
The SimGrid Project
Simulation and Deployment of Distributed Applications

Arnaud Legrand
CNRS, MESCAL INRIA project

 Laboratoire Informatique et Distribution

Martin Quinson
Université Henri Poincaré, Nancy 1

LORIA

Henri Casanova Kayo Fujiwara
Dept. of Information and Computer Sciences

University of Hawaii at Manoa

MSG
Generic Application

Simulation

SURF
Virtual Platform Simulation

Software Architecture

GRAS
Distributed Application

Simulation and Deployment

SMPI
MPI Application

Simulation

1 2 3 4 5 6 7 8 9 10
Flow ID

Tr
an

sf
er

 R
at

e
(M

B
yt

es
/s

ec
)

0

1

NS2 GTNets SimGrid

2

3

Developing efficient large-scale concurrent applications poses many challenges:

 • Understanding the performance behavior of the code is non-trivial
 • Conducting experiments in real-world large-scale platforms is non-trivial
 • Requires a fully functional implementation
 • Limited to a few particular platform configurations
 • In many cases, non-repeatable
 • Accurate and validated simulations results are elusive
 • Potentially more accurate emulation is extremely time consuming
 • Simulation code is often “throw-away” and may differ from the real code

The SimGrid project addresses all the above challenges via a multi-component
software infrastructure for application prototyping, development, and deployment.

 Available at http://simgrid.gforge.inria.fr/

 Examples of target applications:
 • A parallel linear system solver on a commodity cluster
 • A parallel rendering application running on a network of workstations
 • A scientific simulation running on a multi-site high-end grid platform
 • A network monitoring application running on a wide-area network
 • A peer-to-peer file-sharing application running on volatile Internet hosts

Features
 • Fast and accurate simulation capabilities (SURF)
 • Ability to run the same code in full or partial simulation mode or in real-world mode (GRAS, SMPI)
 • An API for rapid application prototyping to test and evaluate distributed algorithms (MSG)
 • Only in simulation mode
 • An API for application development to obtain fast, robust and portable application code (GRAS)
 • Either in simulation or in real-world mode
 • An API for MPI application simulation to study the effect of platform heterogenity (SMPI)
 • In partial simulation mode

int client(int argc, char **argv) {
 m_task_t local, remote, ack;
 m_host_t destination;

 destination = MSG_get_host_by_name(server_host_name);

 /* simulated data transfer */
 remote = MSG_task_create("Remote", 30.0, 3.2);
 /* 30.0 MFlop, 3.2 MB */
 MSG_task_put(remote, destination, PORT_22);

 /* simulated task execution */
 local = MSG_task_create("Loca", 10.50, 3.2);
 /* 10.50 MFlop, 3.2 MB */
 MSG_task_execute(local);

 /* simulate data reception */
 MSG_task_get(&ack, PORT_23);

 return 0;
}

int server(int argc, char **argv) {
 m_task_t task;
 m_host_t source;

 while(1) {
 /* simulated data reception */
 MSG_task_get(&task, PORT_22);

 /* simulated task execution */
 MSG_task_execute(task);

 source = MSG_get_host_by_name(client_host_name);

 /* simulated data transfer */
 ack = MSG_task_create(”Ack”, 0, 0.01);
 /* 0 MFlop, 10KB */
 MSG_task_put(ack, source, PORT_23);
 }
 return 0;
}

Application and algorithm prototyping

• Enables the the easy prototyping of distributed algorithms
 • No need to realize a complete implementation
 • Just focus on the fundamentals of distributed computing
• Uses a convenient and standard abstraction of a distributed applications
 • Applications consist of processes
 • Processes can be created, suspended, resumed and
 terminated dynamically
 • Processes can synchronize by exchanging tasks
 • Tasks have a communication payload and an execution payload
 • All processes are in the same address space
 • Enables convenient communication via global data structure

Why three interfaces?
• MSG: Rapid prototyping of distributed applications / algorithms
• GRAS: Development of production distributed applications
• SMPI: Study how an existing MPI application reacts to platform heterogenity

Simulation and Concurrency
• MSG: All simulated application processes run within a single process
• GRAS: Subsets of simulated application processes run within multiple
 processes on multiple hosts, for increased scalability
• SMPI: Each application process runs as a separate process

