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MSG
Generic Application

Simulation

SURF
Virtual Platform Simulation

Software Architecture

GRAS
Distributed Application 

Simulation and Deployment

SMPI
MPI Application 
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Developing efficient large-scale concurrent applications poses many challenges:

 •  Understanding the performance behavior of the code is non-trivial
  •  Conducting experiments in real-world large-scale platforms is non-trivial
  •  Requires a fully functional implementation
  •  Limited to a few particular platform configurations
  •  In many cases, non-repeatable
 •  Accurate and validated simulations results are elusive
  •  Potentially more accurate emulation is extremely time consuming
 •  Simulation code is often “throw-away” and may differ from the real code

The SimGrid project addresses all the above challenges via a multi-component 
software infrastructure for application prototyping, development, and deployment. 

     Available at        http://simgrid.gforge.inria.fr/

 Examples of target applications:
 •  A parallel linear system solver on a commodity cluster
 •  A parallel rendering application running on a network of workstations
 •  A scientific simulation running on a multi-site high-end grid platform
 •  A network monitoring application running on a wide-area network
 •  A peer-to-peer file-sharing application running on volatile Internet hosts 

Features
 •  Fast and accurate simulation capabilities (SURF)
 •  Ability to run the same code in full or partial simulation mode or in real-world mode (GRAS, SMPI)
 •  An API for rapid application prototyping to test and evaluate distributed algorithms (MSG)
  •  Only in simulation mode
 •  An API for application development to obtain fast, robust and portable application code (GRAS)
  •  Either in simulation or in real-world mode
 •  An API for MPI application simulation to study the effect of platform heterogenity (SMPI)
  •  In partial simulation mode

int client(int argc, char **argv) {
    m_task_t local, remote, ack;
    m_host_t destination;

    destination = MSG_get_host_by_name(server_host_name);

    /* simulated data transfer */
    remote = MSG_task_create("Remote", 30.0, 3.2);
  /* 30.0 MFlop, 3.2 MB */
    MSG_task_put(remote, destination, PORT_22);

    /* simulated task execution */
    local = MSG_task_create("Loca", 10.50, 3.2);
  /* 10.50 MFlop, 3.2 MB */
    MSG_task_execute(local);

    /* simulate data reception */
    MSG_task_get(&ack, PORT_23); 

    return 0;
}

int server(int argc, char **argv) {
    m_task_t task;
    m_host_t source;

    while(1) {
        /* simulated data reception */
        MSG_task_get(&task, PORT_22);

        /* simulated task execution */
        MSG_task_execute(task);  

        source = MSG_get_host_by_name(client_host_name);
        
        /* simulated data transfer */
        ack = MSG_task_create(”Ack”, 0, 0.01);
  /* 0 MFlop, 10KB */
        MSG_task_put(ack, source, PORT_23);
    }
    return 0;
}

Application and algorithm prototyping

•  Enables the the easy prototyping of distributed algorithms
 •  No need to realize a complete implementation
 •  Just focus on the fundamentals of distributed computing
•  Uses a convenient and standard abstraction of a distributed applications
 •  Applications consist of processes
 •  Processes can be created, suspended, resumed and 
     terminated dynamically
 •  Processes can synchronize by exchanging tasks
 •  Tasks have a communication payload and an execution payload
 •  All processes are in the same address space
  •  Enables convenient communication via global data structure 
 

Why three interfaces?
•  MSG:    Rapid prototyping of distributed applications / algorithms 
•  GRAS:  Development of production distributed applications
•  SMPI:   Study how an existing MPI application reacts to platform heterogenity

Simulation and Concurrency
•  MSG:   All simulated application processes run within a single process
•  GRAS:  Subsets of simulated application processes run within multiple    
        processes on multiple hosts, for increased scalability
•  SMPI:  Each application process runs as a separate process
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Application development

•  Convenience
 •  API for rapid development of real-world distributed applications
 •  Simple and cross-architecture communication of complex
     data structures
•  Portability (Linux, Mac OSX, Solaris, AIX, IRIX; 12 CPU architectures)
•  Performance via efficient communication (computation unchanged)
•  Resulting application is production, not prototype

Application testing and evaluation

•  Unmodified code run in simulation mode or in real-world mode
•  Automatic benchmarking of application code for simulation (CPU)
•  Automatic computation of communication volume for simulation (network)

int client(int argc, char **argv) {
    gras_socket_t peer, from;
    int ping=1234, pong;

    gras_init(&argc, argv);
    gras_os_sleep(1);  /* Wait for the server startup */
    
    gras_msgtype_declare(”ping”, gras_datadesc_by_name(”int”));     
    /* name, payload */
    gras_msgtype_declare(”pong”, gras_datadesc_by_name(”int”));
 
    peer = gras_socket_client(”127.0.0.1”, 4000);
    gras_msg_send(peer, gras_msgtype_by_name(”ping”), &ping);   
       /* dest, msgtype, payload */
    gras_msg_wait(6000, gras_msgtype_by_name(”pong”), &from, &pong); 
   /* timeout, wanted msgtype, &source, &payload */
  
    gras_exit();
    return 0;
}

•  Parallel simulation for better scalability
•  Port to Windows  •  Native multi-threading support  

