
A Simple MPI Process Swapping Architecture
for Iterative Applications

Otto Sievert* Henri Casanova*†

*Department of Computer Science and Engineering
University of California at San Diego

†San Diego Supercomputer Center
University of California at San Diego

otto@cs.ucsd.edu, casanova@sdsc.edu

Abstract

Parallel computing is now popular and mainstream, but performance and ease-of-use remain elusive to many end-
users. There exists a need for performance improvements that can be easily retrofitted to existing parallel applications. In
this paper we present MPI process swapping, a simple performance enhancing add-on to the MPI programming paradigm.
MPI process swapping improves performance by dynamically choosing the best available resources throughout application
execution, using MPI process over-allocation and real-time performance measurement. Swapping provides fully automated
performance monitoring and process management, and a rich set of primitives to control execution behavior manually or
through an external tool. Swapping, as defined in this implementation, can be added to iterative MPI applications and
requires as few as three lines of source code change. We verify our design for a particle dynamics application on desktop
resources within a production commercial environment.

1. INTRODUCTION

While parallel computing has been actively pursued for several decades, it remains a daunting propo-
sition for many end users. A number of programming models have been proposed [6, 22, 20] by which
users can write applications with well-defined Application Programming Interfaces (API) and use var-
ious parallel platforms. In this paper we focus on message passing, and in particular on the Message
Passing Interface (MPI) standard [14, 22]. MPI provides the necessary abstractions for writing paral-
lel applications and harnessing multiple processors, but the primary parallel computing challenges of
application scalability and performance remain. While these challenges can be addressed via intensive
performance engineering and tuning, typical end users often lack the time and expertise required. As
a result, many end users sacrifice performance in exchange for ease-of-use. This is a general trend as
parallel computing often enjoys ease-of-use or high performance, but rarely both at the same time. We
believe that a simple technique that provides a sub-optimal (but still beneficial) performance improve-
ment can be more appealing in practice than a near optimal solution that requires substantial effort to
implement.

The basic idea behind MPI process swapping is as follows. Say that a parallel iterative application
needs N processors to run, due to memory and/or performance considerations. Our approach over-
allocates N + M processors so that the application only runs on N processors, but has the opportunity

This material is based upon work supported by the National Science Foundation under Grant #9975020.

1

to swap any or all of these processors with any of M spare processors at each iteration. Our approach
imposes the restriction that data redistribution is not allowed: the application is “stuck” with the initial
data distribution, which limits the ability to adapt to fluctuating resources. We claim that although
MPI swapping will often be sub-optimal, it is a practical solution for practical situations and it can be
integrated to existing applications easily.

For the moment we target the broad class of iterative applications. Process swapping can be added to
an existing iterative application with as few as three lines of source code change. We target heteroge-
neous time-shared platforms (e.g. networks of desktop workstations) in which the available computing
power of each processor varies throughout time due to external load (e.g. CPU load generated by other
users and applications). This type of platform has steadily gained in popularity in arenas such as enter-
prise computing. Although our approach is applicable when resource reclamations and failures occur, in
this work we focus solely on performance issues (as opposed to faul-tolerance issues). We target a usage
scenario in which only a few parallel applications run on the platform simultaneously, the idea being for
these applications to benefit from mostly unloaded resources (if the workload consists of multiple paral-
lel applications then the platform of choice should be a batch-scheduled cluster). Although this scenario
may appear limiting, it is our experience that workloads consisting of few parallel applications with
interactive desktop users are commonplace. In this paper we present and justify our approach for imple-
menting a runtime system for MPI Process Swapping. To validate our design we present experimental
results obtained on desktop resources available as part of a commercial production environment.

The remainder of this paper is organized as follows. Section 2 motivates process swapping and
discusses related work. In particular, we put this work in perspective with efforts in the area of process
migration and fault-tolerance. Section 3 introduces the concept of MPI process swapping. Section 4
describes the run-time swap architecture and the swapping source code architecture. In Section 5 we
present experimental results. Future directions for this work are described in Section 6 and Section 7
concludes the paper.