Research

Code

Simulation

Development

Code

Program

Rewrite

Research & Development

Code

Simulation Program

Application development

• Convenience
 • API for rapid development of real-world distributed applications
 • Simple and cross-architecture communication of complex
 data structures
• Portability (Linux, Mac OSX, Solaris, AIX, IRIX; 12 CPU architectures)
• Performance via efficient communication (computation unchanged)
• Resulting application is production, not prototype

Application testing and evaluation

• Unmodified code run in simulation mode or in real-world mode
• Automatic benchmarking of application code for simulation (CPU)
• Automatic computation of communication volume for simulation (network)

int client(int argc, char **argv) {
 gras_socket_t peer, from;
 int ping=1234, pong;

 gras_init(&argc, argv);
 gras_os_sleep(1); /* Wait for the server startup */

 gras_msgtype_declare(”ping”, gras_datadesc_by_name(”int”));
 /* name, payload */
 gras_msgtype_declare(”pong”, gras_datadesc_by_name(”int”));

 peer = gras_socket_client(”127.0.0.1”, 4000);
 gras_msg_send(peer, gras_msgtype_by_name(”ping”), &ping);
 /* dest, msgtype, payload */
 gras_msg_wait(6000, gras_msgtype_by_name(”pong”), &from, &pong);
 /* timeout, wanted msgtype, &source, &payload */

 gras_exit();
 return 0;
}

• Parallel simulation for better scalability
• Port to Windows • Native multi-threading support

Grid Application Toolbox
• Platform monitoring (CPU and network)
• Network topology discovery

int server(int argc, char **argv) {

 gras_init(&argc, argv);

 gras_msgtype_declare(”ping”, gras_datadesc_by_name(”int”));
 gras_msgtype_declare(”pong”, gras_datadesc_by_name(”int”));
 gras_cb_register(gras_msg_type_by_name(”ping”), ping_callback);
 gras_socket_server(4000);
 /* wait for next message (up to 600s) and handle it */
 gras_msg_handle(600.0);
 gras_exit();
 return 0;
}

int ping_callback(gras_socket_t experditor, void *payload_data) {
 int msg = *(int *)payload_data;

 GRAS_BENCH_ALWAYS_BEGIN();
 /* Some computation whose duration should be simulated */
 GRAS_BENCH_ALWAYS_END();
 /* Send data back as payload of pong message to the ping’s source */
 gras_msg_send(source, gras_msgtype_by_name(”pong”), &msg);
}

Virtual platform simulation
• Computation
• Point-to-point Communication

Features and Capabilities
• Simulation of complex communications (multi-hop routing)
• Simulation of resource sharing
• Simulation LAN and WAN links
• Topology can be imported from topology generators (such as BRITE)
• Trace-based simulation of performance variations due to external load
• Trace-based simulation of dynamic resource failures

Simulation of resource sharing

 • Consider a set of resources, R.
 • Consider a set of “tasks”, T
 • Each task is defined as the subset of R it uses
 • SURF uses the unifying MaxMin Fairness model:
 allocate as much capacity to all tasks in a way that
 maximizes the minimum capacity allocation over all tasks

 • Used for computation and communication resources
 • Multiple TCP flows sharing links
 • Multiple CPU-bound processes sharing a CPU
 • Interference of communication and computation
 • Parallel tasks
 • Eficient, accurate in many scenarios

router

switch

hub

Internet

server #1

client #1

client #2

client #3

server #2

router

switch

hub

Internet

CPU availability

Network bandwidth

Transient Failure

X

time

IDLEclient #1

IDLEIDLEclient #2

IDLEclient #3

server #1

server #2

Gantt chart for an execution of
the above code for 2 servers
and 3 clients

Dark portions denote computa-
tions, light portions denote
communications

Concurrent communications
interfere with each other as the
TCP flows share network links Work in Progress

Interfacing to packet-level network simulators

• MaxMin fairness less accurate for short-lived TCP flows
• For short-lived flows, one can use more accurate,
 but more expensive, packet-level simulation
• SURF will provide a seamless interface to packet-
 level simulators such as NS, GTNets, or SSFNet
• Users can choose between MaxMin and
 packet- level simulation

