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Abstract

Despite the enormous amount of research and develop-
ment work in the area of parallel computing, it is a common
observation that simultaneous performance and ease-of-use
are elusive. We believe that ease-of-use is critical for many
end users, and thus seek performance enhancing techniques
that can be easily retrofitted to existing parallel applica-
tions. In a previous paper we have presented MPI process
swapping, a simple add-on to the MPI programming envi-
ronment that can improve performance in shared comput-
ing environments. MPI process swapping requires as few as
three lines of source code change to an existing application.
In this paper we explore a question that we had left open
in our previous work: based on which policies should pro-
cesses be swapped for best performance? Our results show
that, with adequate swapping policies, MPI process swap-
ping can provide substantial performance benefits with very
limited implementation effort.

1. Introduction

While parallel computing has been actively pursued for
several decades, it remains a daunting proposition for many
end users. A number of programming models have been
proposed [7, 37, 32] by which users can write applica-
tions with well-defined Application Programming Inter-
faces (API) and use various parallel platforms. In this paper
we focus on message passing, and in particular on the Mes-
sage Passing Interface (MPI) standard [20]. MPI provides
the necessary abstractions for writing parallel applications
and harnessing multiple processors, but the primary parallel
computing challenges of application scalability and perfor-
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mance remain. While these challenges can be addressed via
intensive performance engineering and tuning, end users of-
ten lack the time and expertise required. As a result, parallel
computing often enjoys ease-of-use or high performance,
but rarely both at the same time. We believe that a simple
technique that provides a sub-optimal (but still beneficial)
performance improvement can be more appealing in prac-
tice than a near optimal solution that requires substantial
effort to implement.

In [35] we have presented such a technique, called MPI
Process Swapping. MPI process swapping improves per-
formance by dynamically choosing the best available re-
sources throughout the execution of a “long-running” ap-
plication, using MPI process over-allocation and real-time
performance measurement.

The basic idea behind MPI process swapping is as fol-
lows. Say that a parallel iterative application desires N pro-
cessors to run, due to memory and/or performance consid-
erations. Our approach over-allocates N + M processors
so that the application only runs on N processors, but has
the opportunity to swap any of these processors with any
of M spare processors. We impose the restriction that data
redistribution is not allowed: for simplicity and ease-of-use
the application is “stuck” with the initial data distribution.
Although MPI swapping will often be sub-optimal, it is a
practical solution for practical situations and it can be inte-
grated into existing applications easily.

Why keep M spare processors? While one could run
on all N + M processors, most data-parallel applications
have speedup curves that are parabolic with the number of
processors (due to scaling overheads). Swapping allows an
application to run with its optimal number of processors N ,
while keeping a few processors in reserve in case perfor-
mance falls on these N . Furthermore, in a dynamic en-
vironment, using more processors can increase the risk of
slowdown due to competition for computing resources.

For the moment we target the broad class of iterative ap-



plications. Process swapping can be added to an existing
iterative application with as few as three lines of source
code change. We target heterogeneous time-shared plat-
forms (e.g. networks of desktop workstations) in which
the available computing power of each processor varies
throughout time due to external load (e.g. CPU load gen-
erated by other users and applications). This type of plat-
form has steadily gained in popularity in arenas such as en-
terprise computing, as evidenced by the continued rise of
commercial distributed computing solutions offered by En-
tropia [16], Avaki [8], Microsoft [13], United Devices [25],
Platform [31], and others. Although our approach could
be used when resource reclamations and failures occur, in
this work we focus solely on performance issues. We tar-
get a usage scenario in which only a few parallel applica-
tions run on the platform simultaneously, the idea being
for these applications to benefit from mostly unloaded re-
sources (if the workload consists predominantly of parallel
applications then the platform of choice should be a batch-
scheduled cluster).

In [35] we described an architecture and prototype im-
plementation of MPI process swapping, and we validated
this in a production environment. In this paper we investi-
gate a fundamental question that had been left open in that
work: based on which policies should process swapping de-
cisions be made? Our initial implementation used a naı̈ve
and greedy swapping policy, simple to implement but of un-
known efficacy. In this paper we propose a number of poli-
cies for deciding when and how process swapping should
occur. To evaluate and compare these policies we use sim-
ulation as it enables reproducible experiments for compar-
ing competing strategies. Based on our results we conclude
that, with appropriate swapping policies, process swapping
is as beneficial as other performance enhancing techniques,
with much lower implementation cost.

