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Abstract

Divisible workload applications arise in many fields
of science and engineering. They can be parallelized in
master-worker fashion and relevant scheduling strategies
have been proposed to reduce application makespan. Our
goal is to develop a practical divisible workload schedul-
ing strategy. This requires that previous work be revisited
as several usual assumptions about the computing platform
do not hold in practice. We have partially addressed this
concern in a previous paper via an algorithm that achieves
high performance with realistic resource latency models. In
this paper we extend our approach to account for perfor-
mance prediction errors, which are expected for most real-
world performance and applications. In essence, we com-
bine ideas from multi-round divisible workload scheduling,
for performance, and from factoring-based scheduling, for
robustness. We present simulation results to quantify the
benefits of our approach compared to our original algo-
rithm and to other previously proposed algorithms.

1 Introduction

Applications that consist of many independent compu-
tational tasks arise in many domains [1, 2, 3, 4] and are
well suited to master-worker execution on cluster platforms.
In this paper we address the problem of scheduling these
applications with the goal of reducing execution time, or
makespan. This problem has been studied for two differ-
ent scenarios: fixed-sized tasks and divisible workload. In
the former scenario, the application’s workload consists of
tasks whose size (i.e. amount of required computation) are
pre-determined, and a number of efficient scheduling strate-
gies have been proposed [5, 6, 7, 8]. In this work we focus
on the latter scenario, in which the scheduler can partition

the workload in arbitrary, continuous “chunks” (in practical
situations, this often means that the application consists of
many similar computational tasks).

Examples of such applications are : feature extraction, in
which a big image is segmented , and each segment is trans-
fered to a worker and processed locally; Signal processing,
which tries to recover a signal buried in a large file record-
ing measurements; and sequence matching, [2], in which a
single sequence is compared to a big dictionary file, and the
running time is proportional to the letters in that dictionary.

The main question in scheduling divisible workload is
how to choose an optimal division of the workload into
chunks. One possible approach is to divide the workload
in as many chunks as processors and to dispatch work in
a single round of allocation [9, 10, 11, 3, 12]. This has
several drawbacks, namely poor overlap of communica-
tion and computation and poor robustness to performance
prediction errors. Consequently, a number of researchers
have investigated multi-round algorithms. Three main ob-
servations have been made: (i) dividing the workload into
large chunks reduces overhead, and thereby application
makespan; (ii) the use of small chunks at the onset of ap-
plication execution makes it possible to overlap overhead
with useful work more efficiently; and (iii) the use of small
chunks at the end of the execution leads to better robust-
ness to performance prediction errors. Based on observa-
tions (i) and (ii), multi-round algorithms that use increas-
ing chunk sizes throughout application execution to achieve
good computation communication overlap while not suf-
fering from prohibitive overheads [13]. Based on obser-
vations (i) and (iii), algorithms that use decreasing chunk
sizes have been designed to tolerate performance prediction
errors [14, 15]. The main contribution of this paper is to
combine both approaches.

Our ultimate goal is to develop a scheduling strategy
for divisible workloads that can be use in practice, i.e.
as part of an application execution environment [16] run-



ning on real-world platforms. Our first step was to re-
visit multi-round scheduling algorithms that use increasing
chunk sizes but with more realistic assumptions about the
platform than in previous work, while still assuming that
performance predictions are perfectly accurate. In [17, 13]
we presented a novel multi-round algorithm, UMR (Uni-
form Multi-Round), that functions with realistic compute
and network latency models, and that outperforms previ-
ously proposed approaches. This paper takes the next step
and addresses the critical issue of performance prediction
errors that arise due to uncertainties about the platform
and the application. We present an extension to UMR:
RUMR (Robust Uniform Multi-Round). RUMR borrows
from UMR and from the work in [14] to achieve both high
performance and robustness to prediction errors by increas-
ing and then decreasing chunk sizes throughout execution.

This paper is organized as follows. In Section 2 we dis-
cuss relevant related work. Section 3 briefly summarizes
our application and platform model as well as our previous
work on UMR. Section 4 presents the RUMR algorithm,
which is evaluated in simulation in Section 5. Section 6
concludes the paper and discusses future work.