Work in Progress

M
S
G

G
R
A
S

S
U
R
F

S
M
P
I

void parallel_mat_mult(int M, int N, int K, double alpha,
 double *A, double *B, double beta, double *C)
{
 int KK = K/num_proc;
 int NN = N/num_proc;
 int i,k;
 double *buf_col = calloc(M, sizeof(double));

 for(k=0; k< K ; k++) {
 if (k/KK == my_id)
 for(i=0; i<M; i++)
 buf_col[i]=A[i*KK+(k % KK)];
 MPI_Bcast(buf_col, M, MPI_DOUBLE, k / KK, MPI_COMM_WORLD);
 /* Start benchmarking */
 SMPI_BENCH_ONCE_RUN_ONCE_BEGIN();
 /* Call he CBLAS dgem() routine */
 cblas_dgemm(CblasRowMajor,CblasNoTrans,CblasNoTrans,
 M, NN, 1, alpha, buf_col, 1, &B[k*NN], NN,
 k?1.0:beta, C, NN);
 /* Stop benchmarking */
 SMPI_BENCH_ONCE_RUN_ONCE_END();
 }
}

Simulation of an existing MPI application

• Automatic (but directed) benchmarking of communication and computation costs during an application
 execution on an homogeneous platform
• Easy simulation of the application on a heterogeneous platform
• No code modification required beyond inserting benchmarking commands so that the simulation
 can be instanciated

Work in Progress

{

{ N

M

{ K {K

KK NN
{{

Matrix A

Matrix CMatrix C

Example: 1-D Matrix Multiplication in MPI

• Matrices are distributed among processors using a vertical strip decomposition
• Column blocs are broadcasted at every step

Without GRAS With GRAS

10-4

10-3

10-2

XMLPBIOOmniORBMPICHGRAS

4.3ms

0.8ms

8.2ms

n/a

22.7ms

10-4

10-3

10-2

XMLPBIOOmniORBMPICHGRAS

3.9ms
2.4ms

7.7ms

n/a

40.0ms

10-4

10-3

10-2

XMLPBIOOmniORBMPICHGRAS

3.1ms

n/a

5.4ms

n/a

17.9ms

10-4

10-3

10-2

XMLPBIOOmniORBMPICHGRAS

6.3ms

1.6ms

26.8ms

n/a

42.6ms

10-4

10-3

10-2

XMLPBIOOmniORBMPICHGRAS

4.8ms
2.5ms

7.7ms 7.0ms

55.7ms

10-4

10-3

10-2

XMLPBIOOmniORBMPICHGRAS

5.7ms

n/a

20.7ms

6.9ms

38.0ms

10-4

10-3

10-2

XMLPBIOOmniORBMPICHGRAS

3.4ms

n/a

5.2ms

n/a

18.0ms

10-4

10-3

10-2

XMLPBIOOmniORBMPICHGRAS

2.9ms

n/a

5.4ms 5.6ms

34.3ms

10-4

10-3

10-2

XMLPBIOOmniORBMPICHGRAS

2.3ms

0.5ms

3.8ms 2.2ms

12.8ms

PowerPC Sparc x86

Sp
ar

c
x8

6
P

o
w

er
P

C

Average time to exchange one Pastry message on a LAN (in seconds)
for MPICH, OmniORB, PBIO, and XML-based communication,

between PowerPC, Sparc, and x86 architectures

To

From

Average time to exchange one Pastry message on a WAN (in seconds)
for MPICH, OmniORB, PBIO, and XML-based communication,

between PowerPC, Sparc, and x86 architectures
(WAN: California - France)

From

To
PowerPC Sparc x86

x8
6

10-4

10-3

10-2

10-1

100

XMLPBIOOmniORBMPICHGRAS

1.10s

n/a

1.75s

n/a

1.87s

10-4

10-3

10-2

10-1

100

XMLPBIOOmniORBMPICHGRAS

0.94s

n/a

1.49s 1.02s 1.70s

10-4

10-3

10-2

10-1

100

XMLPBIOOmniORBMPICHGRAS

0.98s

n/a

1.38s 1.09s 1.69s

proc #1

proc #2

proc #3

proc #4

time

MaxMin Fairness:

: Resource capacity

: Task work rate

A validation experiment

• Random topology generated with BRITE (random bandwidths and latencies)
• 10 random flows for 10 random source-destination pairs
• Each flow transfers 100 MBytes (operation in steady-state)
• Comparison between NS2, GTNets, and SimGrid

Results

• Flow transfer rates simulated by SimGrid are within +/- 15% of those
 obtained with packet-level simulators, with most within only a few percents
• Simulation time is orders of magnitude faster

3

1

2

10

4

5

6

7 8

9