2. Motivation and related work

Dynamic Load Balancing (DLB) is one of the best
known methods for achieving good parallel performance in
unstable conditions. DLB techniques have been developed
and used for scenarios in which the application’s compu-
tational requirements change over time [9, 10, 15, 24] and
scenarios in which the platform changes over time [43, 27,
44]. In this work we target the latter scenario and DLB is
thus an attractive approach, but we find that it has limita-
tions. First, DLB requires an application that is amenable,
in the limit, to arbitrary data partitioning. Some algorithms
demand fundamentally rigid data partitioning. Second,
DLB often requires substantial effort to implement. Sup-
port for uneven, dynamic data partitioning adds complexity
to an application, and complexity takes time to develop and
effort to maintain. Lastly, the performance of an applica-

tion that supports dynamic load balancing is limited by the
achievable performance on the processors that are used. A
perfectly load-balanced execution can still run slowly if all
the processors used operate at a fraction of their peak per-
formance. In this last case, we note that a DLB implemen-
tation could further improve performance through the use
an over-allocation mechanism similar to the one used in our
approach.

Another way for an application to adapt to changing con-
ditions is Checkpoint/Restart (CR). While CR is usually
used for fault-tolerance, we discuss how it can be used for
performance by adapting to changing resources. CR does
not limit the application to the processors on which execu-
tion is started, so it does not have to remain running on a
set of processors that have become loaded. It also does not
require a sophisticated data partitioning algorithm, and can
thus be used with a wider variety of applications/algorithms.
Unfortunately, parallel (heterogenous) checkpoint/restart of
MPI applications is a difficult task; it remains the subject
of several active research projects [38, 3, 17, 5]. How-
ever, note that application-level checkpointing can be im-
plemented with limited effort for iterative applications as
demonstrated in [2, 40]. Finally, checkpointing may in-
cur significant overheads depending on the application and
compute platform (e.g. the time to save application state
can be significant, and startup costs are incurred for each
restart).

We claim that MPI process swapping can potentially
achieve high performance while being straightforward to
integrate into existing applications, and especially signifi-
cantly easier to implement than DLB.

Our work is related to a number of efforts to enhance the
MPI runtime system. Our implementation of MPI process
swapping is a sleight-of-hand played in MPI user space,
rather than a true infrastructure feature. Checkpointing fa-
cilities such as those provided by fault-tolerance extensions
to MPI [38, 3, 17, 5] provide better-integrated support and
improve the capabilities of the MPI system. These check-
pointing/migration mechanisms could be combined with
our process swapping services and policies, improving the
robustness and generality over the current process swapping
solution. In particular, a checkpointing facility would allow
a better process swapping implementation by (i) removing
the restriction of working only with iterative applications;
(ii) further reducing the already minimal source code inva-
siveness; and (iii) reducing or removing the need to over-
allocate MPI processes at the beginning of execution.

Combining MPI process swapping techniques and poli-
cies with the cycle-stealing facilities of desktop computing
systems like Condor [30], XtremWeb [18] or other commer-
cial systems [16, 25] would yield a powerful system. These
systems evict application processes when a resource is re-
claimed by its owner. By combining our swapping poli-



cies with this eviction mechanism, a process might also
be evicted and migrated for application performance rea-
sons. Such a combined system would not only provide
high throughput, but individual application performance as
well. One difficulty would be to allow network connections
to survive process migration. An approach like the one in
MPICH-V [5] could be used.

MPI process swapping shares performance ideas and
methodologies with traditional application schedulers such
as those found in the AppLeS [4] and GrADS [26] projects.
These systems are also concerned with achieving high per-
formance in the face of dynamic parallel execution environ-
ments. Additionally, they strive for ease-of-use, knowing
that common users such as disciplinary scientists are of-
ten not parallel computing experts. The performance mea-
surement and prediction techniques used in process swap-
ping have much in common with these projects; all use
application and environmental measurements (e.g. via the
NWS [41], Autopilot [33], or MDS [19]) to improve appli-
cation performance.

3. MPI process swapping

In this section we briefly review our implementation of
MPI process swapping. See [35] for more details.