2. MOTIVATION AND RELATED WORK

Dynamic Load Balancing (DLB) is one of the best known methods for achieving good parallel per-
formance in unstable conditions. The DLB literature is extremely large and diverse. We just note here
that DLB techniques has been developed and used for scenarios in which the application’s computa-
tional requirements change over time [8, 9, 10, 16] and scenarios in which the platform changes over
time [29, 18, 30]. In this work we target the latter scenario and DLB is thus an attractive approach.
While DLB is regarded as one of the best ways to achieve the best performance given a set of unsta-
ble processors, we also point to its limitations. First, DLB requires an application that is amenable, in
the limit, to arbitrary data partitioning. Some algorithms demand fundamentally rigid data partition-
ing. Second, DLB often requires substantial effort to implement. Support for uneven, dynamic data
partitioning adds complexity to an application, and complexity takes time to develop and effort to main-
tain. Lastly, the performance of an application that supports dynamic load balancing is limited by the
achievable performance on the processors that are used. A perfectly load-balanced execution can still
run slowly if all the processors used operate at a fraction of their peak performance. In this last case, we
note that a DLB implementation could further improve performance through the use an over-allocation
mechanism similar to the one used in our approach.

Another way for an application to adapt to changing condition is Checkpoint/Restart (CR). While
CR is usually used for fault-tolerance, we discuss how it can be used for performance by adapting to

2

changing resources. CR does not limit the application to the processors on which execution is started,
so it does not have to remain running on a set of processors that have become loaded. It also does
not require a sophisticated data partitioning algorithm, and can thus be used with a wider variety of
applications/algorithms. Unfortunately, parallel (heterogenous) checkpoint/restart of MPI applications
is a difficult task; it remains the subject of several active research projects [23, 3, 11, 5]. However, note
that application-level checkpointing can be implemented with limited efforts for iterative applications
as demonstrated in [1, 26]. Finally, checkpointing may incur significant overheads depending on the
application and compute platform (e.g. the time to save application state can be significant).

MPI
Swap

Implementation Difficulty

Execution
Performance

checkpoint/
restart

dynamic
load

balancing

default
app

Fig. 1. Claim: Swapping brings potential performance benefits with relatively low effort.

We claim that our MPI process swapping technique can potentially achieve high performance while
being straightforward to integrate into existing applications, and especially significantly easier to imple-
ment than DLB. This claim is depicted in Figure 1.

Our work is related to a number of efforts to enhance the MPI runtime system. Our implementa-
tion of MPI process swapping is a sleight-of-hand played in MPI user space, rather than a true in-
frastructure feature. Checkpointing facilities such as those provided by fault-tolerance extensions to
MPI [23, 3, 11, 5] provide better-integrated support and improve the capabilities of the MPI system.
These checkpointing/migration mechanisms could be combined with our process swapping services
and policies, improving the robustness and generality over the current process swapping solution. In
particular, a checkpointing facility would allow a better process swapping implementation by (i) remov-
ing the restriction of working only with iterative applications; (ii) further reducing the already minimal
source code invasiveness; and (iii) reducing or removing the need to over-allocate MPI processes at the
beginning of execution.

Combining MPI process swapping techniques and policies with the cycle-stealing facilities of desktop
computing systems like Condor [19], XtremWeb [12] or other commercial systems [7, 25] would yield a
powerful system. These systems evict application processes when a resource is reclaimed by its owner.
By combining our swapping policies with this eviction mechanism, a process might also be evicted and
migrated for application performance reasons. Such a combined system would not only provide high
throughput, but individual application performance as well. One difficulty would be to allow network
connections to survive process migration. An approach like the one in MPICH-V [5] could be used. Our
approach shares several concepts with systems like MOSIX [2], but takes place at the MPI level and is

3

thus more portable. Nevertheless, our approach could conceptually leverage a MOSIX infrastructure
when available.

MPI process swapping shares performance ideas and methodologies with traditional application
schedulers such as those found in the AppLeS [4] and GrADS [17] projects. These systems are also
concerned with achieving high performance in the face of dynamic parallel execution environments.
Additionally, they strive for ease-of-use, knowing that common users such as disciplinary scientists are
often not parallel computing experts. The performance measurement and prediction techniques used
in process swapping have much in common with these projects; all use application and environmental
measurements to determine future execution characteristics that improve application performance (e.g.
via the NWS [27] or MDS [13]).