2 Reated Work

A number of multi-round scheduling algorithms for di-
visible workloads have been proposed with the assumption
that performance predictions are perfectly accurate. Most
of these work assume that the amount of data to be sent for
a chunk is proportional to the chunk size. The work in [18]
presents a “multi-installment” algorithm that uses increas-
ing chunk sizes throughout application execution to mini-
mize makespan. Although this approach provides an opti-
mal schedule for a given number of rounds, it has the fol-
lowing limitations: latencies associated with resource uti-
lization are not modeled; and there is ho way to determine
the optimal number of rounds. Our recent work in [17, 13]
addresses both these limitations. By imposing the restric-
tion that equal sized chunks are sent to workers within a
round, the UMR algorithm makes it possible to compute an
optimal number of rounds while modeling resource laten-
cies. In this work we extend UMR to account for perfor-
mance prediction errors. Several works aim at maximiz-
ing the steady-state performance of very long-running ap-
plications [4, 19]. The goal is not to minimize application
makespan but to obtain asymptotically optimal schedules.
Note that in these works it is possible to adapt to fluctuating
performance characteristics of the underlying resources as
the optimal schedule is periodic and can thus be changed
from one period to the next.

Multi-round scheduling for divisible workloads has also
been studied assuming non-zero performance prediction er-
rors. The algorithms in [14, 15] start application execution

with large chunks and decrease chunk sizes throughout. As-
suming uncertainties on task execution times, this ensures
that the last chunks will not experience large absolute uncer-
tainty. These works assume a fixed network overhead to dis-
patch chunks of any sizes. By contrast, we assume that the
amount of data to be sent for a chunk is proportional to the
chunk size, which is more realistic for most applications.
With this assumption, starting by sending a large chunk to
the first worker would cause all the remaining workers to be
idle during that potentially long data transfer. Nevertheless,
in this paper we use the fundamental ideas in [14] to extend
our previous work on the UMR algorithm.

The notion of scheduling applications by combining a
performance-oriented and a robustness-oriented approach is
not new and has been explored for instance in [20], which
uses both static scheduling and self-scheduling. Our ap-
proach is more performance efficient because it achieves
better overlap of computation and communication and
leverage the work in [14] for improved robustness to un-
certainty.

3 Background
3.1 Application and Platform Models

We consider applications that consist of a continuously
divisible workload, W;,iq:, and we assume that the amount
of application data needed for processing a chunk is propor-
tional to the amount of computation for that chunk. As done
in most previous work, we only consider transfer of appli-
cation input data. The works in [11, 12] take into account
output data transfers but use a single round of work alloca-
tion. Similarly, the work in [4] models output but considers
only steady-state performance.
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Figure 1. Computing platform model.

We assume a master-worker model with IV worker pro-
cesses running on NV processors. We assume that the master



does not send chunks to workers simultaneously, although
some pipelining of communication can occur [11]. Al-
though this is a common assumption in most previous work,
it could be beneficial to allow for simultaneous transfers for
better throughput in some cases (e.g. WANSs). We have pro-
vided an initial investigation of this issue in [17] and leave
a more complete study for future work. The effective plat-
form topology can then be viewed as heterogeneous proces-
sors connected to a master by heterogeneous network links
(see Figure 1). Finally, we assume that workers can receive
data from the network and perform computation simultane-
ously (as for the "with front-end” model in [21]).

Consider a portion of the total workload, chunk <
Wiotal, Which is to be processed on worker 4,1 < ¢ < N.
We model the time required for worker i to perform the
computation, T'comp;, as

chunk;

Tcomp; = cLat; + ,
Si

1)

where cLat; is a fixed overhead, in seconds, for starting
a computation, and S; is the computational speed of the
worker in units of workload performed per second. Com-
putation, including the cLat; overhead, can be overlapped
with communication. We model the time spent for the mas-
ter to send chunk units of workload to worker 4, T'comm;,
as:

chunk

2

Tcomm; = nLat; + + tLat;, (2)

where nLat; is the overhead, in seconds, incurred by the
master to initiate a data transfer to worker 4 (i.e. initiate a
TCP connection); B; is the data transfer rate to worker ¢, in
units of workload per second; ¢t Lat; is the time interval be-
tween when the master finishes pushing data on the network
to worker 7 and the time when worker 4 receives the last byte
of data. We assume that the nLat; + chunk/B; portion
of the transfer is not overlappable with other data transfer.
However, tLat; is overlappable as in [11]. Note that for
cases that the needed data files are replicated or pre-staged
on workers, we can model these cases by using an appro-
priately large or infinitely large B;. This network model is
depicted on Figure 2.

