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Abstract—

Tomography is a popular technique to recon-
struct the three-dimensional structure of an ob-
ject from a series of two-dimensional projec-
tions. Tomography is resource-intensive and
deployment of a parallel implementation onto
Computational Grid platforms has been stud-
ied in previous work. In this work, we address
on-line execution of the application where com-
putation is performed as data is collected from
an on-line instrument. The goal is to compute
incremental 3-D reconstructions that provide
quasi-real-time feedback to the user.

‘We model on-line parallel tomography as a tun-
able application: trade-offs between resolution
of the reconstruction and frequency of feedback
can be used to accommodate various resource
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availabilities. We demonstrate that application
scheduling/tuning can be framed as multiple
constrained optimization problems and evalu-
ate our methodology in simulation. OQur results
show that prediction of dynamic network per-
formance is key to efficient scheduling and that
tunability allows for production runs of on-line
parallel tomography in Computational Grid en-
vironments.
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I. INTRODUCTION

Tomography is a widely used technique to re-
construct the three-dimensional structure of an
object from a series of two-dimensional projec-
tions [1]. Several reconstruction algorithms are
inherently parallel [1, 2, 3]. With these algo-
rithms, the three-dimensional volume or tomo-
gram can be decomposed into slices such that
each slice is computed independently.



One can envision two scenarios for run-
ning parallel tomography: off-line and on-
line. In off-line parallel tomography, the user
runs tomography on a dataset that resides on
secondary storage to obtain a single, high-
resolution tomogram as quickly as possible.
Conversely, on-line parallel tomography oper-
ates on data as it is collected from an on-line
instrument. The goal is to compute successive
tomograms in quasi-real-time to provide feed-
back on the quality of the data acquisition.

In previous work, we and our collaborators
developed a parallel implementation of off-line
tomography called GTOMO (Grid TOMOg-
raphy) [4]. This implementation is currently
used in production at the National Center for
Microscopy and Imaging Research (NCMIR).
GTOMO is used to reconstruct the three-
dimensional structure of biological specimens
at the cellular and sub-cellular level using two-
dimensional projections collected from a pow-
erful electron microscope.

In this paper, we address the on-line sce-
nario. We target on-line parallel tomogra-
phy to a Computational Grid (or Grid for
short) [5, 6] composed of multi-user worksta-
tion clusters and supercomputers. Executing
applications in this type of computing envi-
ronment can be challenging because resource
availability is dynamic. Our results show that
quasi-real-time execution of on-line parallel to-
mography can be achieved using a strategy
that combines application tunability [7] with
application-level scheduling [8, 9]. This strat-
egy has been incorporated into GTOMO and
will be put in production at NCMIR.

This paper is organized as follows. In Sec-
tion II, we briefly review our work on off-line
parallel tomography. We also describe on-line
parallel tomography and motivate its imple-
mentation as a tunable application. Section III
details our scheduling strategy for deploying
on-line parallel tomography on a Grid. Sim-

ulation results are given in Section IV. Sec-
tion V discusses related work and Section VI
concludes the paper.

II. FrRoOM OFF-LINE TO ON-LINE
A. Tomography at NCMIR

During a tomography experiment at
NCMIR, a specimen is placed under an elec-
tron microscope and rotated about a single
axis while p projections are acquired using
a CCD camera. Typically 61 projections
are acquired. The size of each projection
depends on the resolution of the CCD camera,
currently either 1k x 1k or 2k x 2k. We define
a tomography experiment as E = (p,xz,y,2)
where p is the number of projections, x and
y are the dimensions of the projections and
z is the thickness of the object; z,y, and z
are measured in pixels. Given the resolution
of the CCD cameras, (61, 1024, 1024, 300)
and (61, 2048, 2048, 600) are representative
examples of NCMIR experiments.

The tomography reconstruction techniques
used by NCMIR (R-weighted backprojec-
tion [10], ART [11], SIRT [12]) are embarrass-
ingly parallel. Figure 1 illustrates the paral-
lelism of these techniques. The information
required to produce the i* X-Z slice of the
three-dimensional volume (or tomogram) is the
i'" scanline from all projections. Therefore, the
three-dimensional volume can be decomposed
into a series of X-Z slices where each slice is
computed independently of the others.

B. Off-line Parallel Tomography

The target computing platform for NCMIR
is a Grid composed of multi-user workstation
clusters and supercomputers under different
administrative domains. Leveraging this type
of platform is challenging because resources are
heterogeneous, dynamic, and under different
administrative policies. Fortunately, several



specimen

Fig. 1. Parallelism of tomography. The information
required to reconstruct the ith X-Z slice is the ith
scanline from all projections.

Grid infrastructure projects [13, 14, 15, 16, 17]
are available to facilitate running an applica-
tion across different administrative domains.
Our implementation of off-line parallel tomog-
raphy, GTOMO [4], uses services from the
Globus toolkit [13] for remote job management,
security, and interprocess communication. To
address the heterogeneous, dynamic proper-
ties of a Grid [5], we use an application-level
scheduling strategy.