MPI over-allocation – Over-allocated, spare processors
are left idle (i.e. blocking on an I/O call) and thus an appli-
cation does not consume more resources because of over-
allocation. We use this over-allocation technique because
MPI-1.2 does not support adding processes to (or removing
processes from) communicators. In this work we have used
MPICH version 1.2.4 [22] and implement over-allocation
with two private MPI communicators. All inter-process
communication uses standard MPI calls, over these two pri-
vate MPI communicators and over MPI COMM WORLD.

MPI-2 has support for adding and removing processors
during application execution [21]. However, MPI-2 is not
widely supported and this mechanism is more invasive to
user code. Note that the latest Grid-enabled implementa-
tion of MPI, MPICH-G2 [39], supports the dynamic ad-
dition and removal of processes as specified in the MPI-2
standard; this could remove the need for over-allocation.

MPI process swapping runtime architecture – We have
architected a runtime system that supports process swap-
ping and automatically determines the best processors to
use for a run of an MPI application. During execution a
number of runtime services cooperate to (i) periodically
check the performance of the processors; (ii) make swap-
ping decisions; and (iii) enact these decisions. Each MPI
process is accompanied by a swap handler which is a sep-
arate process responsible for coordination with other pro-
cesses in the runtime system. The swap manager is a pos-

sibly remote process that is responsible for collecting in-
formation and making swapping decisions. All details on
this architecture, its implementation, and the interactions
between components can be found in [35].

Impact on application source code – For maximum
transparency, our MPI process swapping implementation
hijacks many of the MPI function calls. There are
three types of modifications to the application code that
must be done by the user. First, the code must in-
clude a mpi swap.h header file. Second, a call to the
MPI Swap() function must be inserted inside the itera-
tion loop of the application. Third, the user must register
static variables that need to be saved and communicated
when a swap occurs. This is done via a series of calls to
the swap register() function. Conceivably these steps
could be automated with a compiler but they are straight-
forward for a user to implement. In [35] we give examples
and describe our work with a real-world particle dynamics
code for which only 4 lines of the original source code were
modified.

The MPI Swap() call, as currently implemented, de-
mands a full application barrier, i.e., no communication
messages can be outstanding at the point the MPI Swap()
call is made. An improved system has been designed, but
not implemented as of this writing, to addresses this limi-
tation through message forwarding. It is important to also
note that this swapping implementation does not transfer
non-MPI I/O channels; it is assumed that the only I/O in the
main program iteration loop are MPI calls.

Verification and validation – In [35] we verified our de-
sign and validated our prototype implementation on a pro-
duction intranet at a Hewlett-Packard research and devel-
opment facility. Most of the workstations in this platform
are used as personal computers and exhibit various levels
of load variations. We observed and reported the effect of
swapping throughout runs spanning several hours. Our fo-
cus was on testing our approach and we used a naı̈ve and
greedy swapping policy. As a result, swapping decisions
were often inadequate (e.g. high frequency of swaps).

4. Process swapping policies

Swapping policies can be categorized by what kind of in-
formation they use, how much of that information is used,
and how the information is used. The policies discussed
here use application-intrinsic information such as iteration
time, environmental information such as CPU availability,
and a set of policy heuristics. Our swapping system param-
eterizes the swapping behavior so different policies can be
created. We describe these parameters in Section 4.1, then
extract three interesting policies for further study in Sec-
tion 4.2.



4.1. Policy parameters

The number of iterations, at the increased performance
rate achieved after swapping, required to recover the cost
of swapping is called the payback distance. Swap policies
have a payback threshold that controls swapping: if the pay-
back distance of a potential swap is less than the payback
threshold, the swap is allowed. Smaller values of the pay-
back threshold indicate more risk-aversion (see Section 5
for a detailed discussion of payback distance).

The performance gain of an individual process after a
swap must be greater than a minimum improvement thresh-
old, or swapping will not occur. Higher threshold values
require more potential benefit from a swap, and indicate
increased reluctance to swap for very small benefit. This
parameter provides swapping stiction.

The performance gain of the overall application after a
swap must be greater than a minimum improvement thresh-
old, or swapping will not occur. Higher threshold values
mean that the application will be less likely to needlessly
hoarde fast processors.