This model was discussed in detail in [17, 13]. The key
point is that it is flexible and can be instantiated to model
platforms considered in most relevant previous works on di-
visible workload scheduling [11, 7, 18]. Based on our expe-
rience with actual software [22], we found that the computa-
tional latency, cLat, is fundamental for realistic modeling.
We know of only one work that models this latency in the
context of divisible load scheduling [23], but that work is
only in the context of one-round scheduling algorithms.

nLat1

tLat 2
Worker #1
Worker #2 ‘
Worker #3
chunk / B3

Figure 2. Illustration of the network commu-
nication model for 3 identical chunks sent to
3 workers with different values of nLat;, B;,
and tLat;.

3.2 TheUMR Algorithm

In this section we provide a brief summary of the work
and results in [17, 13] to set the stage for the RUMR algo-
rithm, which we presented in Section 4.

Figure 3 shows how UMR dispatches chunks of work-
loads in multiple rounds. While this is similar in spirit to
the “multi-installment” algorithm[18], UMR keeps chunk
sizes fixed within each round. The chunk size is increased
between rounds in order to reduce the overhead of starting
communication (nLat) and computation (cLat). While our
work in [17, 13] addresses heterogeneous platforms, but we
only discuss the homogeneous case here for simplicity. The
unknowns that UMR must determine are M, the number of
rounds, and chunk;, j = 0, ..., M — 1, the chunk size used
at each round.

Our development of UMR was as follows. We first ob-
tained a simple induction relation on the chunk sizes, mean-
ing that the only chunk size that needs to be determined
is chunkg. Then, we framed the scheduling problem as a
constrained optimization problem: the goal being to mini-
mize the application execution time subject to the constraint
that all the chunks sum up to the total workload. Using the
Lagrange Multiplier method [24] we obtained a system of
2 equations with M and chunkg as unknown. This sys-
tem can be solved numerically by bisection (requiring about
0.07 seconds on a 400MHz PII1). Complete details are pro-
vided in [17].

Our main contribution is that we were able to compute an
approximately optimal number of rounds while using a re-
alistic platform model incorporating resource latencies. To
evaluate the effectiveness of our approach we used simu-
lation and compared UMR with the multi-round algorithm
in [18] and the one-round algorithm in [11] for an extensive
space of platform configurations and capabilities. We found
that:

1. UMR leads to better schedules than its two competi-
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Figure 3. UMR dispatches the workload in rounds, where the chunk size if fixed within a round, and

increases between rounds.

tors in an overwhelming majority of the cases in our
experiments (>95%);

2. When UMR is outperformed, it is very close to the
competitors (on average within 2.04% with a standard
deviation of 0.035); and

3. Neither competitor ever outperforms UMR “across the
board” (i.e. for ranges of computation/communication
ratios).

UMR is able to achieve such improvement over previous
work in spite of the uniform round restriction, an precisely
because this restriction makes it possible to compute an op-
timal number of rounds. This is one of the main results
of our previous work. We also showed that UMR tolerates
high platform heterogeneity due to an effective resource se-
lection technique. In this paper we extend UMR to account
for performance prediction errors.

4 RUMR: Robust Uniform Multi-Round

The duration of a computation or of a data transfer often
cannot be predicted perfectly accurately in practice. Pre-
diction errors arise due to uncertainties of both the plat-
form and the application. On a non-dedicated platform it

is almost impossible to make accurate predictions due to re-
source load fluctuations (both on CPUs and network). Pre-
diction errors may also be caused by inherent properties of
the application if computation is data-dependent, i.e. the
amount of computation required for a chunk depends on
the nature of the data for the chunk. For instance, in a
raytracing application the time taken to trace through one
pixel depends greatly on the complexity of the scene. As
a result, an approach in which the entire schedule is pre-
calculated at the onset of the application [18, 13] is likely
to be inefficient. Nevertheless, this is a standard approach
in the scheduling literature, and in particular for develop-
ing divisible workload algorithms that use increasing chunk
sizes [18], including our own work on UMR.

On the other extreme, algorithms particularly targeted
at tolerating prediction errors do not make use of perfor-
mance predictions at all [14, 15]. They exponentially de-
crease chunk sizes and schedule chunks in a greedy fash-
ion. One issue there is the overhead for scheduling small
chunks, which is addressed in [15]. More importantly, these
algorithms do not achieve good overlap of communication
and computation, which is critical for high performance.