3. MPI PROCESS SWAPPING

Process swapping is a simple performance-enhancing add-on to MPI. During execution, the system
periodically checks the performance of the machines in its pool, and swaps the application processes
from slow processors to fast processors. Because MPI process swapping improves performance by se-
lecting the best performing processors, it is useful in environments where the processor pool is shared.
Typical examples of such environments are networks of workstations, workstation clusters, and compu-
tational grids. Such environments are common in enterprise computing and production environments
such as those found in academic and commercial research and development facilities. Process swapping
is not useful in space-shared parallel environments such as those typically found in supercomputing
environments, where a processor is dedicated to an application for the lifetime of that application, and
the pool of processors is accessed via a batch scheduler.

MPI does not support adding processors to communicators, so MPI process swapping relies on over-
allocation of processes at the beginning of execution to get a pool of possible processors. Swapping
chooses the best subset to actively participate in the application execution; the rest remain inactive until
needed. These inactive processes utilize very little computational power; aside from periodic active
performance measurement, they block on I/O calls and wait to become active.

MPI-2 has support for adding and removing processors to an application. However, MPI-2 is not as
widely supported as MPI-1. Furthermore, the functionality to add/remove processes is not transparent.
The programmer must manage new communicators, requiring significant source code modification for
existing MPI-1 applications. By contrast, MPI-1 with process swapping requires minimal source code
changes. So while MPI-2 dynamic process management functionality such as that supported by the
latest grid-enabled MPI implementation, MPICH-G2 [24], eliminates the need for over-allocation, it
requires significant modification to existing applications.

Because it intelligently decides which processors actively participate in program execution, process
swapping is better than simply replicating work. The simplest work replication option is to execute
the application twice. In a dynamic environment, however, it is likely that at least one processor used
by each replicated run will have decreased performance, causing both applications to execute slowly.
In this case, performance will suffer even though twice as many resources are used. Doubling work
units within the application, using the first available results, and abandoning the other results, can also
in general be hindered by slow processors. This method also requires significant modification to the
application itself.

4

4. SWAPPING ARCHITECTURE

proc N

application
MPI rank N

proc 1

application
MPI rank 1

proc 0

application
MPI rank 0

...

proc d

swap
dispatcher

proc m

swap
manager

swap
handler

swap
handler

swap
handler

proc x

visualization,
logging,

external control,
etc.

Fig. 2. Swap run-time architecture.

MPI process swapping is implemented as a set of run-time services that interact with a modified MPI
library interface. The run-time architecture for a swappable application comprises five main compo-
nents: the swap-enabled MPI application itself, swap handlers, a swap manager, a swap dispatcher, and
the swap tools.

4.1. Process Swapping Run-time Architecture

Figure 2 shows the swap run-time architecture, and describes the communication patterns between
the swap components. The swap handler modules are transient network services; a swap handler mod-
ule is started for each MPI process (active and inactive) in an MPI application. It lives only as long as
the MPI application lives. The swap handler module is the main communication link between the ap-
plication and the other swap components. Because it resides on the same host as the MPI process that it
shepherds, swapping-related communication delays are minimized. In addition to being the communi-
cation portal between the application and the swap services, the swap handler also contains performance
measurement capabilities.

Each application is associated with one swap manager. The swap manager is the intelligence of
the swapping operation. Information from each MPI process and each processor is sent to the swap
manager. Using its swap policy, the manager analyzes this information and determines when and where
to swap processes.

The swap dispatcher is an always-on remote service at a well-known location (network host/port).
The dispatcher fields requests for swapping services and launches a swap manager for each application.
Additional services may contact the dispatcher in order to establish communication with existing swap
managers.

The swap tools are a collection of utilities designed to improve the usability of the swap environment.