An AppLeS (application-level scheduler) [8]
integrates with the target application to de-
velop a schedule for deploying the application
in a Grid environment. The scheduler makes
predictions of the performance the application
may experience on prospective resources at ex-
ecution time. Using these predictions, a po-
tentially performance-efficient schedule for the
application is identified and deployed [18, 19,
20, 4]. For GTOMO, because our application
is embarrassingly parallel, it is natural to use
self-scheduling [21]. We opted for a greedy
work queue algorithm where computation is as-
signed to processors as soon as they become
available. The algorithm is also coupled with a

Fig. 2. Off-line GTOMO architecture.

resource selection strategy that co-allocates the
execution of parallel tomography over work-
stations and immediately available supercom-
puter nodes.

The architecture of GTOMO is displayed
in Figure 2. A multi-threaded reader process
reads input data (called sinograms) from disk
and sends that data to ptomo processes. Each
ptomo process performs a part of the recon-
struction and sends reconstructed slices to a
writer process which writes the data back to
disk. The figure also displays a driver process
that coordinates all the different processes.

C. On-line Parallel Tomography

Currently, NCMIR users run tomography
on their data after they collect it from the
electron microscope (off-line). Upon visualiza-
tion of their data, they sometimes discover a
misconfiguration of the microscope or might
find a more interesting area of the specimen
to study. In such cases, users must modify
the microscope parameters and acquire a new
dataset. This requires at least 45 additional
minutes and increases beam damage to the
specimen [22]. It would therefore be extremely



useful to provide feedback to the user by com-
puting incremental tomograms during the ac-
quisition process.

C.1 Extensions to GTOMO

To incrementally compute a tomogram, we
update the i slice of the tomogram with
the i* scanline of each projection as it is ac-
quired from the electron microscope. Achiev-
ing this in real-time requires a reconstruction
technique that is fast and augmentable. An
augmentable technique allows each successive
computation to build upon the previous com-
putation without repeating work. Fortunately,
the R-weighted backprojection technique [10]
fulfills both requirements.

The implementation of the R-weighted back-
projection method as an augmentable tech-
nique mandates a modification of the GTOMO
application. It requires that we send the
it" scanline from each projection to the same
ptomo process so that it may process the infor-
mation into the same slice. Therefore, the work
queue approach described in Section II-B is no
longer viable and we replace it with a static
work allocation strategy. We leave reschedul-
ing for future work.

The structure of on-line GTOMO is shown
in Figure 3. The electron microscope sends a
projection to the preprocessor every a seconds.
The preprocessor divides the projection into
sections, where each section contains multiple
scanlines. The scanlines in each section will be
processed in parallel by ptomo processes. All
ptomos will periodically send their slices to the
writer in order to update the tomogram. A vi-
sualization program will then display updated
tomograms to the user. The driver coordinates
interactions among all other processes.

r-- - - driver p----------

prpjection

=

Fig. 3. On-line GTOMO architecture.

C.2 Tunability

Because on-line parallel tomography is
resource-intensive, we want to consider its ex-
ecution on dynamic Grids with differing re-
source capabilities. Therefore, we have de-
signed our implementation of on-line parallel
tomography to be tunable. A tunable applica-
tion is characterized by the availability of al-
ternate configurations, where each configura-
tion corresponds to a different execution path
and resource usage [7]. In this work, tunabil-
ity allows us to express trade-offs between to-
mogram resolution and the frequency of tomo-
gram updates. We next illustrate its usage
through an example.

We define the acquisition period, a, as the
time to acquire a projection from NCMIR’s
electron microscope. NCMIR is currently tar-
geting an acquisition period of 45 seconds;
therefore, we use this value throughout our
work. Consider a (61,2048,2048,600) experi-
ment (see Section II-A) which yields a tomo-
gram of about 9.4 GB. If we place our writer



on a machine with an observable bandwidth of
100 Mb/s, it will take 768 seconds to transfer
the whole tomogram. To avoid overloading the
network, we send only one tomogram at a time.
So for this experiment, successive tomograms
should be sent at least 768 seconds apart. Since
a projection is processed every 45 seconds, we
can send a tomogram every %1 = 18 projec-
tions. We call each send a refresh and say that
the number of processed projections per refresh
is 18. The period of the refresh is 18 x45 = 810
seconds, approximately 14 minutes. After sur-
veying the requirements of NCMIR users, it
appears that no user would tolerate a refresh
periods which is over 10 minutes.

Now, suppose we reduce the resolution of the
projections by a factor of 2 in each dimension.
For the time being we consider a simple aver-
aging strategy [23]. The tomogram would then
be 1.2 GB, 8 times smaller. Thus, it would
take only 96 seconds to transfer each tomo-
gram, yielding an acceptable refresh period of
135 seconds. Note that further reductions are
possible but in order to yield a sufficiently de-
tailed tomogram for NCMIR users, the projec-
tions should not be reduced beyond 256 x 256.

Two parameters, therefore, determine the
quality of on-line parallel tomography: reduc-
tion factor and projections per refresh. The
reduction factor (f) is a scalar value that spec-
ifies a reduction of the size of a projection in
each dimension. If we have a projection of
size ¢ X y, after reduction, we will have a pro-
jection of size % X % Increasing the reduc-
tion factor decreases the number of slices and
the amount of computation and communica-
tion per slice. The projections per refresh (r)
parameter refers to the number of new projec-
tions processed into each successive tomogram
refresh. An increase in r reduces the frequency
of refreshes sent to the user and thus reduces
the amount of communication.

