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Abstract

In this paper we present an algorithm for scheduling par-
allel applications that consist of a divisible workload. Our
algorithm uses multiple rounds to overlap communication
and computation between a master and several workers.
Multi-round scheduling has been used for divisible work-
loads in previous work and our contribution is as follows.
We use “uniform” rounds, i.e. a fixed amount of work is sent
out to all workers at each round. This restriction makes it
possible to compute an approximately optimal number of
rounds, which was not possible for previously proposed al-
gorithms. In addition, we use more realistic platform mod-
els than those used in previous works. We provide an anal-
ysis of our algorithm both for homogeneous and heteroge-
neous platforms and present simulation results to quantify
the benefits of our approach.

1 Introduction

Applications that consist of many independent computa-
tional tasks arise in many fields of science and engineer-
ing [1, 2, 3, 4]. These applications often require large
amounts of compute resources as users wish to tackle in-
creasingly complex problems. Fortunately, advances in
commodity technology (CPU, network, RAM) have made
clusters of PCs cost-effective parallel computing platforms.
In this paper we address the problem of scheduling the
aforementioned applications on such platforms with the
goal of reducing execution time, ormakespan. This prob-
lem has been studied for two different application mod-
els: fixed-sized tasksand divisible workload. In the first
scenario, the application’s workload consists of a number
of tasks whose size are pre-determined and a number of
scheduling heuristics have been developed [5, 6, 7, 8]. In
the divisible workload scenario, the scheduler can partition
the workload in arbitrary “chunks”. The usual assumption is
that the workload is continuous. In practical situations, this

often means that the execution time of a base computational
unit is orders of magnitudes smaller than the execution time
of the entire workload and that all base computational units
are the same size. In this paper we focus solely on the di-
visible workload scenario, which has been extensively stud-
ied [9].

The divisible workload scheduling problem is challeng-
ing due to the overhead involved when starting tasks: (i) the
time to transfer application input/output data to/from a com-
pute resource; (ii) the latency involved in starting a compu-
tation. In [9], the problem is identified as:Given an arbi-
trarily divisible workload ... in what proportion should the
workload be partitioned and distributed among the proces-
sors so that the entire workload is processed in the shortest
possible time?The trade-off for achieving a good schedule
is as follows. On the one hand, dividing the workload into
large chunks generally reduces the overhead, and thereby
the execution time of the application. On the other hand,
dividing the workload into small chunks makes it possi-
ble to overlap overhead with useful work more efficiently.
In all that follows we consider a traditionalmaster/worker
paradigm.

Our contributions in this paper are on several fronts. We
propose and analyze a new scheduling algorithm: UMR
(Uniform Multi-Round). Similarly to previously proposed
algorithms, UMR dispatches work to compute resources
in multiple rounds. However, we add the restriction that
rounds must be “uniform”, i.e. within each round the mas-
ter dispatches identical chunks to all workers. Due to this
restriction, we are able to derive an approximately optimal
number of rounds, both for homogeneous and heteroge-
neous platforms. We evaluate our algorithm with models
that are more realistic than those used in previous work. We
compare our algorithm with a previously proposed multi-
round algorithm and a one-round algorithm. Our simulation
results demonstrate the benefits of our approach for wide
ranges of scenarios. We also analyze the impact of vari-
ous system parameters on the behavior and effectiveness of
UMR.
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2 Related Work

The works in [10, 11, 12, 3, 13] study scenarios in which
the workload is divided in as many chunks as processors.
Therefore, the entire application is performed in a single
round of work allocation. By contrast, our algorithm uses
multiple rounds. During each round a portion of the en-
tire workload is partitioned among the available proces-
sors. Therefore, our work is most related to the ”multi-
installment” algorithm presented in [14]. The key idea is
that using small chunks and multiple rounds allows for over-
lapping of communication and computation. Note that in
both our work and the work in [14] it is assumed that the
amount of data to be sent for a chunk is proportional to the
chunk size.

The chunk size can then be gradually increased through-
out the application run in order to reduce communication
overhead. Our approach differs from [14] in the follow-
ing way. Whereas [14] allocates decreasing chunks of the
workload to processors within a round, we keep the chunk
sizefixed within a round. This has one major benefit: our
algorithm is amenable to analysis, which allows us to com-
pute a near-optimal number of rounds, both for homoge-
neous and heterogeneous platforms. We provide quantita-
tive comparison between our work and [14] in section 5.1.
The work in [4] uses multiple rounds to schedule divisible
workloads. However, it focuses onsteady-stateapplication
performance rather than makespan and therefore uses iden-
tical rounds.