The amount of performance history used to predict pro-
cessor performance can be tuned. Increasing the amount
of history reduces the chance of being fooled by a transient
load event, but can cause the application to miss good swap-
ping opportunities. This parameter enables swap frequency
damping.

4.2. Three swapping policies

The greedy policy has an infinite payback threshold, no
minimum process improvement threshold, no minimum ap-
plication improvement threshold, and uses no performance
history. This policy swaps processes if there is any indica-
tion that application performance will increase. This pol-
icy does not care how great or little the performance is in-
creased, nor does it care how long it will take to amortize
the swap overhead.

The safe policy uses a low payback threshold (0.5 iter-
ations), a high minimum improvement threshold (20%), no
minimum application improvement threshold, and a large
amount of performance history (5 minutes). This policy
swaps processes only if the benefit is significant and the po-
tential downside to the application is minimal. This policy
looks at a significant amount of history so it is not fooled
by instantaneous performance behavior. The safe policy re-
quires that the overhead of swapping be recovered in a short
amount of time, or swapping will not happen.

The friendly policy has no minimum process improve-
ment threshold, a sleight overall application improvement
threshold (2%), and uses a moderate amount of perfor-
mance history (1 minute). The friendly policy does not
use computational resources unnecessarily. If swapping to

a faster processor will not measurably increase the overall
application performance, the swap will not occur. This pol-
icy promotes application performance, but judiciously uses
compute resources, leaving more computing power avail-
able to other applications.

All three policies, when they decide to swap, swap the
slowest active processor(s) for the fastest inactive proces-
sor(s).

5. Process swapping payback

With process swapping, the application must be paused
for process state transfers, and the cost of halting progress
may outweigh the performance advantage. As others have
done [40, 34], we define a cost/benefit algebra that helps
determine if process swapping will lead to a net benefit.
The unique aspect of our process swapping algebra is the
introduction of a payback distance, indicating the number
of iterations (at an increased performance rate) required to
offset the swapping cost:

payback distance =
swap time

old iteration time
(

1−
old performance
new performance

)

The swap time in this equation is the time required to trans-
fer process state to another processor over a communication
link modelled with latency α and bandwidth β:

swap time = α + (process size)/β

The performance metric in the payback equation can be any
measure that increases with increased application perfor-
mance, e.g., flop rate.

Say that the iteration time and swap time are both 10 sec-
onds. If the new performance, after swapping, is twice the
old performance then the payback distance is 2 iterations.
In other words, it will take two iterations after swapping
before the cumulative application progress will exceed that
obtainable at the pre-swap rate. If the new performance is
four times the old performance, the payback distance is 1
1/3 iterations. The greater the performance increase, the
smaller the payback distance. Note that payback distance
is by definition not linearly proportional to the performance
increase.

Instead of calculating the potential performance benefit
of a swapping decision over the entire remaining application
execution time, we compute the number of iterations at the
improved performance rate required to offset the swap cost.
If the payback distance is negative, there is no benefit. If the
payback distance is positive, there is a potential benefit. The
larger the payback distance, the longer it takes to recoup
the swap overhead. Payback distance is useful for several
reasons: (i) often, we do not know how many iterations are
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Figure 1. Payback distance.

left in an application execution, e.g., the application runs
until “convergence”; (ii) our environment is by definition
not quiescent, so we cannot hope to realize the increased
performance benefit forever; and (iii) a payback distance
gives a parameter (the payback threshold) that we can tune
to be more or less risk-averse in our swap policy.

Figure 1 illustrates the payback concept. The vertical
axis of this figure is application progress, e.g., number of
iterations completed, and the horizontal axis is time. During
a process swapping event, the application pauses while the
swap occurs, as indicated by the horizontal line segment.
After swapping, increased application performance erases
the swap cost. The time required to recoup the swapping
overhead is the payback distance. It is worthwhile to note
that if increased performance is not realized, there can be a
net performance drop.

6. Simulation methodology

Since we target long-running applications on non-
dedicated platforms that are by their very nature dynamic, it
is infeasible to perform back-to-back experiments or to ob-
tain reproducible results using real systems. Consequently,
we use simulation and have implemented a simulator using
the SIMGRID simulation toolkit [28]. Our simulator mod-
els the execution environment, the iterative application, and
the different approaches for running the application, all of
which are described in detail below.