5

Facilities such as swap information logging and swap visualization connect to the swap manager (pos-
sibly through the swap dispatcher), and track an application’s progress. The swap actuator provides a
simple interface to manually force a swap to occur.

processor Nprocessor 1processor 0processor mprocessor dprocessor u

create

start

no

init

create
create

create

...

info

swap?

create

swap
manager

user

vis

MPI
app

rank N

swap 0&1

yes
swap?

swap data

finalize finalize finalize

finalize

no
swap?

swap 1&N

yes
swap?

swap data

info

init

finalize

finalize
finalize
finalize

quit

MPI
app

rank 0

MPI
app

rank 1

start start

info

info

info

perf

perf

swap
handler swap

handler swap
handler

swap
dispatcher

Fig. 3. Interaction diagram of a swappable MPI application.

The swap services interact with the MPI application and with each other in a straightforward asyn-
chronous manner, as illustrated in Figure 3. Walking through an example application execution will
further describe these interactions. First, from machine u a user launches an MPI application that uses
N total processes, a subset of which will be active at any given time. The root process (the process with
MPI rank zero) on machine 0 contacts the always-on swap dispatcher (running on machine d) during
initialization, and requests swap services. The swap dispatcher launches a swap manager on machine
m. The swap dispatcher waits for the swap manager to initialize, then tells the root process how to con-
tact this personalized swap manager. The root process passes this information to all MPI processes in
the application. From this point onward, the swap dispatcher plays a minimal role; the swap manager
becomes the focal point.

For each MPI process, the swap manager starts a swap handler on the same machine. Once the swap

6

handlers are initialized, the application begins execution. While the application is executing, the swap
handlers are gathering application and environment (machine) performance information and feeding it to
the swap manager. Some of this information is passive, like the CPU load or the amount of computation,
communication, and barrier wait time of the application. Other times the performance information is
gathered via active probing, which uses significant computational resources for a short period of time but
provides more accurate information. The swap manager analyzes all of this information and determines
whether or not to initiate a process swap.

The active root process, the MPI process that is the root process in the group of active processes,
contacts its swap handler periodically (at an interval of some number of iterations, during the call to
MPI Swap()). In this case, the active root starts out as the process on machine 0. The first time this
process asks if a swap is needed, the swap handler replies “no”. The application continues to execute,
and information continues to be fed to the swap manager. Eventually, the swap manager decides that
process 0 and 1 should swap, so it sends a message to the swap handler that cohabitates with the
active root process. The next time the application asks if it should swap, the swap handler answers
“yes”. Processes 2 through N continue to execute the application while processes 0 and 1 exchange
information and data. The process on machine 0 will become inactive, while the process on machine 1
becomes active.

When the swap is complete, process 1 is now the active root process, so the next swap message
from the swap manager is sent to the process on machine 1. This time, process 1 and process N swap.
The execution continues in this fashion until it completes. As the MPI application shuts down, each
MPI process sends finalization messages to its swap handler before quitting. The swap handler in turn
registers a finalization message with the swap manager, then quits. Once all the swap handlers have
unregistered with the swap manager, it sends a quit message to the swap dispatcher, and shuts down.

In this case, all during the application execution the user monitored the progress of the application.
Shortly after the application began to execute, the user started the swap visualization tool.The visualiza-
tion tool contacted the swap dispatcher, which told it where the swap manager lived. The visualization
tool registered itself with the swap manager, and from that time forward the swap manager kept the
visualization tool informed directly. After the application shut down, and the swap manager also shut
down, the user closed the visualization tool.

This example illustrates the distributed nature of the swap services. However, all of these swap
services could have been running on one machine, if the user had all of her MPI processes on that
machine, had an interactive console on that machine, and the swap dispatcher and swap manager were
launched on that machine.

4.2. Process Swapping Source Code Architecture

MPI process swapping is simple and minimally invasive to existing iterative MPI applications written
in C. Fortran and C++ bindings have not been implemented.

In order to minimize the impact to user code, and yet still provide automated swapping functionality,
MPI process swapping hijacks many of the MPI function calls through a combination of #define
macros and function calls. To illustrate how this is done, let us first examine a typical MPI application,
as shown in Figure 4. This C-like pseudo-code contains the MPI calls from an actual MPI application
that computes Van der Waals forces between particles in a two-dimensional grid [28]. In this typical
scenario, a user’s C source code includes the mpi.h header file, and makes several MPI function calls
throughout the code. To build the application, the user compiles their source code and links to the MPI

7

library, as shown in Figure 5. Note that MPI provides built-in profiling facilities that can be used for
hijacking. These are not used by MPI process swapping.