Our basic approach is to combine both approaches:



RUMR schedules the workload in two consecutive phases:
Phase #1 uses a revised version of UMR to pre-calculate the
initial portion of the schedule, first using small chunk sizes
and gradually increasing chunk sizes; Phase #2 uses the
factoring approach in [14] to decrease chunk sizes. Phase
#1 aims for high performance via efficient communication
computation overlap and overhead reduction, while phase
#2 limits the negative effect of performance prediction er-
rors at the end of execution. In what follows we describe
a model for these errors and our key design choices for
RUMR.

4.1 PerformancePrediction Error M odel

We assume a simple prediction error model both for data
transfers and computations: the ratio of predicted execution
time to effective execution time is normally distributed with
mean 1 and standard deviation error (the distribution is
truncated to avoid negative values). This model is quite gen-
eral and was used in the relevant previous literature [14, 15].
Its simplicity makes it straightforward to interpret simula-
tion results. Some of our intuitions for developing RUMR
are based on the assumption of normally distributed errors
(as it was done in [14, 15]). We also assume that the proba-
bility distribution of prediction errors is stationary through-
out the application run. If it is not stationary but does not
change too rapidly, our approach should still be effective
as phase #2 does not use prediction errors at all. We also
ran all the experiments under a uniformly distributed error
model, but our results were essentially similar. We leave
more sophisticated and/or realistic error models for future
work.

A key question is whether error is a known quantity,
i.e. whether RUMR can use its value to decide on how
to organize the schedule at the onset of the application.
Estimations of error can be obtained by past experience
with the application and the platform, by querying resource
monitoring/forecasting services [25], by monitoring predic-
tion errors as the application runs, or by any combination
of these. In what follows we discuss alternate strategies
whether error is known or unknown.

4.2 Design Choicesfor RUMR

We faced three issues for implementing RUMR:

(i) When should RUMR switch to phase #2?
(if) What about prediction errors in phase #1?
(iii) What should the minimal chunk size be in phase #2?

We have made pragmatic design choices to address each
of these questions. We provide here intuition for these
choices and will validate them in the next section.

To address question (i) we use the following common-
sense observation: the higher the prediction errors, the
larger the proportion of the workload that should be sched-
uled in phase #2. If error is zero then RUMR defaults
to UMR and uses only phase #1. If error is greater than
1, then RUMR defaults to Factoring and uses only phase
#2. Otherwise, we use the following heuristic.: RUMR
schedules error x Wysqr Units of workload in phase #2.
There is one added constraint: if error x Wiota /N <
x (cLat + nLat x N), then RUMR does not use phase #2.
The right side of the inequality is the amount of overhead
incurred to send out a round of empty chunks (non-hidden
latencies to send N messages and start the computation for
the last processor). The lest side of the inequality is the
amount of work to be accomplished in phase #2 for one
worker. Our rationale is that the time to process the re-
maining application workload in phase #2 should be at least
equal to the overhead. If error is unknown, then one can
just pick an arbitrary point at which to switch to phase #2,
which we discuss further in Section 5.2.1.

For question (ii), it is important that the schedule do
not suffer too many gaps, meaning that processors that fin-
ish computing earlier than expected should not stay idle.
RUMR uses a very simple approach: send a new chunk
of data to a worker if it finishes prematurely, which is in
some sense incorporating a greedy scheduling component
into UMR, while preserving the increasing chunk size prop-
erty.

Question (iii) arises because Factoring reduces chunk
sizes exponentially. We must ensure that the last chunks
being sent are not so small as to incur prohibitive over-
head. As observed in our answer to question (i), the
overhead incurred to send one round of empty chunks is
(cLat + nLat x N). If error is known then we bound
chunk sizes below by (cLat + nLat x N)/error. Other-
wise, we use (clat + nlat x N), as done in [15].

5 Simulation Results

In the previous section we have outlined the basic princi-
ples for RUMR and provided intuitive justifications for our
design choices. In this section we present experimental re-
sults obtained in simulation with the goals of (i) comparing
RUMR to previously proposed algorithms; and (ii) quan-
tifying the impact and effectiveness of our design choices.
To this end we have built a simulator based on the SIMGRID
toolkit [26, 27]. Although our approach, like the UMR ap-
proach, was developed both for homogeneous and hetero-
geneous platforms, we only present results for the homoge-
neous case. This is for several reasons: the results are more
straightforward to understand and compare; some of the
competing algorithms are not amenable to heterogeneous
platforms; and the purpose of our evaluation is primarily



Parameter Values

Number of processors N =10,15,20,...,50
Workload (unit) Wiotar = 1000
Compute rate (unit/s) S=1

Transfer rate (unit/s)
Computation latency (s)
Communication latency (s)

B=(1213,...,2)x N
cLat =0.0,0.1,...,1
nLat = 0.0,0.1,...,1

Table 1. Parameter values for the experiments
presented in Section 5.

to understand the impact of performance prediction errors
(see [17, 13] for a study of heterogeneity).