Execution environment – We simulate a heterogeneous
platform that consists of workstations connected via a 100-
baseT ethernet LAN. More specifically, we simulate proces-
sors in the hundreds-of-megaflops performance range that
are connected via a low latency shared communication link
capable of transferring 6MB/s. MPI startup is assumed to
be 3/4 second per process, which we have measured and
found to be typical in such environments.

CPU load – CPU load characterization is a challenging
task [11] and no widely accepted model has been identified.
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Figure 2. ON/OFF CPU load example.
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Figure 3. Hyperexponential CPU load exam-
ple.

One approach is to “replay” traces of CPU load measure-
ments obtained from monitoring infrastructures [42, 12].
When used in our previous work [6, 36] we found that
this method, although realistic, makes it difficult to ob-
tain a clear understanding of the simulation results. In-
deed, it can be challenging to decouple the relative effec-
tiveness of competing scheduling algorithms from idiosyn-
crasies of real CPU traces. Another approach is to use a
simple stochastic model to simulate CPU load. The intent
is to have a way to precisely tune the dynamics of CPU
load (from “stable” to “chaotic”). The trade-off is that the
generated CPU loads may not be completely realistic. Nev-
ertheless, we took this approach as it allows for a clearer
understanding of simulation results.

We model CPU load in two ways. Our first, sim-
pler, model assumes a uniformly distributed process arrival,
where the process run times are exponentially distributed.
This model uses simple ON/OFF sources, which have been
used extensively in other domains such as networking [1].
An ON/OFF source is a two-state Markov chain with fixed
probabilities p and q of exiting each state. Using this model
we generate traces of CPU loads that take value 1 (ON, i.e.
loaded with one competing compute-intensive process) or
0 (OFF, i.e. unloaded). We only simulate one competing
process as it is typical of the environment that we target.
More complex loads can be easily generated by aggregating
ON/OFF sources. Figure 2 shows a typical CPU load trace
generated using the ON/OFF source model (using p = .3,
q = .08).

The second model used to simulate competing process
load uses a degenerate hyperexponential distribution of pro-
cess run times, as in [14]. Compared to the ON/OFF source



model, this model should better predict the heavy-tailed na-
ture of the process lifetime distribution [29, 23]. As in the
previous model, process arrival adheres to a uniform ran-
dom distribution. Unlike in the ON/OFF model, we allow
multiple simultaneous competing processes per processor.
An example trace is shown in Figure 3.

The ON/OFF and hyperexponential CPU load models
have limitations. There are other models, used by [29] for
example, that even more accurately matche real CPU load.
However, we claim our models are simple and conservative,
and are sufficient to obtain the necessary first-order com-
parisons between the different algorithms and policies. We
leave more complex models and the use of CPU load traces
for future work.

Application – We simulate iterative applications with a
range of execution characteristics: (i) computation time per
iteration on an unloaded processor are in the 1-5 minute
range; (ii) the amount of data that a processor must commu-
nicate in each iterations is in the 1KB-1GB range; (iii) the
amount of application state information (process state) that
needs to be transferred during a process swap (or a check-
point/restart) ranges from 1KB to 1GB, per processor. It is
important to note that we are simulating one application in a
shared environment; we are not analyzing arbitrary process
migration.

Communication – We simulate a single, shared network
link with latency α and bandwidth β. Thus messages com-
pete for a fixed amount of communication bandwidth, and
collisions delay message transmission.

Initial schedule – For all simulated application runs we
must compute an initial application schedule. For load bal-
ancing we partition the work into unequal size chunks to
balance processor iteration times. For other techniques we
partition the application workload into equal size chunks.
The initial schedule always uses the fastest performing pro-
cessors at the time of application startup.

Dynamic load balancing (DLB) – The DLB strategy re-
distributes work at each iteration so that the iteration times
of all the processors are perfectly balanced given their re-
spective performance. We simulate the overhead of start-
ing up the application. We do not account for the over-
head of doing the actual load balancing (i.e. exchanging
data among processors) and assume that it is instantaneous.
Consequently, the application execution times we obtain in
our simulation for DLB are lower bounds on what could be
obtained in practice.