III. SCHEDULING

We have defined the pair (f,r) that deter-
mines the configuration of the application. If
enough resources were available, users would
always choose (1,1) which would result in the
highest resolution tomogram being refreshed at
the highest frequency possible. Given insuffi-
cient resources, in practice users need to choose
an alternate configuration when the ideal con-
figuration is infeasible. This choice depends on
each user’s requirements; therefore our sched-
uler aims at assisting users in selecting an
appropriate configuration. At run-time, the
scheduler discovers which pairs are feasible and
allows users to chose a pair that best fits their
requirements for execution. The process of dis-
covering feasible pairs is described in the fol-
lowing subsections.

A. Constraints for On-line Tomography

We evaluate on-line parallel tomography as
a soft real-time application, one that is char-
acterized by the execution of tasks which have
soft deadlines [24]. That is, the usefulness of
the task decreases as the tardiness of the task
increases [24, 25]. Given the discussion in Sec-
tion II-C, our soft deadlines are:

(i) the computation time of one projection is
less than the acquisition period,
(ii) the transfer time of a tomogram is less
than the refresh period.
Our goal is to find a configuration of the appli-
cation for which all deadlines are met.
Consider a  tomography  experiment
(p,z,y,2) and a pair (f,r). Our sched-
uler must allocate work to resources. For a
set of compute resources M, we define a work
allocation as a set W:

W =A{w;,:me M} (1)

where w,, is the number of tomogram slices
allocated to processor m.



We have the two following constraints:

VmeM w,>0 (2)
Z Wy = = (3)
meM

since there are a total of % tomogram slices
to compute. In the following two sections we
derive constraints for the computation deadline
and the communication deadline.

B. Computation deadline

The soft deadline for computation can be
written as:

VmeM T.mp(m)<a, (4)

where Tpm,(m) is the time to compute w,y,
slices on processor m and a is the acquisition
period.

A simple analysis of the augmentable R-
weighted backprojection algorithm used for the
tomographic reconstruction shows that

z

Toomp(m) % tppm X = X = X Wy, (5)

where tpp,, is the time to process a single pixel
of a tomogram slice on dedicated processor m.
We model two types of compute resources:
time-shared workstations and space-shared su-
percomputers. Let T'SR be the set of time-
shared workstations and SSR be the set of
space-shared supercomputers such that

M =TSRUSSR. (6)

On a time-shared workstation,

tppm
CPUm,

Teomp(m) = X ; X ? X Wy, (7)

where cpu,, is the fraction of CPU available on
processor m. In practice we obtain a predic-
tion for the value of cpu,, from the Network
Weather Service (NWS) [26]. Likewise, for a
space-shared supercomputer,

t
PP T o 2 % (8)

umff

where u,, is the number of unused nodes on m
that are immediately available for execution.
As done in [4], we opt to use MPP proces-
sors only when they are immediately available.
This avoids unpredictable queue waiting times
which are prohibitive for our scenario of a soft
real-time application. In practice we can ob-
tain u,, from batch schedulers such as the Maui
Scheduler [27].

Teomp(m) =

C. Communication deadline

The soft deadline for data transfers can be
written as:

Vme M T.mm(m)<rxa, 9)

where Toomm(m) is the time for m to transfer
w,, slices to the writer.

Given that tomogram slices are generally
several megabytes in size, we use the follow-
ing approximation of the equation in [28]:

W X (5 X % X 52)

B, ’

Tcomm(m) ~ (10)
where sz is the number of bits used to repre-
sent a pixel and B,, is the bandwidth between
processor m and the writer. We can obtain
predictions for By, from the NWS [26].

Note this model assumes a fully connected
network where each processor has a dedicated
link to the writer. However resources are
usually connected by way of shared network



links [29, 30] . Therefore, we incorporate net-
work topology information into our model in
order to determine a more effective work allo-
cation. We group resources into subnets, where
a subnet contains a set of compute resources
which share a network link to the writer. Let
S be the set of subnets such that

U si=Mm. (11)

S;€S

and S; is a subnet. In practice, the subnet
groupings in S can be obtained using a tool
like ENV [31].

The following additional transfer constraint
can then be introduced into our model:

VS; €S Teomm(Si) <rxXa (12)

where Topmm(S;) is the time for all compute

resources in S; to transfer E w,, slices to the

meES;
writer. For Equation 10, we can now write:

(Zwm)x§x§xsz

meS;
Tcomm(si) ~ BS- (13)

2

where Bg, is the capacity of the subnet
link. Note that because we assume a het-
erogeneous network, Equation 13 complements
Equation 10 rather than invalidating it.

We do not introduce any constraints into
our model for input data transfers (i.e., pro-
jection data sent from the preprocessor to the
ptomos). The input data is one order of mag-
nitude smaller than the output data and its
transfer time is amortized into the acquisition
period.