The parameter values we used for our experiments are
shown in Table 1. The “units” in Table 1 is the minimimal
unit of computation in the worklad, e.g. one sequence in a
sequence datafile, or one block of pixels in image process-
ing. Note that B; = B, cLat; = cLat, and nLat; = nLat
for all processors and network links so that the platform is
homogeneous. We use S; = 1 so that the numerical value B
is also the communication to computation ratio. Note that
the value of B depends on N. This is to comply with the full
platform utilization conditions that we developed in [17]. If
these conditions are not met then the number of processors
must be reduced. We do not consider this issue in this paper
for simplicity.

In all experiments we vary error, as defined in Sec-
tion 4.1, from 0.0 to 0.5. All presented results are averages
obtained over 40 repetitions (to account for the randomness
of prediction errors).

We assume that before the master begins sending work-
load, all the input data corresponding to the workload have
been placed on the master. Also, we so not model back-
ground resource load explicitly. Indeed, we account for re-
source uncertainty with the the error parameter.

5.1 Comparison with Competing Algorithms

We compared RUMR with the following three com-
peting algorithms: the UMR algorithm (see Section 3.2),
the Multi-Installment (MI) algorithm in [18], and the Fac-
toring algorithm in [14] .The first two were designed to
achieve high performance in perfectly predictable environ-
ments whereas the last one was designed to be robust to per-
formance prediction errors. We instantiated four versions
for MI, Ml-z for x = 1,...,4, where z is the number of
rounds used. This is necessary because MlI, unlike UMR,
does not provide a way to determine an optimal number of
rounds automatically. We also investigated the Fixed-Size
Chunking (FSC) strategy described in [15]. This strategy is
an optimized self-scheduling algorithm and performs worse
than Factoring in most of our experiments. Consequently

we do not show results for FSC.

Ranges of error

Algorithm [ 0-0.08 | 0.1-0.18 | 0.2-0.28 | 0.3-0.38 | 0.4-0.48
UMR 54.96 | 56.60 73.45 81.99 86.48
Mi-1 98.27 86.08 75.27 68.27 69.82
Mi-2 94.44 | 88.38 94.95 98.91 98.61
MiI-3 94.70 | 95.70 97.33 98.76 99.94
Mi-4 95.55 | 97.77 98.17 98.71 99.84

Factoring | 98.21 94.06 93.84 90.16 84.74

Table 2. Percentage of experiments for which
RUMR outperforms the algorithms in the left-
most column.

Ranges of error

Algorithm [ 0-0.08 | 0.1-0.18 | 0.2-0.28 | 0.3-0.38 | 0.4-0.48
UMR 0.00 4.64 27.59 43.29 55.80
Mi-1 68.89 | 44.97 48.70 56.25 57.02
Mi-2 59.67 56.64 65.55 69.74 70.03
MiI-3 69.55 | 68.51 85.24 90.92 93.03
Mi-4 76.46 | 78.49 90.18 94.73 96.70

Factoring | 90.09 61.88 45.62 35.39 23.86

Table 3. Percentage of experiments for which
RUMR outperforms the algorithms in the left-
most column by at least 10%.

To provide an overview of our results, Table 2 shows the
percentage of times that the algorithms in the leftmost col-
umn are outperformed by RUMR for all our experiments,
averaged over five ranges of error values. These results
demonstrate that RUMR outperforms competing algorithms
in most of the cases as all values are above 55% and up to
99%. Overall RUMR outperforms competing algorithms in
79% of our experiments. To quantify the amount by which
RUMR outperforms competitors, Table 3 show the percent-
age of times that UMR outperforms the algorithms in the
leftmost column by at least 10%. One can see that RUMR
outperforms MI-z by at least 10% in between 45% and 95%
of the experiments. One can see interesting and inverted
trends for UMR and Factoring as error grows. While these
results give a sense of the superiority of RUMR, we present
below relative makespan results that provide more detailed
insight.