Multi-round scheduling for divisible workloads has also
been studied in [15, 16]. Instead of increasing chunk size
throughout application execution, those approaches start
with large chunks anddecreasechunk size throughout ap-
plication execution. Assuming uncertainties on task exe-
cution times, reducing the chunk size ensures that the last
chunks will not experience large absolute uncertainty. The
work in [15, 16] assumes a fixed network overhead to dis-
patch chunks of any sizes. We assume that the amount of
data to be sent for a chunk is proportional to the chunk
size, which is more realistic for most applications. With
this assumption, starting by sending a large chunk to the
first worker would cause all the remaining workers to be
idle during that potentially long data transfer. In this paper
we do not consider task execution time uncertainties, but
discuss possible ways in which our work can leverage that
in [15, 16].

3 Models

3.1 Application

We consider applications that consist of a workload,
Wtotal, that is continuously divisible: the scheduler can

decide how big a chunk of the workload to give out to a
processor. We assume that the amount of application data
needed for processing a chunk isproportionalto the amount
of computation for that chunk. As done in most previous
work, we only consider transfer of application input data.
The works in [12, 13] take into account output data trans-
fers but use a single round of work allocation. Similarly, the
work in [4] models output but considers only steady-state
performance.

3.2 Computing Platform

We assume amaster/workermodel withN worker pro-
cesses running onN processors. The master sends out
chunks to workers over a network. We assume that the mas-
ter uses its network connection in an sequential fashion:
it does not send chunks to workers simultaneously, even
though some pipelining of communication can occur [12].
This is a common assumption and is justified either by the
master’s implementation, or by the properties of the net-
work links (e.g. a LAN). In some cases, for instance on a
WAN, it would be beneficial for the master to send data to
workers simultaneously in order to achieve better through-
put. We leave this issue for future work. Note that we do not
require that the speeds of network communications to each
worker be identical. Therefore, the platform topology con-
sists of network links with various characteristics to setsof
heterogeneous processors, as depicted in Figure 1. Finally,
we assume that workers can receive data from the network
and perform computation simultaneously (as for the ”with
front-end” model in [9]).
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Figure 1. Computing platform model.

Let us formalize our model. Consider a portion of the
total workload,chunk ≤ Wtotal, which is to be processed
on workeri, 1 ≤ i ≤ N . We model the time required for
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workeri to perform the computation,Tcompi, as

Tcompi = cLati +
chunki

Si

, (1)

wherecLati is a fixed overhead, in seconds, for starting a
computation (e.g. for starting a remote process), andSi is
the computational speed of the worker in units of workload
performed per second. Computation, including thecLati
overhead, can be overlapped with communication.

We model the time spent for the master to sendchunk
units of workload to workeri, Tcommi, as:

Tcommi = nLati +
chunk

Bi

+ tLati, (2)

wherenLati is the overhead, in seconds, incurred by the
master to initiate a data transfer to workeri (e.g. pre-process
application input data and/or initiate a TCP connection);Bi

is the data transfer rate to workeri, in units of workload per
second;tLati is the time interval between when the mas-
ter finishes pushing data on the network to workeri and the
time when workeri receives the last byte of data. We as-
sume that thenLati + chunk/Bi portion of the transfer is
not overlappable with other data transfer. However,tLati
is overlappable (to model pipelined networking as in [12]).
This model is depicted on Figure 2 for data transfers from
the master to 3 workers.

Figure 2. Illustration of the network commu-
nication model for 3 identical chunks sent to
3 workers with different values of nLati, Bi,
and tLati.

This model is flexible enough that it can be instantiated
to model several types of network connections. For in-
stance, setting thenLat values to0 models a pipelined net-
work such as the one used in [12]. In that case, thetLat val-
ues represent the network latency between the master and
the workers. The model can also be instantiated with non-
zeronLat values and zerotLat values as in [7]. This is
representative of distinct connections being establishedfor
each individual transfer, with no pipelining. ZeronLat and
zerotLat corresponds to the work in [14]. To the best of
our knowledge, no other work models computation latency,

cLat. Based on our experience with actual software [17],
we deemcLat to be fundamental for realistic modeling. We
provide an analysis of our scheduling algorithm using this
generic platform model, and thereby validate our approach
for a broad range of platforms.