Finally, our scheduling algorithm assumes
that the user provides bounds on the tun-
able parameters, hence the last couple of con-
straints:

fmin S f S fmaz (14)
Tmin S r S T'mazx (15)

All our constraints are summarized in Figure 4.

D. Scheduling and Tuning: an Optimization
Problem

Our goal is to present the user with a set of
feasible pairs (f,r) (i.e., pairs for which there
exists a work allocation that satisfies the con-
straints in Figure 4). One approach is exhaus-
tive search: for each pair (f,r), one can solve
the system in Figure 4 to find a possible work
allocation. A more efficient approach is to solve
two optimization problems:

(i) fix f and minimize r,
(ii) fix r and minimize f,

where both problems are subject to the con-
straints in Figure 4. This approach can be eas-
ily extended to a larger number of tuning pa-
rameters whereas exhaustive search does not
scale (see Section VI). Finally, an added ad-
vantage of this approach is that it filters out
sub-optimal triples. For example, suppose that
triples (1,1) and (1, 2) are feasible. We assume
that users would alway choose (1, 1) over (1, 2).

We describe here how these optimization
problems can be solved. First, we see that
optimization problem (i) becomes linear upon
substitution of f. This is a clear advantage as
there are numerous linear programming solvers
available for download [32]. However, for (ii)
the system remains nonlinear. While nonlin-
ear programming solvers are available [33], as
a first approach, we opt to use a more sim-
ple technique. We exploit the discreteness and
small range of f to reduce the nonlinear pro-
gram to multiple linear programs using sub-
stitution. All linear programs are then solved
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Fig. 4. Constraints for on-line parallel tomography.

and the optimal solution is chosen. For our lin-
ear solver, we have chosen to use the lp_solve
package [34].

Ideally, our optimal solution would be found
by formulating the linear program as an inte-
ger program. An integer program is a linear
program where all variables are constrained to
be integers [35]. However, integer programs are
harder to solve than linear programs [32]. Our
experiments indicate that a mixed-integer ap-
proach, where w,, is expressed as continuous
variables and all others as integer variables is
efficient. The drawback of this approach is that
the values found for w,, € R must be rounded
to integers (since it does not make sense to al-
locate fractional slices to ptomos). Therefore,
the result is an approximate solution. We eval-
uate its effectiveness in Section IV-C.1.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the on-line
GTOMO scheduler using simulation. Sec-
tion IV-A describes our simulator and Sec-

tion IV-B describes our simulated Grid envi-
ronment. We then show two sets of results.
In Section IV-C, we show that using dynamic
system information improves scheduler perfor-
mance. In the second set of results, described
in Section IV-D, we demonstrate that tunabil-
ity is a fundamental concept for practical on-
line parallel tomography in a Grid environ-
ment.

A. Simulator Description

In order to evaluate our scheduler perfor-
mance, we execute the application with multi-
ple scheduling strategies under the same envi-
ronmental conditions. However, achieving re-
peatable environmental conditions is not pos-
sible in a Grid environment [5]. One approach
is to run back-to-back experiments [19, 4, 20].
However, this is not appropriate for tomogra-
phy given the long makespan of the applica-
tion. Therefore, we employ simulation [36].
We wrote a simulator using Simgrid [37], a
discrete-event simulation toolkit which pro-
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Fig. 5. NCMIR Grid topology

vides APIs for studying scheduling algorithms
in distributed systems. Simgrid allows us to
implement a discrete-event simulator and pro-
vides a notion of tasks (e.g. computations,
data transfers) and resources (e.g. processors,
network links). Tasks can have dependencies
among them and are scheduled on resources.
Resources behaviors are modeled by service
rates that can be modeled by traces from real
resources (e.g. CPU availability, bandwidth of
network link). Such traces are commonly avail-
able by existing resource monitoring tools such
as the NWS [26]. Furthermore, Simgrid makes
it possible to create arbitrary resource inter-
connect topologies. The Simgrid approach has
been verified in [37] and has been used to evalu-
ate scheduling algorithms for parameter sweep
applications [36, 38]. Similar trace-based re-
source simulation approaches have also been
applied in projects such as Bricks [39].

In our simulator, we model four types of

tasks based on profile information from the ap-
plication:

1. acquire: acquire a projection from the mi-
croscope

2. scanline transfer: send a scanline from
the preprocessor to a ptomo

3. backproject computation: backproject a
scanline to a slice

4. slice transfer: send a slice from a ptomo
to the writer

For the simulation of a single run, there are p
acquires. For each acquire, there are % scanline
transfers and % backprojection computations.
Given the value of the refresh period, r, there
can also be % slice transfers following the back-
projection computations. Resources are mod-
eled as a Grid containing multi-user worksta-
tions and space-shared supercomputers.



Fig. 6. ENV representation of NCMIR Grid topology.