#include "mpi.h"

main()
{

MPI_Init();
MPI_Type_contiguous();
MPI_Type_commit();
MPI_Comm_size();
MPI_Comm_rank();
MPI_Bcast(); /* X 8 */

MPI_Barrier();

for (a lot of loops)
{

(MPI_Send() || MPI_Recv());
MPI_Bcast();
MPI_Allreduce();

}

MPI_Barrier();
MPI_Finalize();

}

Fig. 4. Standard portable or vendor MPI C source.

libmpi.a

user.c
mpi.h

executable

Fig. 5. Standard portable or vendor MPI usage.

In the swapping scenario, as few as three lines of code are changed from the previous scenario.
First, the user’s code includes the header file mpi swap.h instead of mpi.h. Secondly, the user must
register the iteration variable using the swap register() function call. This is necessary in order
for the swap code to know which iteration a particular MPI process is executing at any given time.
Finally, the user must insert a call to MPI Swap() inside the iteration loop to exercise the swapping
test and actuation routines. Figure 6 highlights these changes. Figure 7 illustrates how a user would
compile a swap-enabled application. The user includes the mpi swap.h header file provided by the
swap package, and links against both the standard MPI library, called libmpi.a here, and the swap
library libswap.a that is provided by the swap package.

8

#include "mpi_swap.h" /* instead of mpi.h */

main()
{

MPI_Init();
MPI_Type_contiguous();
MPI_Type_commit();
MPI_Comm_size();
MPI_Comm_rank();
MPI_Bcast(); /* X 8 */

swap_register(iteration variable); /* new */
MPI_Barrier();

for (a lot of loops)
{

MPI_Swap(); /* new */

(MPI_Send() || MPI_Recv());
MPI_Bcast();
MPI_Allreduce();

}

MPI_Barrier();
MPI_Finalize();

}

Fig. 6. Swappable MPI C source.

user.c

executable

libmpi.a

libswap.a

mpi.hmpi_swap.h

Fig. 7. Swapping resides on top of portable or vendor MPI implementations.

The MPI Swap() function call acts like a barrier to active processes. It must be placed inside
the application’s iteration loop. The current implementation requires that no communication messages
be outstanding when MPI Swap() is called. In theory, outstanding messages could be allowed by
forwarding them to the new active process, but this sophistication has not been implemented.

By default, all dynamically allocated memory is automatically registered and swapped. This provides
the highest ease-of-use, at some performance cost. Saavy users can use provided dynamic memory
allocation routines that bypass registration for local memory that does not need to be transferred during
a swap. The swap register() function is used to register statically allocated symbols that are
important to be swapped. All statically allocated symbols that must be transferred during a swap must
be registered with the swap register() function call; for example, the iteration variable above is
registered this way. The swap register() call is considered collective and must be issued across

9

all processes.
Swapping is implemented using private MPI communicators. An active communicator contains all the

MPI processes that are actively participating in the application, and an inactive communicator contains
all the inactive processes. To hide this complexity from the user, the swapping library hijacks MPI
function calls, as shown in Figure 8.

libmpi.a

MPI_Send()
{
 ...
}

user.c

...
MPI_Send(); /* hijacked */
...

libswap.a

Swap_Send()
{
 ...
 MPI_Send(); /* real */
 ...
}

Fig. 8. Swapping hijacks standard MPI communications.

5. EXPERIMENTAL RESULTS

A set of MPI process swapping experiments were performed on a production intranet at a Hewlett-
Packard research and development facility. This NOW comprises several hundred high performance
PA-8700 series RISC workstations in three buildings, connected to a central data server room via sev-
eral subnets of 10-baseT and 100-baseT Ethernet. These workstations run HP-UX 11.11i exclusively.
Most of the workstations are used as personal computers for Computer Aided Design (CAD), digital
Application Specific Integrated Circuit (ASIC) design, embedded system design, and other research
and product development activities. The experiments capture the natural variation found within this
environment.