4 The UMR Algorithm

Similar to the algorithm presented in [14], UMR dis-
patches chunks of the workload in rounds. The chunk size
is increased between rounds in order to reduce the over-
head of starting communication (nLat) and computation
(cLat). Unlike [14], we keep the chunk size fixed within
each round. We are able to compute near-optimal number
of rounds, and a near-optimal chunk size at each round, as
demonstrated in the next section. In all that follows,M de-
notes the number of rounds used by UMR.

4.1 UMR on Homogeneous Platforms

We describe and analyze the UMR algorithm for a plat-
form that consists ofN identicalworkers accessible via one
network link. Consequently we set:

∀i = 1, .., N

Si = S, nLati = nLat, tLati = tLat, Bi = B.(3)

Induction on chunk sizes – Let chunkj, for j =
0, .., M − 1, be the chunk size at each round. We illustrate
the operation of UMR in Figure 3. At timeTA, the mas-
ter starts dispatching chunks of sizechunkj+1 for round
j + 1. The workers perform computations of sizeschunkj

for roundj concurrently. To maximize bandwidth utiliza-
tion, the master must finish sending work for round(j + 1)
to all workers before workerN finished its computation for
round j, which is shown at timeTB. Therefore, perfect
bandwidth utilization is achieved when:

tLat + cLat +
chunkj

S
=

N(
chunkj+1

B
+ nLat) + tLat. (4)

The left-hand side is the time workerN spends receiving the
last bytes of data, initiating a computation, and computing
a chunk during roundj. The right-hand side is the time it
takes for the master to send data to allN workers during
roundj + 1. Eq. 4 defines a simple induction forchunkj,
and one can then compute:

∀j chunkj+1 − α =
B

NS
(chunkj − α)

⇒ ∀j chunkj = (
B

NS
)j(chunk0 − α) + α,

(5)
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Figure 3. UMR dispatches the workload in
rounds, where the chunk size if fixed within a
round, and increases between rounds.

where

α =
BS

B − NS
(N × nLat − cLat). (6)

We have thus obtained a geometric series of chunk sizes,
wherechunk0 is an unknown.

Necessary conditions for full platform utilization – Let
us determine the conditions under which allN workers can
be utilized. To utilize all workers, the master must be able
to send out all work for roundj and work for roundj + 1
to worker #1 before this worker becomes idle. This can be
written formally as:

[

N(nLat +
chunkj

B
) + nLat

]

+

[

chunkj+1

B
+ tLat

]

≤

[

nLat +
chunkj

B
+ tLat

]

+

[

cLat +
chunkj

S

]

,

where the left-hand side is the time needed by the mas-
ter to send all data for roundj and data to worker #1 for
roundj + 1, and the right-hand side is the time worker #1
spends receiving data and computing for roundj. Replac-
ing chunkj+1 by its expression given in Eq. 5, we obtain:

(NS − B)chunk0 ≤ (NS − B)α. (7)

If this constraint it not met, then at least one worker can
not be used andN should be reduced. We will see in what
follows howchunk0 is computed by our algorithm. We give
here necessary conditions for Eq. 7, which are analogous to
the “mσ ≤ 1” constraint in [14].

1. If NS − B > 0, then Eq. 7 reduces tochunk0 ≤
α. Sincechunk0 must be strictly positive, a necessary
condition for Eq. 7 is:

α > 0. (8)

2. If NS − B < 0, then Eq. 7 reduces tochunk0 ≥ α.
For all workers to be used,chunk0 must be smaller
than Wtotal/N . Therefore, a necessary condition is
for Eq. 7 is:

α ≤ Wtotal/N. (9)

Constrained minimization problem – The objective
of our algorithm is to minimizeEx(M, chunk0), the
makespan of the application:

Ex(M, chunk0) =
Wtotal

N
+ M × cLat + (10)

1

2
× N(nLat +

chunk0

B
) + tLat.

The first term is the time for workerN to perform its com-
putation. The second term is the overhead incurred at each
round to initiate a computation. The third term correspond
to the time for the master to send all the data for round0.
The 1

2
factor is due to an optimization that is described in

detail in section 4.3. Finally, the fourth term,tLat, can be
seen on Figure 3 just after timeTA for workerN .