Figure 4(a) plots the average makespan achieved by the
six competing algorithms normalized to that achieved by
RUMR versus error. These results are averages over all
experiments, covering the entire space of parameter val-
ues shown in Table 1. Values above 1.0 represent cases
in which RUMR outperforms the competing algorithms.
We present only relative makespan results as experiments
are conducted for a wide range of platform configurations,
making absolute makespans difficult to compare and aver-
age. The only algorithm that outperforms RUMR on av-
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Figure 4. Makespan obtained with UMR, MI-
z, and Factoring normalized to that of RUMR
Versus error.
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Figure 5. Makespan obtained with UMR, MI-
z, and Factoring normalized to that of RUMR
versus error, for a specific instantiations of
the parameters in Table 1: cLat = 0.3, nLat =
0.9, N =20, r = 36.

erage is UMR when the prediction error is small, which is
explained in Section 5.2.2. As expected, the relative perfor-
mance of Factoring improves as error increases. Neverthe-
less RUMR outperforms Factoring by at least 8% for values
of error up to 0.5.

Another observation is that UMR (and thus RUMR) out-
performs MI-z on average. This extends our previous re-
sults from [13] in which we only looked at the case error =
0. In fact The MlI-z algorithms never get within less than
20% of RUMR on average. However, the trend is an initial
decrease of the average relative makespan and the curves for
MI-3 and MI-4 keep decreasing as error grows. This phe-
nomenon is due to the fact that in high latency situations
RUMR often uses only one round in phase #1 (due to the
way in which UMR operates), and does not use a phase #2
if error X Wioea is smaller than N x nLat + cLat. There-
fore, it is possible that RUMR uses only a single round of
work allocation and thus loses some robustness to perfor-
mance prediction errors when compared to, say, MI-3 or
MI-4. This is demonstrated in Figure 4(b), which is simi-
lar to Figure 4(a) but for a subset of the parameter space:
nLat < 0.3 and cLat < 0.3. One can see under smaller
latency situations all versions of MI-z exhibit a brief ini-
tial decrease followed by a steady increase. This increase is
due to RUMR starting to deem error large enough to use a
phase #2, as demonstrated below.

The results we have presented so far are averages over
large portions of our parameter space. When inspecting re-
sults more closely we found that results fall roughly in two



categories: large and small nLat values. When n Lat is rel-
atively small RUMR generally uses many rounds in phase
#1 leading to good performance and relative makespan pat-
terns are similar to those seen in Figure 4(b). When nLat is
relatively large then the patterns are similar to those seen
in Figure 4(a), with a few interesting elements. For in-
stance, Figure 5 shows average relative makespans for a
single point in our parameter space with high nLat = 0.9.
In this situation RUMR uses only one round in phase #1
for low values of error, causing the aforementioned ini-
tial decrease of the relative makespans for Ml-z. How-
ever, we can see a sharp increase in relative makespans at
error = 0.18. This corresponds to RUMR starting to use
phase #2 to schedule the last portion of the workload. This
pattern explicitly demonstrate the benefit of splitting the ex-
ecution in two phases.

5.2 Evaluation of RUMR Design Choices
5.2.1 Division in Two Phases

We wanted to evaluate the effectiveness of our heuris-
tic to decide when RUMR should switch to phase #2 (de-
sign choice (i) in Section 4.2). Our approach is to reserve
error X Wioia Of the entire workload for scheduling in
phase #2 as long as it is larger than the overhead caused by
sending chunks to all workers. This assumes that the value
of error can be estimated. We evaluated an implementation
of RUMR that schedules a fixed percentage of the workload
in phase #1, independently of error. We used phase #1
percentage values of 50%, 60%, 70%, 80% and 90%. Fig-
ure 6 plots average makespans relative to the makespan of
the original RUMR algorithm versus error, over all param-
eter values in Table 1.

One can see that when error is small it is of course
more beneficial to schedule a large percentage of the work-
load in phase #1. We can also see that the original RUMR
achieves a much better makespan because it actually does
not use a phase #2 at all. As error gets large, versions
of RUMR that schedule a larger fraction of the workload
in phase #1 lead to worse performance than the original
RUMR. whereas versions that use a smaller fraction get
comparable performance. Overall, the version of RUMR
that schedules 80% of the workload in phase #1 and 20%
in phase #2 achieves the best relative performance when
averaged over error (within about 15% of the makespan
obtained with the original RUMR). Note these curves don’t
neccessarily interesect the x-axis, because orginal RUMR
also uses N x (cLat +nLat x N) as a threshold for phase
#2, so, at error = 0.1, original RUMR doesn’t necessarily
give 90% to phase #1, which RUMR_90 does.