B. Case Study: NCMIR Grid

We simulate a set of resources modeled af-
ter a subset of the real computational envi-
ronment at NCMIR. The real network topol-
ogy is shown in Figure 5. It is composed of a
cluster of 7 workstations at NCMIR and the
Blue Horizon SP/2 at the San Diego Super-
computer Center (SDSC). Since our goal is to
develop a method that is applicable in any en-
vironment, we use a tool to automatically dis-
cover the topology and build a relevant model
that can be used for scheduling. In this work
we used ENV [31]. Figure 6 shows the ENV
representation of the topology relative to ham-
ming. The machine hamming was used both as
the preprocessor and writer machine because it
had the highest bandwidth capacity. Note that
due to the switched network and hamming’s 1
Gb/s NIC, almost all machines appeared as if
they had dedicated network links to hamming.
The exceptions were golgi and crepitus which
both have 100 Mb/s NICs. In this case, the
ENV tool detected some network interference
at the switch. We therefore modeled golgi and
crepitus as sharing the same network link in
our simulations. Note that at the time of the
experiments we did not have any knowledge of
the network topology within SDSC. This fur-
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ther justifies the use of a tool like ENV as net-
work topology information is not always avail-
able and changes over time. ENV gives us a
way to model possible contention among re-
sources that share network links to the writer
process.

To model load on NCMIR workstations, we
collected CPU availability traces using the
NWS from May 19th until May 26th 2001.
During this time, we also collected a node
availability trace from Blue Horizon to model
its load using the Maui Scheduler command
showbf [27]. Similarly, bandwidth traces were
collected from all machines to hamming. The
sample period for both CPU availability and
bandwidth were set to the NWS defaults, 10
and 120 seconds respectively. The sample pe-
riod for the Blue Horizon traces was 5 minutes.
Summary statistics for the traces are displayed
in Tables 1, 2, and 3. For each trace, the ta-
ble shows the mean (mean), the standard de-
viation (std), the coefficient of variance (cv),
the minimum (min), and the maximum (maz)
trace values.

All the results hereafter were obtained with
our Simgrid-based simulator using an acquisi-
tion period of 45 seconds (see Section II-C.2).



mean std cv min max
gappy 8.335 0.778 0.093 3.484  9.145
knack 5.966 2.355 0.395 0.616  9.005
golgi/crepitus | 70.223 19.657 0.280 3.104 81.361
ranvier 3.613 0.242 0.067 0.620 9.005
hi 7.820 2.230 0.285 0.353 13.074
horizon 32.754  7.009 0.214 0.180 41.933

Table 2. Summary statistics for the bandwidth traces (Mb/s)

mean std cv min  max

gappy 0.996 0.016 0.016 0.815 1.000
golgi 0.700 0.231 0.330 0.109 0.939
knack 0.896 0.118 0.132 0.377 0.986
crepitus | 0.925 0.060 0.065 0.401 0.940
ranvier | 0.981 0.042 0.043 0.394 0.994
hi 0.832 0.207 0.249 0.426 1.000

Table 1. Summary statistics for the CPU availability
traces.

mean std c¢v min max

Blue Horizon 31.1 483 1.5 0.0 492.0

Table 3. Summary statistics for node availability trace.

C. Work Allocation Results

We evaluate the performance of the tomog-
raphy application in terms of soft deadline vi-
olations (see Section III-A). Our performance
metric is relative refresh lateness (), that is
the difference between the predicted and ac-
tual refresh times with respect to the lateness
of the previous refresh. Therefore, low A; re-
sult in better real-time execution.

We compare our scheduler, ApplLeS, to three
schedulers: wwa, wwa-+cpu, and wwa-+bw.
Weighted work allocation, or wwa, corresponds
to a simple strategy that a user might employ:
it performs work allocation based only on the
relative processor benchmark of the applica-
tion in dedicated mode. The second scheduler,
wwa+cpu, assumes that compute resources are
shared among multiple users. It extends wwa
by utilizing dynamic CPU load information.
This corresponds to users that might run a sys-
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tem command such as uptime to find out CPU
availability before executing their application.
The wwa-+bw scheduler assumes only dynamic
bandwidth information and no CPU load in-
formation. The AppLeS scheduler, as described
in Section III, assumes that both compute and
network resources are shared among multiple
users. The relationship between the four sched-
ulers is illustrated using an UML diagram in
Figure 7.

We conducted two distinct sets of experi-
ments: partially trace-driven simulations and
completely trace-driven simulations. In both
sets of simulations, we fixed the pair (f,r) and
use the schedulers to determine work alloca-
tion. The following results were obtained us-
ing a 1k x 1k dataset. For each set we sim-
ulate 1004 runs of the application throughout
the week starting every 10 minutes. Simula-
tions were also run for a 2k x 2k dataset but

N

wwa+cpu wwa+bw
AppLeS

Fig. 7. UML diagram describing scheduler character-
istics.



since the dataset was always reduced by a fac-
tor of 2, the simulation results were identical
to the 1k x 1k set.

C.1 Partially Trace-driven Simulations

In this set of experiments, we simulated runs
where the schedulers had access to perfect load
predictions. This represents the optimal run-
ning environment for the schedulers since the
performance predictions made at the beginning
of execution are valid throughout the entire ex-
ecution. At the start of each simulation, we
used the trace to determine a constant resource
load for the duration of the simulation. This
allows us to test our scheduling strategy in dif-
ferent Grid conditions, but without dynamic
Grid resource behaviors.