We also have the constraint that the amount of work sent
out by the master during the execution sums up to the entire
workload:

G(M, chunk0) =

M−1
∑

j=0

N × chunkj − Wtotal = 0.

This constrained minimization problem, withM and
chunk0 as unknowns, can be solved by using the Lagrange
Multiplier method [18]. The multiplier,L(chunk0, M, λ),
is defined as:

L(chunk0, M, λ) = Ex(M, chunk0)+λ×G(M, chunk0),

and we must solve:






















∂L
∂λ

= G = 0

∂L
∂M

= ∂Ex
∂M

+ λ × ∂G
∂M

= 0

∂L
∂chunk0

= ∂Ex
∂chunk0

+ λ × ∂G
∂chunk0

= 0.

(11)

This system of equations reduces to the following equation
for M :

Nα −
Wtotal − NMα

1 − ( B
NS

)M

(

B

NS

)M

ln

(

B

NS

)

−

2cLat× B
1 − ( B

NS
)M

1 − B
NS

= 0 (12)
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This equation can be solved numerically by bisection. The
solve is fast (on the order of 0.07 seconds on a 400MHz
PIII) and can thus be implemented in a runtime scheduler
with negligible overhead. Once we have computedM∗, the
solution of Eq. 12,chunk0 follows as:

chunk0 =
(1 − B

NS
)(Wtotal − NM∗α)

N × (1 − ( B
NS

)M∗)
+ α, (13)

and chunkj(j > 0) can be computed with Eq. 5. Com-
plete details on these derivations are provided in a technical
report [19].

4.2 UMR on Heterogeneous Platforms

The analysis of UMR in the heterogeneous case, i.e.
without the simplifying assumptions in Eq. 3, is more in-
volved than that for the homogeneous case but follows the
same steps. Due to space constraints we can not present the
entire development and refer the reader to [19] for details.
Nevertheless, we describe two key differences with the ho-
mogeneous case:

1. In the homogeneous case, we fixed thesizeof chunks
for an round. Here, we fix thetime it takes for each
worker to perform computation during a round. In
other words, workeri receives a chunk sizechunkji

at roundj, but the quantitychunkji/Si depends only
on j. This makes it possible to obtain an induction on
chunk sizes, necessary conditions for full platform uti-
lization, and a constrained minimization problem that
are analogous to those in the homogeneous case.

2. We have given necessary conditions for a homoge-
neous platform to be fully utilized. One can reduceN
to meet these conditions and then iteratively reduce its
value until the constrained minimization problem has a
solution. Similar considerations hold for the heteroge-
neous case. However, there is an additionalresource
selectionissue. When the full platform cannot be uti-
lized one must select which processors not to use. In
section 5.2, we present a resource selection strategy
that works well in practice.

4.3 Practical Implementation of UMR

Before presenting experimental results, we present here
two technical modifications of the UMR algorithm that are
used in the rest of the paper.

Rounding M∗ to an integer – The bisection solve of
Eq. 12 produces a real value forM∗, whereas we need an
integral number of rounds. A possibility is to usedM∗e
rounds. The last round would then consist in dispatching

potentially small amounts of work equal tochunkdM∗e,
while still incurring full cLat overheads. Instead, we use
the valuebM∗ + 1

2
c as the number of rounds, which works

better in practice.

Last round optimization – The work in [14] shows that
in an optimal divisible workload schedule all workers finish
computing at the same time. In the UMR algorithm, as it
described in section 4, the finishing time of allN workers
has the same “slope” as the starting of the compute times
in the first round (as seen in Figure 3). When communi-
cations are relatively slow, i.e. whenB/S is low, worker
1 finishes computation much earlier than workerN , lead-
ing to idle time. To alleviate this limitation, we modify the
implementation of UMR for the last round. The main idea
is to give a decreasing amount of work to workers during
the last round in order to have them all finish at the same
time (note that this is similar to what is done in [14] and
is different from the uniform round approach we use for all
other rounds). The straightforward computation of the mod-
ified chunk sizes for the last round is presented in [19]. This
modification of the last round leads to the1

2
factor in Eq. 10.