In one experiment, the fish MPI program from Fred Wong and Jim Demmel was used [28]. An
example of the type generally found in the field of particle dynamics, this application computes Van
der Waals forces between particles in a two-dimensional field. As the particles interact, they move
about the field. Because the amount of computation depends on the location and proximity of particles
to one another, this application exhibits a dynamic amount of work per processor even when the data
partitioning is static and the processors are dedicated. From the original code, four source lines were
added/changed in order to add the process swapping capability to this application.

Four processors were used in the experiment (two of them active). The application execution eclipsed
thirty minutes. Figure 9 shows the relevant execution behavior from this run. There are four charts in
this figure; each chart contains information about one processor. The vertical axis of these charts is a
measure of processor performance. Process swapping supports several active and passive performance
measures; the simplest of these, the inverse of the CPU load (as measured by the uptime facility),
was used for these experiments. The horizontal axis of the charts is time. The broken line plots the
instantaneous computational performance as measured by the swap services, over the duration of the
application (the higher the better). The solid black bars below the performance measurements indicate

10

processor 1

processor 2

processor 3

processor 4

time

p
ro

ce
ss

o
r

p
er

fo
rm

an
ce

Fig. 9. Behavior of a swapping-enabled particle physics application. The y-axes are processor performance (higher is better);
the x-axes are time. Broken lines show processor performance; the bars below show when processors were active.

active/inactive status. At any given time, the presence of a black bar indicates the processor was active.
At the beginning of execution, processors 1 and 2 were active. Shortly after, however, processor 3

began a long duration of activity because its performance was very good. Thus the initial schedule, as
computed by the off-line pre-execution scheduler, was quickly modified due to observed performance.
During the first half of the execution, processors 1 and 2 shared an MPI process and processor 3 hosted
the second active MPI process. In the later half of the execution, the performance of processor 3 con-
tinued to decline, and processor 4 became more desirable. Approximately forty swaps occurred during
execution of the application.

Another experiment, illustrated in Figure 10, used a toy MPI application that was designed to quickly
and simply evaluate the implementation robustness of the process swapping services. Using eight active
(out of sixteen total) MPI processes, this application run lasted thirty minutes. In addition to generally
illustrating how swapping gravitates toward the machines with the highest performance, this run also
shows the natural dynamism of a typical production environment.

For both of these experiments, a very simple swapping policy was used. Each time a new piece of
information was delivered to the swap manager, it computed whether to swap or not based on only the
most recent information. No hysteresis was applied. No knowledge of the volatility of a particular
processor was taken into account. In fact, in this policy only environmental information (the compu-
tational performance of each processor) was used; no application information, e.g., barrier wait time,
computation time, communication time, was used.

The swapping policy is a critical, but delicate, part of the process swapping system. Because optimal
scheduling is typically NP-hard, many schedulers are laden with heuristics; the process swapping policy
is no different. It is clear from the figures that swapping is occurring too often in these experiments. The
hot-potato exchange between processors 1 and 2 in the fish run (Figure9) was unnecessary given how
similarly these two processors were performing.

One reason for this hot-potato activity could be the use of the (admittedly naı̈ve) cpuload-based per-
formance measure. This measure is fundamentally unable to separate load due to the swap application

11

processor 1

processor 2

processor 3

processor 4

processor 5

processor 6

processor 7

processor 8

processor 9

processor 10

processor 11

processor 12

processor 13

processor 14

processor 15

processor 16

time

p
ro

ce
ss

o
r

p
er

fo
rm

an
ce

Fig. 10. Behavior of a swapping-enabled toy application. The y-axes are processor performance (higher is better); the x-axes
are time. Broken lines show processor performance; the bars below show when processors were active.

from load due to another source. For two otherwise evenly loaded processors, this will cause the kind
of swap bouncing seen between processors 1 and 2. While running on processor 1, the observed load
increases, causing a swap to processor 2. But when executing on processor 2, the load increases, so we
swap back to the processor 1. And so on. Other performance measures employed by the swap handler
are not susceptible to this kind of influence.

6. FUTURE WORK

In the near future additional work will be done to develop a set of general purpose swapping policies.
Critical to this development is a thorough analysis of the performance of process swapping.