Figure 8 shows the simulation results of
the 1k x 1k experiment using the traces col-
lected on May 22, 2001 from 8:00 A.M. to
5:00 P.M. We plot the mean relative refresh
lateness for each scheduler over the nine hour
simulation period. In these simulations, it is
clear that the ApplLeS scheduler outperforms
all the other schedulers. It is followed by the
wwa-+bw scheduler which outperforms both the
wwa and wwa+cpu schedulers indicating that
communication is the dominant factor in appli-
cation performance. Surprisingly, we see that
the wwa scheduler appears to do better than
wwa-+cpu. Upon further investigation, we see
that the wwa scheduler allocates most of its
work to crepitus, one of the machines with high
bandwidth capacity to hamming (see Table 2).
Conversely, the wwa+cpu scheduler allocated
a higher amount of work to Blue Horizon be-
cause it detected a drop in CPU availability
on crepitus. While Blue Horizon had higher
CPU availability, it had a lower bandwidth ca-
pacity to hamming. Therefore, wwa did bet-
ter than wwa+cpu. Thus in these simulations,
CPU availability information was not useful
unless it was accompanied with bandwidth in-
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formation (i.e., AppLeS outperforms wwa+bw).
We are currently running simulations on differ-
ent types of Grids where wwa—+cpu outperforms
wwa.

Figure 9(a) shows the results of simulating
the 1k x 1k dataset throughout the whole week
of traces. For each scheduler, we plot the cu-
mulative distribution function of A;. A point
(xz,y) on the graph represents that y percent
of the refreshes were less than = seconds late.
Here, we see that 2% of the refreshes arrived
late for the AppLeS scheduler due to the ap-
proximation strategy described in Section ITI-
D. 1% of these refreshes were less than 1
second late, 0.9% were less than 10 seconds
late, and the remaining 0.1% refreshes were less
than 50 seconds late. In these cases, low band-
width affected the impact of rounding (to get
an approximate solution). In particular, the
case where 4A; was approximately 40 seconds
late, the bandwidth to the machine hi was quite
low at approximately 444 Kb/s.

To compare the simulation results for the
schedulers on a run-to-run basis, we plotted the
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—=— wwa
wwa+cpu
wwa+bw

—A— AppLeS

10°F

hours

Fig. 8. The mean A; for the simulation period of May
22, 2001 from 8:00 A.M. - 5:00 P.M. is plotted for
each scheduler.



&

I
©
T

wwa
wwa+cpu
wwa+bw
AppLeS

I
©
T

o
3
T

I
o
T

cumulative fraction of refreshes
o o o
w S ol
T T T

o
N
T

o
-
T

o
—

° 10" 107
relative refresh lateness (seconds)

10

(a) The cumulative distribution functions of A; for each
scheduler.

1200 B st

[ 2nd
[ 3rd
Hl 4th

1000

©

=]

=]
T

@

=]

=]
T

number of runs

400

0 -

wwa wwa+cpu wwa+bw
scheduler

AppLeS

(b) Scheduler ranking based on cumulative A;.

Fig. 9. Partially trace-driven simulation results using traces collected over the period May 19 - 26, 2001.

number of times each scheduler ranked first,
second, third, and fourth place based on cu-
mulative A; (i.e., Y. A; for each run) in Fig-
ure 9(b). Ranking for this graph was decided
as follows:

(i) For a single run, scheduler i received a
rank k if £ — 1 schedulers beat it.

(ii) For a single run, if more than one sched-
uler had the the same cumulative relative
refresh lateness, they received the same
rank.

To measure the magnitude of difference from
the best, we calculated the average deviation
(avg) from best scheduler based on cumulative
A, for each run. We also calculate the standard
deviation (std). The results are displayed in
the first and second columns of Table 4.

C.2 Completely Trace-driven Simulations

In this set of experiments, we used traces to
determine resource load variation throughout
simulation. Therefore, these simulations are
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partially completely
scheduler trace-driven trace-driven

avg std avg std
wwa 783.70 | 715.63 || 237.01 | 190.22
wwa+cpu || 1116.17 | 604.16 || 544.59 | 305.12
wwa+bw 159.04 | 159.56 74.21 93.11
AppLeS 0.08 2.49 49.94 | 96.33

Table 4. Average deviation from best scheduler based
on cumulative A;.

completely trace-driven. Consequently, the ini-
tial load predictions may be imperfect through-
out the simulated period. In other words, these
simulation results show the impact of dynamic
Grid resource behavior on scheduling.

Figure 10(a) shows the results of the sim-
ulations in a cumulative distribution function
plot. Comparing this to the previous set of
simulations, we see how imperfect predictions
degrade the performance of the AppLeS sched-
uler. Here 42.9% of the refreshes arrive late
compared to 2% in the partially trace-driven
simulations. Although, we note that only 3.4%
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Fig. 10. Completely trace-driven simulation results using traces collected over the period May 19 - 26, 2001.

of the refreshes arrive later than 600 seconds
(the upper bound of tolerance for NCMIR
users). We also plotted the scheduler rankings
in Figure 10(b). These results show that the
AppLeS scheduler was in first place 55% of the
time compared to almost 100% in the partially
trace-driven simulations. The average devia-
tions from best scheduler are displayed in the
third column of Table 4 and the standard de-
viations are displayed in the fourth column.