Checkpoint/restart (CR) – The CR strategy is simulated
as follows. At each iteration, the execution rate is analyzed.
If performance can be increased by using another set of pro-
cessors, based on the same criteria used to evaluate process
swapping decisions, the application is checkpointed. We
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Figure 4. Execution time of various perfor-
mance enhancing techniques across the full
range of environment dynamism.

simulate the overhead of starting up the application. We as-
sume that application state information is written to a cen-
tral location. Upon application restart, the checkpoint is
read by each process, and execution resumes. Our sim-
ulations account for the overhead of writing and reading
the checkpoint. We do not account for the delay incurred
in computing a new application schedule, nor is there any
“cool off” period to wait for the execution environment to
become quiescent (which may be needed to compute a new
schedule).

Process swapping – We simulate the application startup
cost (including over-allocation). At each application itera-
tion, if a swap occurs, we simulate the cost of transferring
application state from an active to an inactive processor.

7. Simulation results

7.1. Evaluation of swapping vs. competing ap-
proaches

We examine four techniques: (a) do nothing (NOP);
(b) process swapping using the greedy policy (SWAP); (c)
dynamic load balancing (DLB); and (d) checkpoint/restart
(CR). We will show that SWAP generally performs favor-
ably as compared to the other techniques across a range of
application characteristics and environment dynamism us-
ing the (more conservative) ON/OFF load model.

Swapping provides benefit in moderately dynamic envi-
ronments. Figure 4 shows application execution time for the
four techniques as a function of environment dynamism. In
quiescent environments, shown on the left side of the fig-
ure, there is little difference between the techniques. Sim-
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mance enhancing techniques across a range
of over-allocation (8 active processes).

ilarly, in highly dynamic environments, shown on the right
side of the graph, the techniques tend to converge because
the environment is too chaotic for any technique to do well.
However, in moderately dynamic environments we see that
DLB, CR, and SWAP all perform better than NOP (up to
40% better). The number of active processors used in this
data is 4, the total number of processors 32, and the process
size is 1MB.

It is interesting to note that DLB does not perform very
well in dynamic environments. When the environment be-
comes dynamic, DLB chooses uneven work sizes, but the
performance changes quickly and the application is left
computing a lot of work on a (suddenly) slow processor.

Swapping performs better with more over-allocation.
Figure 5 shows application execution time over a range
of over-allocation. As more spare processors are avail-
able, SWAP and CR performance both improve. Practically
speaking, substantial benefit requires 100% over-allocation.
DLB consistently outperforms NOP. However, both SWAP
and CR double the performance gain of DLB when the over-
allocation is substantial. The slight drop in NOP execution
time is due to the fact that the pre-execution scheduler has
more options for initial process placement. In this case, the
environment has a load probability of 0.2, which is moder-
ately dynamic. The process size is 1 megabyte.

The effectiveness of SWAP drops quickly as process size
increases. Figure 6 shows the effect of process size on the
performance techniques. The process size is the amount
of information that needs to be saved during swapping or
checkpoint. Since NOP and DLB do not need to save pro-
cess state, their performance does not depend on process
size. However, in the environment studied, both SWAP and
CR transition from being beneficial at a process size of 1MB
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Figure 6. Execution time of various perfor-
mance enhancing techniques for two se-
lected process sizes.

to harmful at a process size of 1GB. In the example shown,
the swap time at 1 gigabyte is 120 seconds, while the appli-
cation iteration time is 50 seconds.

In general, SWAP shows a performance drop when the
ratio of application iteration time to swap time becomes
small. When this happens, in the best case swapping does
not happen and the performance matches the NOP case.
In the worst case, swapping happens but never provides a
net benefit, ultimately hurting application performance. As
a general rule, for SWAP to be beneficial the swap time
should be shorter than the application iteration time. It
should be noted that this is an expected result: process mi-
gration of any kind suffers as migration costs escalate.

SWAP has other limitations. For example, for very short-
running applications, the additional cost of over-allocation
causes SWAP to perform worse than other techniques. An
over-allocation of 30 processors adds approximately 20 sec-
onds to the application startup time.

7.2. Evaluation of three swapping policies

The greedy policy provides the largest performance
boost. Figure 7 shows application execution time for the
NOP technique, and for three swapping policies. For mod-
erately dynamic environments, the greedy policy provides a
maximum 40% performance increase. The friendly policy
does surprisingly well in moderately chaotic environments,
almost keeping pace with the greedy policy. In more chaotic
situations, however, friendly application performance de-
creases dramatically. The safe policy, as expected, provides
lower performance benefit than the greedy approach, but at
slightly lower risk — in chaotic environments the safe pol-
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icy outperforms the greedy policy. In this example, the total
number of processors is 32, the active number of processors
is 4, and the process size is 100MB.