Especially in a dynamic environment such as the one used in the experiments described in this paper,
real application runs are insufficient to prove anything about the efficacy of a swapping policy. Changes
in the environment from one run to the next could have more effect on the results than a swapping
policy change. In order to develop and evaluate swapping policies, a swapping simulation environment
has been built. Using this environment, several swapping policies will be developed and cost/benefit

12

models will be evaluated. Some of the resulting policies will then be introduced to the actual swap
implementation, where they will be tested for general applicability in real world environments. These
findings will be reported in an upcoming paper.

Another interesting future direction, that incidentally is not currently planned, would be to merge the
swapping run-time services with a different swapping mechanism, for example the MPICH-V check-
pointing facility described earlier.

Finally, the focus of this work to date has been on local area parallel computing. MPI process swap-
ping could be applied to wide area parallel computing (grid computing) using MPICH-G2 [15]. In the
wide-area environment, the cost of swapping can be much higher. However, the swapping implemen-
tation will function on the grid with only slight modification, and could have benefit in that arena as
well.

7. CONCLUSION

The architecture of a system to improve performance of iterative MPI applications has been presented.
By hijacking MPI calls, this user-level infrastructure can add dynamic performance steering to existing
MPI applications with as few as three lines of source code change. During execution, the MPI appli-
cation over-allocates MPI processes and uses only a subset of these, bypassing limitations in MPI 1.1
and MPI 2. A supporting set of run-time services provides information and support during application
execution, and determines when and where to actively execute the application.

This system has been implemented, and validation has been done on desktop resources within a pro-
duction commercial environment. The swapping system works, perhaps too well, as the swapping policy
used in these runs tended to swap more than it should. Our next step in this research is to investigate
which process swapping policies are to be used in practice. To this end we have developed a simu-
lation environment that enables reproducible experiments for fair comparison of competing strategies.
The swapping policies resulting from this investigation will be tried by fire again in a real production
environment.

ACKNOWLEDGMENTS

The Hewlett-Packard Company has provided extended access to their computing facilities, which
were used for the production runs described in this paper.

The idea of developing a light-weight MPI process swapping system did not happen all at once,
or in a vacuum. Discussions among members of the GrADS project, in particular Holly Dail, Ruth
Aydt, and Celso Mendez, were critical to the formulation of a need for a run-time performance system.
MPI Process Swapping shares architectural ideas with GrADS and with the AutoPilot adaptive resource
control system [21].

REFERENCES

[1] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel, and J. Shalf. The Cactus Worm: Experiments with
Dynamic Resource Discovery and Allocation in a Grid Environment. International Journal of High Performance Computing Appli-
cations, 15(4):345–358, 2001.

[2] A. Barak, S. Guday, and W. R. The MOSIX Distributed Operating System, Load Balancing for UNIX, volume 672 of Lecture Notes
in Computer Science. Springer-Verlag, 1993.

[3] R. Batchu, J. Neelamegam, Z. Cui, and et al. MPI/FT: Architecture and Taxonomies for Fault-Tolerant, Message-Passing Middleware
for Performance-Portable Parallel Computing. In Proceedings of the 1st International Symposium on Cluster Computing and the
Grid, May 2001.

13

[4] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-Level Scheduling on Distributed Heterogeneous Networks.
In Proceedings of Supercomputing 1996, 1996.

[5] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette,
V. Neri, and A. Selikhov. MPICH-V: Toward a Scalable Fault Tolerant MPI for Volatile Nodes. In Proceedings of SC’02, 2002.

[6] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald. Parallel Programming in OpenMP. Morgan Kaufmann
Publishers, October 2000.

[7] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: Architecture and performance of an enterprise desktop grid system. Journal
of Parallel and Distributed Computing, 63:597–610, 2003.