Comparing the performance of the ApplLeS
to the other schedulers, we see that it ranked
first in more runs than the other schedulers.
Furthermore, on average the AppLeS scheduler
showed a 24.27 second improvement in cumu-
lative A; per run over the wwa-+bw scheduler
(see Table 4). We are currently running fur-
ther simulations on Grids with differing levels
of dynamic resource availability to evaluate the
effects of dynamic Grid behavior on scheduler
performance. As mentioned in Section II-C.1,
the benefit of rescheduling (to cope with im-
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perfect predictions) is left for future work.

D. FEvaluation of Tunability

In Section II-C.2, we motivated the design
of on-line parallel tomography as a tunable ap-
plication for dynamic Grid environments. In
this section, we assess the usefulness of tunabil-
ity. We say that tunability is useful if changing
the configuration at run-time (from the previ-
ous configuration) results in a better configu-
ration for the user and/or better real-time ex-
ecution than not changing the configuration.
We study how the configuration of on-line par-
allel tomography would change for a user run-
ning back-to-back experiments during a one-
week period at NCMIR (see Section IV-B).

We consider two different on-line parallel to-
mography experiments:

E,
Es

(45, 61,1024, 1024, 300),
(45, 61, 2048, 2048, 600).

As described in Section II-B, these two exper-
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Fig. 11. (f,r) pairs found for (61,1024, 1024,300) and (61,2048, 2048, 600) experiments.

iments are representative of the size of exper-
iments run by NCMIR users and correspond
to datasets collected from 1k x 1k CCD and
2k x 2k CCD cameras respectively. Based on
NCMIR user preferences (as discussed in Sec-
tion II-C.2), we set the following constraints
for E; experiments:

and for F, experiments:

1<f<8
1<r<13.

We simulated scheduler decisions every 10
minutes throughout the simulated week lead-
ing to 1004 reconstructions for each experi-
ment type. The range of (f,r) pairs found by
the AppLeS scheduler for the F; experiment
is displayed in Figure 11(a); the range of (f,r)
pairs for the Ey experiment is displayed in Fig-
ure 11(b). For each pair, we show the per-
centage of the time it was feasible and optimal
throughout the week. The percentage is visu-
ally depicted as variable-size x’s. Recall that
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our method filters out sub-optimal pairs (see
Section III-D). At this point we do not specify
any model for the user pair selection criteria.
For instance, if both pairs (1,2) and (2,1) are
feasible for a given experiment, we plot both
pairs in Figure 11 and qualify both pairs as
“optimal”.

For both type of experiments the major-
ity of feasible optimal pairs take two values:
(1,2) and (2,1) for E; experiments; (2,2) and
(3,1) for E5 experiments. Note also that since
the projections are larger for Fy experiments,
the scheduler opts for higher reduction fac-
tor values. These results indicate that in the
NCMIR environment, different values for f and
r should be used in order to best satisfy users’
criteria. We are currently running experiments
for many synthetic Grid environments mod-
eled after real traces from actual Grid testbeds.
Our preliminary results show that implement-
ing tunability as part of on-line parallel tomog-
raphy is critical over a wide range of computing
environments. In addition, in many cases the
feasible optimal (f,r) pairs take wider ranges
of values than what we observe for the NCMIR



Experiment | % of % of % of
type changes | changes | changes
for f for r
1k x 1k 25.2% 0.0% 25.2%
2k x 2k 25.1% 22.9% 19.2%

Table 5. Evaluation of Tunability: number of changes
of the tunable pair (f,r) over a week on the
NCMIR Grid for best performance.

Grid. We will report on those results in an up-
coming research article.

In order to quantify the benefits of tunabil-
ity as perceived by a user throughout time, we
also performed the following experiment. We
model a user who would choose a pair (f, ) and
then watch how that pair changes over time
for back-to-back tomographic reconstructions.
For these experiments, we assume a simple user
model. We assumed that the user would always
choose pairs that have the lowest f. We use
the number of changes within a specified time
period to measure the usefulness of tunability.
For example, when the triple change frequency
is low, we say that tunability is not useful.
In other words, it is likely that a user could
use the same configuration from run to run
and not experience a significant drop in per-
formance. Conversely, when the triple change
frequency is high, we say that tunability is use-
ful. We predict that a user running with the
same configuration from run to run would ex-
perience significant performance drops and/or
would under-utilize the resources.

We simulated tomographic reconstructions
every 50 minutes throughout the week of traces
(recall that a reconstruction takes 45 minutes).
This corresponds to a user running 201 back-
to-back reconstructions throughout the week.
We performed simulations for 1k x 1k and
2k x 2k experiments, totaling 402 application
simulations. For each reconstruction, we emu-
lated the user and chose the “best” (f,r) pair
while monitoring changes of that pair from one
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experiment to the next. For the E; experi-
ments, the (f,r) pair changed 51 times out
of the 201 reconstructions. All changes were
caused by the tuning of r. For the Ey exper-
iments, pairs changed 50 times out of the 201
reconstructions. In these 50 changes, 48 in-
volved tuning of r, and 38 involved tuning of
f- These results are summarized in Table IV-D
using percentages. In about 25% of the cases,
is was a good choice to tune the application
configuration (for both the 1k x 1k and 2k x 2k
datasets) rather than using the previous con-
figuration.