When the process size becomes large, only the safe pol-
icy is appropriate. Figure 8 shows application execution
time for the various swapping policies when the process size
is large. At 1 GB, the process swap time is twice that of
the application iteration time in this example. By the time
the process state has been swapped, the environment has
changed, requiring another swap. The application spends
all its time swapping, chasing an unobtainable performance;
performance suffers. This example is for two active pro-
cesses out of 32 total processes.

7.3. Effect of CPU load distribution

Figure 9 shows the performance of swapping versus
NOP, DLB, and CR assuming a hyperexponential load
model. This model predicts more long-running competing
applications than with the ON/OFF model. Note that swap-
ping remains viable under this CPU load model. In fact,
the larger percentage of long-running jobs created under the
hyperexponential model increases the dynamism range over
which swapping is beneficial.

7.4. Summary

Using an ON/OFF load model, swapping provides per-
formance benefit on par with dynamic load balancing and
checkpoint/restart. In moderately dynamic environments all
three techniques outperform the NOP technique. In highly
dynamic environments, where the load changes dramati-

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

environment dynamism

ex
ec

ut
io

n 
tim

e 
[s

]

NOP     
greedy  
safe    
friendly

Figure 8. Execution time for various swapping
policies where process size is large.

cally during each application iteration, all techniques can
hurt performance. The conclusion is that process swapping
is comparable to competing approaches in terms of perfor-
mance while requiring virtually no implementation effort by
the user (at least for iterative applications).

We observed that process swapping is viable for situa-
tions where one can over-allocate twice as many processors
as the application actually requires. Also, swapping is vi-
able for applications whose iteration times are at least as
long as the time required to transfer process state from one
processor to another.

The greedy swapping policy provides the greatest poten-
tial benefit, but also the greatest risk of poor performance.
The safe swapping policy does not guarantee performance
improvement, and while its potential benefit is lower than
the greedy approach, it has a lower risk of poor perfor-
mance. The friendly policy shows that you don’t have to
be greedy to receive some performance benefit.

These results were obtained using an ON/OFF CPU load
model. Studies using a more heavy-tailed process lifetime
distribution indicate that for these environments swapping
(as well as DLB and CR) is even more beneficial.

8. Conclusion

In this paper we have presented a performance analysis
of process swapping, a simple technique to enhance the per-
formance of a parallel application in a time-shared environ-
ment consisting of a network of workstations. This anal-
ysis was done using a simulation environment, and com-
plements the actual process swapping implementation de-
scribed previously [35]. The regime within which swapping
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Figure 9. Execution time for various perfor-
mance enhancing techniques under a hyper-
exponential load model.

is beneficial, relative to dynamic load balancing and check-
point/restart, was discussed.

We developed three policies used to swap MPI pro-
cesses, and presented a novel payback metric used to tune
these policies. We showed that greedy swapping policies
have the best performance potential, but also have the most
risk as performance can also be reduced. Risk-averse swap-
ping policies provide reduced performance benefit, but are
not susceptible to the performance loss that greedy poli-
cies are. Finally, swapping policies that avoid hogging fast
processors are shown to still have some application perfor-
mance benefit.

This work is extensible in several directions. Augment-
ing the simulation with CPU load traces that better reflect
actual environments will help ensure our policies are ben-
eficial. As we work to improve the actual implementation,
we can combine swapping with emerging middleware in-
frastructure that will extend the reach outside of the area of
iterative applications. Currently, work is underway to inte-
grate process swapping in the GrADS [26] architecture.

Our main conclusion in this paper is that process swap-
ping is a valuable performance enhancing technique. It pro-
vides performance on par with dynamic load balancing and
checkpoint/restart, and does so simply and easily by chang-
ing as few as three lines of source code in an iterative appli-
cation. This combination of performance and ease-of-use
is an important contribution as it applies to an entire class
of MPI applications. Furthermore, the simplicity of design
allows programs to be easily retrofitted, making this tech-
nique accessible to new and existing applications.
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