5 Simulation Results

In order to evaluate our approach, we developed a sim-
ulator with the Simgrid [20] toolkit. First, we compared
UMR to previously proposed algorithms: the multi-round
algorithm in [14] and the one-round algorithm in [12]. Sec-
ond, we evaluate UMR’s robustness to platform heterogene-
ity. Additionally, an experimental study of how system pa-
rameters impact UMR’s choice for the number of rounds is
presented in [19].

5.1 Comparison with Previous Algorithms

Using our simulator, we compared UMR with the multi-
installment algorithm proposed in [14], heretofore referred
to as MI. Since a closed form solution for MI is not available
for heterogeneous platforms we only present results for ho-
mogeneous platforms in this section. Furthermore, unlike
UMR, the MI algorithm does no compute an optimal num-
ber of rounds. In fact, since the work in [14] does not model
latencies, it would seem that the best scheduling strategy is
to use as many rounds as possible. Of course, the authors
state that in a practical scenario it would not be beneficial
to use a large number of rounds (due to latencies). Con-
sequently, we present results for the MI algorithm with 1
to 8 installments. We denote each version by MI-x with
x = 1, . . . , 8. We also compare UMR against the one-
round algorithm in [12], which we denote as One-Batch.
Unlike [12], we model only transfer of input data to the
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workers. Our version of One-Batch takes into account all
the latencies in our model.

We performed experiments for wide ranges of values for
parameters defining the platform and the application. We
first present aggregate results averaged over large numbers
of experiments. We then present results for sub-sets of the
results to illuminate the behaviors of the different schedul-
ing algorithms.

5.1.1 Aggregate Results

We evaluated UMR, MI-x, and One-Batch for the pa-
rameter values in Table 5.1.1. Note that we chooseS = 1
to limit the number of parameters. In these conditions, the
computation/communication ratio for all workers is exactly
equal to the numerical value ofB. In all that follows, we
use the terms “computation/communication ratio” and “B”
interchangeably. Since the effect oftLat is just to shift the
running time bytLat, we settLat = 0. Finally, note that
we choose values ofB that make it possible to use all work-
ers given the necessary conditions developed in section 4.1.

For each instantiation of these parameters we did the
following. We simulated all 10 scheduling algorithms,
and computed three metrics for each algorithm: (i) its
makespan, normalized to that achieved by UMR in this
experiment; (ii) itsrank, which goes from 0 (best) to 10
(worst); (iii) its degradation from best, which measures the
percent relative difference between the makespan achieved
by this algorithm and the makespan achieved by the best
algorithm for this experiment. These three metrics are com-
monly used in the literature for comparing scheduling al-
gorithms. We present averages of these 3 metrics for each
algorithm over all parameter configurations in Table 2(a).

The main observation from Table 2(a) is that UMR out-
performs competing algorithms in most cases. We also see
that the One-Batch strategy outperforms the MI-x algorithm
in the majority of the cases. On average it leads to sched-
ules 4% longer than UMR. This is due to the fact that a
one-round algorithm can not overlap communication and
computation as much as a multi-round approach. Over all
instantiations of system parameters UMR is not the best al-
gorithm in only 4.46% of the cases. When UMR is outper-
formed, it is on average within 2.04% of competing algo-
rithms with a standard deviation of 0.035.

MI-x does not take into account latencies, which ex-
plains why its performance is rather poor in our experi-
ments. Consequently, we show results for a subset of the pa-
rameter space in Table 2(b). In this table we limitnLat and
cLat to be below 0.1 seconds. We see that MI-2 and MI-3
perform better for the limited set of parameters: they lead
to makespans that are within 6% and 9% of that achieved
my UMR. Nevertheless, UMR leads to better performance
in 80% of the time. Note that the One-Batch algorithm per-

Parameter Values

# of processors N = 10, 15, 20, . . . , 50
Workload (unit) Wtotal = 1000
Compute rate (unit/s) S = 1
Transfer rate (unit/s) B = 1.1N, 1.1N + 1, . . . , 5.0N
Comp. latency (s) cLat = 0.00, 0.03, . . . , 0.99
Comm. latency (s) nLat = 0.00, 0.03, . . . , 0.99

Table 1. Parameter values for the experiments
presented in section 5.1.