Grid Application Toolbox
•  Platform monitoring (CPU and network)
•  Network topology discovery

int server(int argc, char **argv) {
 

    gras_init(&argc, argv);
 

    gras_msgtype_declare(”ping”, gras_datadesc_by_name(”int”));     
    gras_msgtype_declare(”pong”, gras_datadesc_by_name(”int”));
    gras_cb_register(gras_msg_type_by_name(”ping”), ping_callback);
    gras_socket_server(4000);
    /* wait for next message (up to 600s) and handle it */
    gras_msg_handle(600.0);   
    gras_exit();
    return 0;
}

int ping_callback(gras_socket_t experditor, void *payload_data) {
    int msg = *(int *)payload_data;
 

    GRAS_BENCH_ALWAYS_BEGIN();
    /* Some computation whose duration should be simulated */
    GRAS_BENCH_ALWAYS_END(); 
    /* Send data back as payload of pong message to the ping’s source */
    gras_msg_send(source, gras_msgtype_by_name(”pong”), &msg);
}

Virtual platform simulation
•  Computation
•  Point-to-point Communication

Features and Capabilities
•  Simulation of complex communications (multi-hop routing)
•  Simulation of resource sharing
•  Simulation LAN and WAN links
•  Topology can be imported from topology generators (such as BRITE)
•  Trace-based simulation of performance variations due to external load 
•  Trace-based simulation of dynamic resource failures

Simulation of resource sharing
   

 •  Consider a set of resources, R.
 •  Consider a set of “tasks”, T
 •  Each task is defined as the subset of R it uses
 •  SURF uses the unifying MaxMin Fairness model:
  allocate as much capacity to all tasks in a way that 
  maximizes the minimum capacity allocation over all tasks

 •  Used for computation and communication resources
  •  Multiple TCP flows sharing links
  •  Multiple CPU-bound processes sharing a CPU
  •  Interference of communication and computation
  •  Parallel tasks
 •  Eficient, accurate in many scenarios
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Concurrent communications 
interfere with each other as the 
TCP flows share network links Work in Progress

Interfacing to packet-level network simulators
 

•  MaxMin fairness less accurate for short-lived TCP flows
•  For short-lived flows, one can use more accurate, 
    but more expensive, packet-level simulation
•  SURF will provide a seamless interface to packet-
    level simulators such as NS, GTNets, or SSFNet
•  Users can choose between MaxMin and 
    packet- level simulation

Work in Progress
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void parallel_mat_mult(int M, int N, int K, double alpha,
                                        double *A, double *B, double beta, double *C)
{
    int KK = K/num_proc;
    int NN = N/num_proc;
    int i,k;
    double *buf_col = calloc(M, sizeof(double));

    for(k=0; k< K ; k++) {
        if (k/KK == my_id)
          for(i=0; i<M; i++)
            buf_col[i]=A[i*KK+(k % KK)];
        MPI_Bcast(buf_col, M, MPI_DOUBLE, k / KK, MPI_COMM_WORLD);
        /* Start benchmarking  */
        SMPI_BENCH_ONCE_RUN_ONCE_BEGIN();
        /* Call he CBLAS dgem() routine  */
        cblas_dgemm(CblasRowMajor,CblasNoTrans,CblasNoTrans,
                                 M, NN, 1, alpha, buf_col, 1, &B[k*NN], NN,
                                 k?1.0:beta, C, NN);
        /* Stop benchmarking  */
        SMPI_BENCH_ONCE_RUN_ONCE_END();
  }
}

Simulation of an existing MPI application

•  Automatic (but directed) benchmarking of communication and computation costs during an application       
    execution on an homogeneous platform
•  Easy simulation of the application on a heterogeneous platform
•  No code modification required beyond inserting benchmarking commands so that the simulation 
    can be instanciated

Work in Progress
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Example: 1-D Matrix Multiplication in MPI

•  Matrices are distributed among processors using a vertical strip decomposition
•  Column blocs are broadcasted at every step
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A validation experiment
 

•  Random topology generated with BRITE (random bandwidths and latencies)
•  10 random flows for 10 random source-destination pairs
•  Each flow transfers 100 MBytes (operation in steady-state)
•  Comparison between NS2, GTNets, and SimGrid
  

Results
 

•  Flow transfer rates simulated by SimGrid are within +/- 15% of those         
    obtained with packet-level simulators, with most within only a few percents
•  Simulation time is orders of magnitude faster
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