From these results we conclude that our heuristic for par-
titioning the workload between phase #1 and phase #2 is ef-

average relative makespan
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Figure 6. Average makespan obtained with
RUMR when scheduling a fixed percentage of
the workload in phase #1 normalized to that
obtained with the original RUMR versus error,
for all parameters in Table 1.

fective across the board (i.e. for the whole range of values
for error). This is actually not surprising, but leads to an in-
teresting point. In cases where the value of error can not be
known in advance we have to use a fixed division between
the two phases (80% in phase #1 seems like a good prac-
tical choice) ; But RUMR can easily achieves better per-
formance if techniques to estimate error (even coarsely)
are available. In Section 4.2 we have pointed to such tech-
niques, which we now view as critical for scheduling divis-
ible workloads in environments that are not perfectly pre-
dictable but with quantifiable prediction error magnitude.
These techniques have been used effectively in previous
work [20] and we will reuse them to implement RUMR as
part of a practical application execution environment [16] in
future work.

5.2.2 Modification to UMR in Phase #1

In Section 4.2 we mentioned that we modified UMR in
phase #1 so that out-of-order chunk dispatching is allowed
if processors become idle prematurely. We compared this
strategy with a version of RUMR that uses a plain UMR
in phase #1, i.e. with in-order chunk dispatching. Fig-
ure 7 plots the makespan achieved by the plain UMR ver-
sion normalized to the makespan achieved by the original
RUMR versus error. We see that allowing out-of-order
chunk dispatching only leads to only about 1% improve-
ment for high values of error. Furthermore, for very low
values of error using plain UMR is slightly more efficient.
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Figure 7. Average makespan obtained with
RUMR when using plain UMR in phase #1
normalized to that obtained with the original
RUMR versus error, for all parameters in Ta-
ble 1.

Indeed, the makespan can be harmed by perturbations in
chunk ordering that are not judicious when prediction er-
rors are minute and would not impact the overall makespan
much anyway. Although using out-of-order chunk dispatch-
ing seemed promising, these results shows that it is only
marginally effective and that most of the effectiveness of
RUMR comes from the division into two phases.

6 Conclusion

In this paper we have presented RUMR (Robust Uniform
Multi-Round), a scheduling algorithm for minimizing the
makespan of divisible workload applications under uncer-
tainties of resource performance, our ultimate goal is to de-
velop a scheduling strategy for divisible workloads that can
be used in practice for real-world applications on real-world
platforms.

In our previous work [17, 13] we made a first contri-
bution by developing UMR (Uniform Multi-Round), an al-
gorithm that outperforms previously proposed algorithms
while tolerating more realistic latency models. In this pa-
per we have taken the next step and addressed the issue of
performance prediction errors that arise due to uncertainties
about platforms and applications. RUMR leverages UMR
and the work in [14] to achieve both high performance
and robustness to prediction errors: it uses two consecutive
phases for application execution, with increasing and then
decreasing workload chunk sizes.

We have evaluated our approach with extensive simula-

tion experiments. We have demonstrated that RUMR out-
performs previously proposed algorithms both in terms of
performance and robustness. We then have presented results
to evaluate our design choices when implementing RUMR
and in particular we showed that the way in which RUMR
divides application execution in two phases is key to its ef-
fectiveness. Further simulations will be done on more com-
plex and realistic error distribution models, and use traces
from real applications.

While our work could be extended at an algorithmic
level and while further optimizations can be envisioned, our
next step in this research will focus primarily on integrating
RUMR as part of the APST Grid application execution en-
vironment [28, 29]. We will extend APST so that it supports
divisible workloads and we will implement RUMR as part
of APST’s scheduler. This implementation will make it pos-
sible to determine empirical performance prediction error
distributions as well as latencies for sending data and start-
ing computation as the application runs. Such information
will be used on-the-fly by RUMR to make relevant schedul-
ing decisions. Finally, we will perform large numbers of
experiments (building on APST’s large user and application
base) to validate our approach. The end result will be a
practical and usable implementation of a scheduling strat-
egy for deploying high performance divisible workloads in
real-world settings.
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