Algorithm normalized rank degradation
makespan from best

UMR 1.00 0.09 0.09
MI-1 1.21 2.75 21.50
MI-2 1.48 2.73 48.33
MI-3 1.84 3.68 84.48
MI-4 2.22 4.74 122.09
MI-5 2.60 5.79 160.04
MI-6 2.98 6.83 198.11
MI-7 3.36 7.85 236.22
MI-8 3.74 8.87 274.35
One-Batch 1.04 1.67 4.11

(a) Results for parameters values from Table 5.1.1 –
1,229,984 experiments.

Algorithm normalized rank degradation
makespan from best

UMR 1.00 0.58 0.29
MI-1 1.16 5.76 15.95
MI-2 1.06 2.25 6.58
MI-3 1.09 2.42 9.61
MI-4 1.14 3.53 14.62
MI-5 1.20 4.72 20.08
MI-6 1.25 5.87 25.70
MI-7 1.31 7.00 31.38
MI-8 1.37 8.11 37.09
One-Batch 1.13 4.75 13.52

(b) Results for parameters values in Table 5.1.1 with
cLat < 0.1, nLat < 0.1 – 144,704 experiments.

Table 2. Aggregate comparison of MI- x, One-
Batch, and UMR.
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forms worse relatively to UMR and MI-x. Indeed, when
latencies are small, multi-round algorithm can achieve bet-
ter overlap of computation and communication by using an
increased number of rounds.

5.1.2 Impact of Computation/Communication
Ratio on Makespan

In order to provide more insight, we project the results
for the parameter space on theB axis. More specifically,
for each value ofB we compute the makespan of MI-x and
One-Batch normalized to that achieved by UMR, Note that
the computation/communication ratio of a system is usually
key to determining a good schedule. We plot MI-x results
only for MI-1, MI-2, MI-3, and MI-4 as trends are identical
for x ≥ 4.
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Figure 4. Average makespan of MI- x and
One-Batch relative to UMR vs. the com-
putation/communication ratio, Wtotal = 1000,
nLat < 0.1, cLat < 0.1.

Small latencies – Figure 4 is for values ofnLat andcLat
that are lower than0.1. For larger values we have seen in
Table 2(a) that the MI-x algorithm is heavily outperformed
by UMR and One-Batch. The One-Batch strategy gets rela-
tively good performance only for large values of the compu-
tation/communication ratio. Indeed, overlap of computation
and communication is not critical when communication are
relatively fast. MI-1 has a similar behavior, but is not as
good as One-Batch because it does not take latencies into
account. We can see that no MI-x algorithm is effective
across the board relatively to UMR.

No latencies – The MI-x algorithm does not take into
account latencies. In order to provide a fair comparison
with the work in [14], we examined simulation results for
nLat = 0 and cLat = 0 (which we do not believe to
be a realistic scenario). In this case, the more rounds the
better, and UMR should computeM∗ as infinite. Instead,
UMR uses an arbitrary upper bound of 50 forM∗ (neces-
sary for the bisection solve of Eq. 12). Since we limit MI-x
to x ≤ 8 in our experiments, UMR always leads to the best
performance as it always uses 50 rounds. For a fair com-
parison, we forced UMR to use the same number of rounds
as MI-x. As expected, MI-x outperforms UMR because it
is not restricted to using uniform rounds and can therefore
achieve better overlap between computation and commu-
nication. However, UMR is only within 2.1% of MI-x on
average. Although this comparison is for an unrealistic plat-
form, it gives us insight into the performance cost of using
uniform rounds. Note that whencLat = 0 andnLat = 0
One-Batch is identical to MI-1.

5.1.3 Summary

The conclusions from our result are:

1. UMR leads to better schedules than MI-x and One-
Batch in an overwhelming majority of the cases in our
experiments (>95%),

2. Even when UMR is outperformed, it is close to the
competing algorithms (on average within 2.04% with
a standard deviation of 0.035),

3. Neither MI-x nor One-Batch ever outperform UMR
“across the board” (i.e. for a wide range of compu-
tation/communication ratios).

UMR is able to achieve such improvement over previ-
ous work in spite of the “uniform” round restriction, an pre-
cisely because this restriction makes it possible to compute
an optimal number of rounds. This is one of the main results
of our work.

