon National University, Ko-
rea.

[18] The Globus Project.http://www.globus.org .

[19] S. Goil and A. Choudhary. High performance multidimen-
sional analysis of large datasets. InProceedings of the
1st ACM international workshop on Data warehousing and
OLAP, pages 34–39, 1998.

[20] T. Hagerup. Allocating Independent Tasks to Parallel Proces-
sors: An Experimental Study.Journal of Parallel and Dis-
tributed Computing, 47:185–197, 1997.

[21] HMMER Webpage. http://hmmer.wustl.edu/
hmmer-html/ .

[22] S. Hummel. Factoring : a Method for Scheduling Parallel
Loops. Communications of the ACM, 35(8):90–101, August
1992.

[23] S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein. Load
Sharing in Heterogeneous Systems via Weighted Factoring.
In Proceedings from 8’th Symposium on Parallel Algorithms
and Architectures, pages 318–328, 1996.

[24] A. Legrand, L. Marchal, and H. Casanova. Scheduling
Distributed Applications: The SIM GRID Simulation Frame-
work. In Proceedings of the Third IEEE International Sym-
posium on Cluster Computing and the Grid (CCGrid’03),
May 2003.

[25] W. Li, R. Byrnes, J. Hayes, V. Reyes, A. Birnbaum,
A. Shabab, C. Mosley, D. Pekurowsky, G. Quinn,
I. Shindyalov, H. Casanova, L. Ang, F. Berman, M. Miller,
and P. Bourne. The Encyclopedia of Life Project: Grid Soft-
ware and Deployment.Journal of New Generation Comput-
ing on Grid Systems for Life Sciences, 2004. to appear.

[26] Mencoder media player.http://www.mplayerhq.hu .
[27] G. Miller, D. G. Payne, T. N. Phung, H. Siegel, and

R. Williams. Parallel Processing of Spaceborne Imaging
Radar Data. InProceedings from Supercomputing (SC’95),
1995.

[28] T. Robertazzi. Ten reasons to use divisible load theory. IEEE
Computer, 36(5):63–68, 2003.

[29] T. G. Robertazzi. Divisible Load Scheduling.http://
www.ece.sunysb.edu/˜tom/dlt.html .

[30] T. Tamura, M. Oguchi, and M. Kitsuregawa. Parallel
database processing on a 100 Node PC cluster: cases for de-
cision support query processing and data mining. InPro-
ceedings of the 1997 ACM/IEEE conference on Supercom-
puting, pages 1–16, November 1997.

[31] The transcode project. http://www.theorie.
physik.uni-goettingen.de/˜ostreich/
transcode .

[32] Vfleet volume rendering package.http://www.psc.
edu/Packages/VFleet_Home .

[33] Visible human project. http://www.nlm.nih.gov/
research/visible/visible_human.html .

[34] The Scalable Vizualiation Toolkit VizPortal project.
https://gpadev.sdsc.edu/dev/swhitmor/
visPortal/ .

[35] A. Watt. 3D Computer Graphics, chapter 13. Addison-
Wesley.

[36] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing.Future Generation Computer
Systems, 15(5-6):757–768, 1999.

[37] Y. Yang and H. Casanova. Extensions to The Multi-
Installment Algorithm: Affine Costs and Output Data Trans-
fers. Technical Report CS2003-0754, Dept. of Computer
Science and Engineering, University of California, San
Diego, July 2003.

[38] Y. Yang and H. Casanova. RUMR: Robust Scheduling for
Divisible Workloads. InProceedings of the 12th IEEE
Symposium on High-Performance Distributed Computing
(HPDC-12), June 2003.

[39] Y. Yang and H. Casanova. UMR: a Multi-Round Algorithm
for Scheduling Divisible Workloads. InProceedings of the
International Parallel and Distributed Processing Sympo-
sium (IPDPS 2003), April 2003.

