‘ W EI RI I EI The SimGrid Project ‘ W EI RI I B
SI M Simulation and Deployment of Distributed Applications SI M

Arnaud Legrand Martin Quinson Henri Casanova Kayo Fujiwara
CNRS, MESCAL INRIA project Université Henri Poincare, Nancy 1 Dept. of Information and Computer Sciences
Laboratoire Informatique et Distribution LORIA University of Hawaii at Manoa
Developing efficient large-scale concurrent applications poses many challenges: Examples of target applications:
e A parallel linear system solver on a commodity cluster

e Understanding the performance behavior of the code is non-trivial e A parallel rendering application running on a network of workstations
e Conducting experiments in real-world large-scale platforms is non-trivial e A scientific simulation running on a multi-site high-end grid platform

® Requires a fully functional implementation e A network monitoring application running on a wide-area network

e Limited to a few particular platform configurations e A peer-to-peer file-sharing application running on volatile Internet hosts

e In many cases, non-repeatable

e Accurate and validated simulations results are elusive Features _ _ o
e Potentially more accurate emulation is extremely time consuming e Fast and accurate simulation capabilities (SURF)
® Simulation code is often “throw-away” and may differ from the real code ® Ablllty to run the same code in full or partial simulation mode or in real-world mode (GRAS, SMPI)
e An API for rapid application prototyping to test and evaluate distributed algorithms (MSG)
The SimGrid project addresses all the above challenges via a multi-component e Only in simulation mode

e An API for application development to obtain fast, robust and portable application code (GRAS)
e Either in simulation or in real-world mode

e An API for MPI application simulation to study the effect of platform heterogenity (SMPI)
e In partial simulation mode

software infrastructure for application prototyping, development, and deployment.