5.2 Impact of Heterogeneity on Makespan

The results we have presented so far have been for ho-
mogeneous platforms but the same general trends apply for
heterogeneous platforms. Nevertheless, we wish to demon-
strate that UMR adequately handles heterogeneous plat-
forms. Therefore we present results for the following ex-
periment. We simulated UMR on a platform consisting of
10 processors with randomSi, cLati, nLati andBi val-
ues sampled from a uniform distributions on the interval
((1 − het−1

1+het
)mean, (1 + het−1

1+het
)mean), where the means

are:S = 1, cLat = 1, nlat = 0.1, B = 20. In other words,
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Figure 5. Normalized makespan versus het,
with and without resource selection.

processor and link characteristics can differ by as much as
a factorhet between workers.

Figure 5 plots the normalized makespan achieved by
UMR versushet (solid curve). The normalized makespan
is computed as the ratio of the makespan versus the “ideal”
makespan which would be achieved if all communication
costs were zero, that isWtotal/

∑

Si. Every data point
in the figure is obtained as an average over 100 samples.
One can see that UMR is robust and handles heterogeneous
platforms well. For extreme cases in which processor or
link performances differ by a factor up to 1000, UMR still
managed to achieve a makespan which is within 20% of the
ideal.

In these experiments UMR had to perform resource se-
lection. Indeed, when generating random values for the sys-
tem parameters, the conditions given in section 4.2 are not
satisfied. We must then use fewer resources than available.
The key idea is that there may be very slow links connect-
ing the master to very fast processors. For such a processor,
the data transfer to that processor during a round completes
after other processors have finished computing for the same
round, which is detrimental to performance. The resource
selection criteria used by UMR is inspired by an approxi-
mate version of the constraints given in section 4.2. We sort
workers by decreasing values ofBi. We then select the first
N ′ processors out of the originalN such that:

N ′

∑

k=1

Sk

Bk

< 1.

To summarize, we give priority to faster links rather than
to faster processors, which is very reminiscent of the

bandwidth-centric results in [8].
In order to show the benefits of our resource selection

method, Figure 5 also plots the normalized makespan versus
het when no resource selection is used (dotted curve). One
can see that without resource selection, UMR is not able to
maintain a low normalized makespan forhet > 20.

6 Conclusion

In this paper we have presented UMR, an algorithm for
minimizing the makespan of divisible workload applica-
tions on homogeneous and heterogeneous distributed com-
puting platforms with a master/worker strategy. UMR dis-
patches work in multiple rounds, which makes it possible to
overlap communication and computation. The main ques-
tion is: How many rounds should be used, and how much
work should be sent to each worker during each round? The
trade-off is that using many rounds to send small amounts
of work to workers allows for good overlapping of commu-
nication and computation, but incurs costly overheads. One
of our contributions is that we use “uniform rounds”: during
each round a fixed amount of work is sent to each worker.
Although this may appear overly restrictive, it enables us
to compute an optimal number of rounds, which was not
possible for previously proposed algorithms. We validated
our approach via extensive simulations with a realistic plat-
form model and compared it with the multi-round algorithm
in [14] and the one-round algorithm in [12]. In our experi-
ments we have seen that UMR leads to better schedules than
competing algorithms in the overwhelming majority of the
cases (>95%). Neither competing algorithm outperforms
UMR “across the board” (i.e. for a large range of com-
putation/communication ratios). Even when UMR is out-
performed, it is close to the competing algorithms (within
2.04% on average with a standard deviation of 0.035). Our
main result is that UMR is able to achieve such improve-
ment over previous work in spite of the “uniform” round re-
striction, an precisely because this restriction makes it pos-
sible to compute an optimal number of rounds. We also
showed that thanks to its resource selection strategy, UMR
can tolerate highly heterogeneous platforms.

In future work we will study the impact of performance
prediction errors on the scheduling of divisible workloads.
In this paper we have assumed that the scheduler has
perfect knowledge of the performance that can be deliv-
ered by networks and CPUs and that this performance is
constant. In realistic platforms, this assumption does not
hold and one must develop scheduling algorithms that
can tolerate uncertainties in predicted network transfer
times and computation times. The work in [15] addresses
uncertainty by reducing the chunk size at each round. The
UMR algorithm on the other hand increases chunk size
at each round for better performance. We will investigate
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an approach that initially increases chunk size for better
overlapping of communication and computation, but
decreases chunk size towards the end of the application
run in order to reduce uncertainties. Our ultimate goal is
to implement the resulting scheduling algorithm as part
of the APST software [21], an environment for deploying
scientific applications on Grid platforms.
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