[8] G. Cybenko. Load balancing for distributed memory processors. Journal of Parallel and Distributed Computing, 7:279–301, 1989.
[9] R. Diekmann, B. Monien, and R. Preis. Load balancing strategies for distributed memory machines. In H. Satz, F. Karsch, and

B. Monien, editors, Multiscale Phenomena and Their Simulation, pages 255–266. World Scientific, 1997.
[10] E. Elsässer, B. Monien, and R. Preis. Diffusion schemes for load balancing on heterogeneous networks. Theory of Computing

Systems, 35:305–320, 2002.
[11] G. Fagg and J. Dongarra. FT-MPI: Fault Tolerant MPI, Supporting Dynamic Applications in a Dynamic World. In Proceedings of

the Euro PVM/MPI User’s Group, Berlin, Germany, pages 346–353, 2000.
[12] G. Fedak, C. Germain, V. Nri, and F. Cappello. XtremWeb : A Generic Global Computing System. In Proceedings of the Workshop

on Global Computing on Personal Devices, May 2001.
[13] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A Directory Service for Configuring High-

performance Distributed Computations. In Proceedings of the 6th IEEE Symp. on High Performance Distributed Computing, pages
365–375. IEEE Computer Society Press, 1997.

[14] M. P. I. Forum. MPI: A Message-Passing Interface Standard. International Journal of Supercomputer Applications and High
Performance Computing, 8(3/4):159–416, 1994.

[15] I. Foster and N. Karonis. A grid-enabled MPI: Message passing in heterogeneous distributed computing systems. In Proceedings of
SC’98. ACM Press, 1998.

[16] A. Heirich and J. Arvo. A Competitive Analysis of Load Balancing Strategies for Parallel Ray Tracing. The Journal of Supercom-
puting, 12(1–2):57–68, 1998.

[17] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper, L. Torczon, F. Berman, A. Chien, H. Dail, O. Sievert, D. Angulo, I. Foster,
D. Gannon, L. Johnsson, C. Kesselman, R. Aydt, D. Reed, J. Dongarra, S. Vadhiyar, and R. Wolski. Toward a Framework for
Preparing and Executing Adaptive Grid Programs. In Proceedings of NSF Next Generation Systems Program Workshop (International
Parallel and Distributed Processing Symposium 2002), Fort Lauderdale, FL, April 2002.

[18] T. Le Sergent and B. Berthomieu. Balancing Load under Large and Fast Load Changes in Distributed Computing Systems - A Case
Study. In Conference on Algorithms and Hardware for Parallel Processing, pages 854–865, 1994.

[19] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations. In Proceedings of the 8th International Conference
of Distributed Computing Systems (ICDCS), 1988.

[20] J. Protic, M. Tomaevic, and V. Milutinovic. Distributed Shared Memory: Concepts and Systems. IEEE Computer Society Press and
John Wiley & Sons, Inc., July 1997.

[21] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Autopilot: Adaptive control of distributed applications. In HPDC, pages
172–179, 1998.

[22] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete Reference. MIT Press, 1998.
[23] G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Proceedings of the 10th International Parallel Processing

Symposium (IPPS ’96), Honolulu, Hawaii, 1996.
[24] K. Toonen and I. Foster. MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interface. Journal of Parallel and

Distributed Computing, 2003. to appear.
[25] I. United Devices. http://www.ud.com, 2002.
[26] S. Vadhiyar and J. Dongarra. A Metascheduler for the Grid. In Proceedings of the 11th IEEE Symposium on High-Performance

Distributed Computing, July 2002. To appear.
[27] R. Wolski. Dynamically forecasting network performance using the Network Weather Service. Cluster Computing, 1(1):119–132,

1998.
[28] F. Wong and J. Demmel. UC Berkeley CS 267 course programming assignment 4 at

http://www.cs.berkeley.edu/˜fredwong/
cs267 Spr99/assignments/assignment4.html.

[29] S. Zhou. A Trace-Driven Simulation Study of Dynamic Load Balancing. IEEE Transactions on Software Engineering, 14(9):1327–
1341, September 1988.

[30] W. Zhu and C. Steketee. An experimental study of load balancing on Amoeba. In First Aizu International Symposium on Parallel
Algorithms/ Architecture Synthesis, pages 220–226, 1995.

14

http://www.ud.com

	Introduction
	Motivation and Related Work
	MPI Process Swapping
	Swapping Architecture
	Process Swapping Run-time Architecture
	Process Swapping Source Code Architecture

	Experimental Results
	Future Work
	Conclusion