Available at http://simgrid.gforge.inria.fr/

it clont o *areul Application development Research Development Research & Development
Application and algorithm prototypin Int clientlint argc, char = “argv : .
PP 9 P _ ypP _ g_ _ m_task_t local, remote, ack; e Convenience Code m Code Code
e Enables the the easy prototyping of distributed algorithms m_host_t destination; e API for rapid development of real-world distributed applications
e No need to realize a complete implementation e Simple and cross-architecture communication of complex
e Just focus on the fundamentals of distributed computing destination = MSG_get_host_by_name(server_host_name); data structures
e Uses a convenient and_ standard abstraction of a distributed applications o e R e T e Portability (Linux, Mac OSX, Solaris, AIX, IRIX; 12 CPU architectures) Simulation Program Simulation Program
e Applications consist of processes remote = MSG_task_create("Remote", 30.0, 3.2); e Performance via efficient communication (computation unchanged)
® Processes can be created, suspended, resumed and /* 30.0 MFlop, 3.2 MB */ e Resulting application is production, not prototype ' -
terminated dynamically ' ' MSG_task_put(remote, destination, PORT_22]); 9 app P ! P typ Without GRAS With GRAS
® Processes can synchronize by exchanging tasks /* simulated task execution * / Application testing and evaluation
{ i i I = n n : arm c - : o
. XﬁSk?otz\sfez ;Cr)?m:r?lecig%neZiiyclicr)ggsasnifen SELE [FERIEEE jocal = MSE_tesi crestelLoca’, 15.95 S:2) e Unmodified code run in simulation mode or in real-world mode int client(int arge, char **argy) {
.p Enables convenient comm nicationi3 via global data structure MSG task/execdtel'oca'cll'p’ | / ® Automatic benchmarking of application code for simulation (CPU) &:asi'-sgo:’ll(%z p:tf:;mm,
u 9 uctu - e Automatic computation of communication volume for simulation (network) ’ ’
- E / * simulate data reception */ gras_init(&argc, argv);
client #2 ‘Em MSG_task_get(&ack, PORT_23); gras_os_sleep(1); /* Wait for the server startup */
) To PowerPC Sparc x86
client #1) =Ttub return O; From . . 40.0ms . gras_msgtype_declare(”ping”, gras_datadesc_by_name(”int”]);
/ \ } - 8.2ms = : : t d I { nal:,ne’ payldoa: d/ b LI H t” a
U 10° = 4ams gras_msgtype_declare(”’pong”, gras_datadesc_by_name(”int”});
I o _—
‘ - : o T = ket_client(”127.0.0.1”, 4000);
L nterhie \ int server(int argc, char * *argv) { g 103 peer = gras_socket_) T _
m_task_t task; 3 gras_msg_send(peer, gras_msgtype_by_name(”ping”), &ping);
j) router / m_host_t source; o _ / * dest, msgtype, payload */
10" GRAS MPICH OmniORB PBIO XML GRAS MPICH OmniORB PBIO XML gras—msg—waltIBOOO_’ gras_msgtype_by_name("pong”), &from, &pong];
server #1 while(1) { . / * timeout, wanted msgtype, &source, &payload * /
z 42.6ms - ./ms o 38.0ms
L / * simulated data reception */ : : : _ _
= \ switch MSG_task_get(&task, PORT_22); : : : gras_e)gt[];
= return O;
T Loz P
/ * simulated task execution */ e }
{ = \ “ / = / \ \\ MSG_task_execute(task]); g
— ~] — = — :—| = =) v int server(int argc, char * *argv) {
s i : i source = MSG_get_host_by_name(client_host_name]; - -
L |““ |““ |_“' . GRAS MPICH OmniORB PBIO XML GRAS MPICH OmniORB PBIO XML gr‘as init[&ar‘gc argvl_
— /* simulated data transfer * / ; ; sh5ms - , , o o
= - ack = MSG_task_create(”Ack”, 0, 0.01); - 18.0ms - gras_msgtype_declare(”ping”, gras_datadesc_by_name(”int”});
{ — client #3 /* 0 MFlop, 10KB */ 10 - o : gras_msgtype_declare(’pong”, gras_datadesc_by_name(”int”));
= MSG_task_put(ack, source, PORT_23); : Same gras_ch_register{gras_msg_type_by_name("ping”), ping_callback]);
} o\g gras_socket_server{(4000j;
107 : F
return O; X / * wait for next message (up to 600s) and handle it */
server #2 | . . gras_msg_handle(600.0};
" GRAS MPICH OmniORB PBIO XML o GRAS MPICH OmniORB PBIO XML o GRAS MPICH OmniORB PBIO XML gr‘:S_e)gt[];
return O;
A Gantt chart for an execution of Average time to exchange one Pastry message on a LAN (in seconds) }
for MPICH, OmniORB, PBIO, and XML-based communication
h \ for 2 server ’ ’ ' : ’ . : :
server #2 the abo e code fo SErvers between PowerPC, Sparc, and x86 architectures int ping_callback(gras_socket_t experditor, void *payload_data) {
and 3 clients int msg = *(int *)payload_data;
1
server #1 : : From PowerPC Sparc x86 GRAS_BENCH_ALWAYS_BEGIN(};
: Dark portions denote computa- T A
H H 1 . . . o / * Some computation whose duration should be simulated * /
C||ent #3 i IDLE : tlons, I|ght port|0ns denote - 1408 1.75s 1.87s 1495 105 1708 |- 08 138 109s ‘0% GRAS_BENCH_ALWAYS_END();
1 . . 10 10 e - - -
' | communications o\g / * Send data back as payload of pong message to the ping’s source */
. E X 10 10” 10” gras_msg_send(source, gras_msgtype_by_name(”’pong”), &msg);
client #2 —_—e IDLE Concurrent communications o N . o }
: ' interfere with each other as the
client #1 IDLE . 103 10° 103 .
TCP flows share network links " " Work in Progress
@ t|me 10 GRAS MPIICHOmniORB PE’:IO XML o GRAS MPICH OmniORB PBIO XML 10" GRAS MPICH OmniORB PBIO XML o Para”el simulation for better scalabi"ty

Average time to exchange one Pastry message on a WAN (in seconds) e Port to Windows ¢ Native multi-threading support

for MPICH, OmniORB, PBIO, and XML-based communication,
between PowerPC, Sparc, and x86 architectures
S (WAN: California - France)

Grid Application Toolbox
e Platform monitoring (CPU and network)
e Network topology discovery

Software Architecture

Why three interfaces?