V. RELATED WORK

On-line parallel tomography has also been
addressed as part of the Computed Microto-
mography (CMT) project [40, 41]. Projec-
tions are collected from the Advanced Photon
Source (APS) at Argonne National Laboratory,
processed by an SGI Origin 2000, and visual-
ized on an ImmersaDesk [42] or in a CAVE [43].
The CMT on-line parallel tomography code
specifically targets high-speed networks and
supercomputers and is a slightly extended ver-
sion of the GTOMO code described in Sec-
tion II-B. The on-line parallel tomography
implementation presented in this paper differs
from CMT’s in that it enables the R-weighted
backprojection method to execute as an aug-
mentable technique. Note that it would be
straightforward to add the same extension to
the CMT code in order to improve real-time ex-
ecution. Second, our implementation enables
on-line parallel tomography to execute across
a more diverse set of resources (e.g. work-
stations, space-shared supercomputers, lower-
capacity networks) through the use of applica-
tion tunability.

Application tunability is a concept that has
been applied in the MILAN project [7] and
in [44]. In MILAN, tunability is used by the
system scheduler to improve throughput. The



system scheduler is referred to as the QoS ar-
bitrator and is responsible for allocating pro-
cessors to application tasks. Each application
has a QoS agent which interacts with the QoS
arbitrator to ensure that its execution require-
ments are being satisfied. The QoS agent is
automatically generated from annotated code.
Our work differs from MILAN’s in that our ob-
jective is to use tunability to improve applica-
tion performance rather than system perfor-
mance. We provide a single AppLeS process
which functions as both the application’s QoS
agent and QoS arbitrator. While MILAN pro-
vides a simpler API, it is currently unable to
sufficiently capture the requirements of on-line
parallel tomography because the QoS arbitra-
tor does not schedule bandwidth on network
links. Given the large amount of data transfer
required for on-line parallel tomography, the
ability to express bandwidth requirements is
critical to achieving real-time execution per-
formance.

The work presented in [44] also uses tunabil-
ity to improve application performance. Two
applications are presented and classified as
prediction-based, best effort, real-time appli-
cations. Using predictions of application per-
formance based on dynamic load predictions,
the application is mapped to a set of resources.
Our work differs from theirs in that predic-
tions of application performance are model-
based rather than history-based.

The concept of soft deadlines for comput-
ing on the Grid has been explored in the Nim-
rod/G project [45]. In Nimrod/G scheduling
aims at achieving trade-offs between deadline
requirements and resource cost. In this work,
our contribution is that we perform trade-offs
between resource availability and key charac-
teristics of the application’s output. In other
words, we studied soft deadline scheduling in
the context of tunable applications. In fu-
ture work we will add Nimrod/G’s notion of
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resource cost to our current scheduling model
(see Section VI).

Finally, the AppLeS described in this paper
builds upon other previous AppLeS work [18,
19, 20, 4] in its strategies for resource selec-
tion and work allocation. These AppLeS have
focused on improving the performance of ap-
plications with fized configurations. The Ap-
pLeS described herein distinguishes itself from
these schedulers in its ability to improve the
performance of an application (with multiple
configurations) by exploiting its tunability.

VI. CONCLUSION

We have extended our previous work on off-
line parallel tomography [4] to address the on-
line scenario. We have modeled our applica-
tion as a tunable application, allowing users
to express trade-offs between tomogram reso-
lution and refresh rates. Our scheduling strat-
egy uses dynamic CPU and network bandwidth
availability information to perform resource se-
lection. We have identified scheduling/tuning
in terms of multiple constrained optimization
problems. Simulation results showed that our
scheduler chooses appropriate work allocations
because it takes into account dynamic band-
width information. Finally, we demonstrate
the importance of tunability in a computing
environment such as the one at NCMIR.

In future work we will explore the notion
of cost for resource usage. Several supercom-
puter centers regulate resource access with al-
locations and tunability can then be expressed
as a triple (f,r,cost) where cost is the alloca-
tion units the user is willing to spend. The
same optimization techniques as described in
Section III-D apply. The notion of cost and
soft deadline has been explored in [45]. Our
contribution is that we allow for tunability in
terms of key parameters of the target appli-
cations. Also, we are currently running simu-
lations for synthetic computing environments



and a future paper will present an evalua-
tion of our scheduling/tuning strategy for envi-
ronments with various topologies and resource
availabilities. The implementation of on-line
parallel tomography described in this paper
will be put into production mode at NCMIR.
We expect this will allow NCMIR users to ac-
quire higher quality data from their electron
microscope and will allow for more efficient use
of this scarce resource.

Finally, our work on on-line tomography is
applicable to a large class of applications. Our
methodology provides a general framework for
scheduling tunable applications with soft dead-
line requirements in Grid environments.
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