SMPI MSG GRAS e MSG: Rapid prototyping of distributed applications / algorithms
MPI_AppIic_:ation Gener_|c APP_“C&"“O” Distributed Application e GRAS: Development of production distributed applications
Simulation Simulation Simulation and Deployment e SMPI: Study how an existing MPI application reacts to platform heterogenity

Simulation and Concurrency
SURF e MSG: All simulated application processes run within a single process
Virtual Platform Simulation e GRAS: Subsets of simulated application processes run within multiple
processes on multiple hosts, for increased scalability
e SMPI: Each application process runs as a separate process

Work in Progress

Simulation of an existing MPI application Virtual platform simulation Simulation of resource sharing

e Automatic (but directed) benchmarking of communication and computation costs during an application e Computation

execution on an homogeneous platform e Point-to-point Communication ® Cons!der a set of Eesourfes, R.
e Easy simulation of the application on a heterogeneous platform e Consider a set O_f tasks”, T _
e No code modification required beyond inserting benchmarking commands so that the simulation Features and Capabilities e Each task is defined as the subset of R it uses
E=I |93 B TEELE _ e Simulation of complex communications (multi-hop routing) ® SURF uses the unifying MaxMin Fairness model:
Example: 1-D Matrix Multiplication in MPI LRl e Simulation of resource sharing allocate as much capacity to all tasks in a way that
e Matrices are distributed among processors using a vertical strip decomposition e Simulation LAN and WAN links maximizes the minimum capacity allocation over all tasks
e Column blocs are broadcasted at every step K e Topology can be imported from topology generators (such as BRITE) 4 . h
K : : L (', : Resource capacity VreR, Z pr < O
T T S P B N e Trace-based simulation of performance variations due to external load e
"~ double *A, double *B, double beta, double *C) ® Trace-based simulation of dynamic resource failures Dt + Task work rate VreT, p >0
{ sy Mt —
int KK =K ; M
::E NN = N//nnuunrln__p;::c; Network bandwidth MaxMin Fairness: maximize Erélzg Pt
int i,k; A\ 4
double *buf_col = calloc{M, sizeof{double]} N W ‘/ /_/L\-; e Used for computation and communication resources
for(k=0; k< K ; k+] { RO Matrix C — e Multiple TCP flows sharing links
ifftk/[_Klé =_<=Mmyid]) ﬂ I / \ e Multiple CPU-bound processes sharing a CPU
or{I=uy; ISV | = H . . .
buf_col[i]=A[i * KK+(k % KK]]: _ = , e Interference of communication and computation
MPI_Bcast(buf_col, M, MPI_DOUBLE, k / KK, MPI_COMM_WORLD); \a =r Eﬂ e Parallel tasks

cblas_dgemm(CblasRowMajor,CblasNoTrans,CblasNoTrans,
B Ns2] GTNets [] SimGrid

=
= =
/ * Start benchmarking */) =
SMPI_BENCH_ONCE_RUN_ONCE_BEGIN(); MI \ \ ® EfICIent, accurate in many scenarios
/* Call he CBLAS dgem() routine */ Il — @\ /

M, NN, 1, alpha, buf_col, 1, &B[k*NN], NN, / —_— Transient Failure
k?1.0:beta, C, NN); =]
/ * Stop benchmarking */ _ _ \ E S=rr — >
SMPI_BENCH_ONCE_RUN_ONCE_END(); = == = @ \ 1
| -\ | /¢ =\ | / 9
} BNl /8 gE=E=EE = - .
~ = =~ === — = =
BS \\5 =7/ \\¢ I
E B8 E % ol g .
A T §
proc #4 = 0 -
1 2 3 4 5 6 7 8 9 10
S Flow ID
proc #3 - - -
M Work in Progress A validation experiment
proc #2 Interfacing to packet-level network simulators e Random topology generated with BRITE (random bandwidths and latencies)
P oroc #1 | e MaxMin fairness less accurate for short-lived TCP flows : éO r;";ld omt flowfs forlé(()) ﬁgd,?m sourcet-_des_tlna;c IO:I p_a::rst
I S e For short-lived flows, one can use more accurate, Cac O.W rat:l SIErs NS? é_ﬁi (opera dIOSr'] |r(1;s_dea y-state)
but more expensive, packet-level simulation ® Comparison between NSZ2, ets, and SimGri
U e SURF will provide a seamless interface to packet- Results
R . {j:vel smulaﬁors sughtas NS’IVIGT:\\IftS’ odr SSFNet e Flow transfer rates simulated by SimGrid are within +/- 15% of those
7’ °S CENTRE NATIONAL :glzset(iagvcelOS(i)If’leula?ci(\)All’leen axtiin an obtained with packet-level simulators, with most within only a few percents
‘ INRIA / = DE LA RECHERCHE F P e Simulation time is orders of magnitude faster

